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On the reduction of mixed Gaussian
and impulsive noise in heavily
corrupted color images

Bogdan Smolka'?3, Damian Kusnik®3* & Krystian Radlak?3

In this paper, a novel approach to the mixed Gaussian and impulsive noise reduction in color images

is proposed. The described denoising framework is based on the Non-Local Means (NLM) technique,
which proved to efficiently suppress only the Gaussian noise. To circumvent the incapacity of the NLM
filter to cope with impulsive distortions, a robust similarity measure between image patches, which is
insensitive to the impact of impulsive corruption, was elaborated. To increase the effectiveness of the
proposed approach, the blockwise NLM implementation was applied. However, instead of generating
a stack of output images that are finally averaged, an aggregation strategy combining all weights
assigned to pixels from the processing block was developed and proved to be more efficient. Based
on the results of comparisons with the existing denoising schemes, it can be concluded that the novel
filter yields satisfactory results when suppressing high-intensity mixed noise in color images. Using
the proposed filter the image edges are well preserved and the details are retained, while impulsive
noise is efficiently removed. Additionally, the computational burden is not significantly increased,
compared with the classic NLM, which makes the proposed modification applicative for practical
image denoising tasks.

Image enhancement is one of the most frequently explored topics in image processing and computer vision.
Despite the fact that the improvement of image quality has been the object of intensive research for decades,
its importance is not weakened. On the contrary, the widespread availability of inexpensive devices that enable
the acquisition of visual information makes that methods of image quality enhancement are still in the sphere
of active research interest.

The quality of images can be degraded during the acquisition and transmission process. It might be also
affected by poor lighting and unfavorable weather conditions. In particular, noise affecting the image capture,
due to small sensor size and short time of exposure, reduces the perceptual quality of visual information and
impedes diverse image processing tasks. In the rich body of literature, the researchers generally focus on two
types of noise models. The first one is the impulsive noise, which is caused by malfunctioning camera sensors,
electromagnetic interference, aging of the storage material or transmission errors'—. Basically, two models of
impulsive noise are considered*”. The first one is salt and pepper noise or fixed value impulse noise, in which
the channel values of corrupted pixels are set to either the minimum or maximum of the dynamic range. The
second, much more challenging, is the Random Valued Impulsive Noise (RVIN) noise model, in which color
pixel channels may attain any random value within the available range. Color images can be also affected by
impulsive noise, which is introduced deliberately forming the adversarial attacks significantly decreasing the efhi-
ciency of neural networks, which are widely used for various computer vision tasks®~1%. The defense techniques,
which include image denoising, have recently attracted much attention from researchers working in the field of
machine learning and cybersecurity.

The second type of the most frequently encountered image distortion is due to the Gaussian noise arising
during acquisition and caused by the intrinsic thermal and electronic fluctuations in camera sensors. This type
of noise is evenly distributed over the image and each pixel is distorted by adding a value drawn from a zero-
mean Gaussian distribution denoted as Additive White Gaussian Noise (AWGN). The suppression of impulsive
and Gaussian noise is extensively covered in the literature, but the reduction of their mixture is less investigated,
despite being a more realistic noise model. Since the majority of the widely used denoising algorithms are
constructed to exclusively suppress a single type of image contamination, attenuating mixed noise is a difficult
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undertaking mainly due to the problems with modeling of its distribution'!. The techniques that can eliminate
impulsive noise are ineffective when applied to distortions with Gaussian distribution, but the contrary is also
true.

In the literature two main groups of methods for Mixed Gaussian and Impulsive Noise (MGIN) removal are
proposed. The straightforward methods of enhancing the noisy image first remove the impulses and then, in the
second step, an appropriate filter, designed to reduce the Gaussian noise, is used. Although frequently successful,
this strategy has severe drawbacks. The effectiveness of two-step process depends on selecting the appropriate
filters and correctly adjusting their parameters, which are often influenced by the noise mixture composition
and its intensity. Due to the masking effect, which affects the detection of impulsive noise, and the introduced
pixel alterations which go against the assumption of Gaussian noise distribution, sufficient effectiveness of the
combined approaches is not guaranteed, despite the increased computational burden.

Consequently, substantial effort has gone into developing reliable filtering techniques that are designed to
complete image denoising in a single step. Most of the elaborated approaches are built on established methods
that have been shown effective in reducing Gaussian or impulsive noise. These methods are then extended to
make them capable of handling both types of disturbances simultaneously.

In this work, an efficient technique capable of suppressing the MGIN is introduced. The proposed technique
examines the distances to a prespecified number of similar pixels in the central patch of the processing block and
builds a cumulated measure of similarity of the compared patches. In this way, a set of pixels in a patch, which
are most similar to the central one in the block, are chosen, thus limiting the risk that impulsive pixels will be
used for determining the patches closeness measure.

Following the NLM blockwise processing scheme, we discard the pixels which are not among the most similar
ones, assuming that they are corrupted, consequently diminishing the influence of impulsive noise. As a result,
from each patch in the processing block we select a group of pixels which are most similar to the central patch
and the corresponding pixels from this patch are assigned weights needed for the averaging process. As the
positions of the pixels chosen in each patch of the block are changing, every corresponding pixel in the central
patch, including the severely corrupted, obtains large number of weighting coeflicients, allowing for its robust
estimation. The core of the proposed approach is a novel measure of similarity between pixel patches which
yields satisfying denoising results.

In the classic blockwise NLM algorithm, each pixel in a patch obtains its estimates which are then averaged
in the final denoising step, so that the final output is the mean of a stack of images whose number is equal to the
number of pixels in the image patches. In this work, a different strategy, assigning the pixel weights and aggregat-
ing them in the final processing stage, without creating separate denoised images, is adopted. Such an approach,
proved more robust as the small weights assigned to dissimilar patches are practically discarded in the averaging
step. Additionally, performing single weighted averaging saves memory resources as the intermediate results
obtained for each position of the central patch do not need to be stored to obtain the final denoising outcome.

The comparison of the efficiency of the proposed robust approach with state-of-the-art denoising schemes
confirmed its satisfying properties both in terms of objective restoration measures and visual quality. The pro-
posed filter, due to the properties of the introduced robust measure of similarity across patches, is especially
efficient when restoring heavily distorted images. The performed experiments show that setting the filter’s param-
eters is quite intuitive and its time efficiency is comparable with the standard NLM and even lower for high noise
intensity. Additional computational burden is caused mainly by the need of choosing the pixels from a patch
which are most similar to the one in block center. However, in practical applications significantly larger blocks
and patch sizes are needed by the NLM, which translates into higher computational efficiency.

The remainder of the paper is structured as follows. The next Section presents a brief overview of the rich
body of related literature. Then, in section “Robust method of MGIN reduction” the structure of the classic
NLM is described. Afterwards, the robust measure of similarity between patches is introduced and ultimately
the proposed MIxed NOise Reduction (MINOR) filter is described. In section “Filtering results” the influence
of the filter parameters on its denoising efficiency is analyzed and the recommendations regarding their settings
are provided. Eventually, the elaborated method is compared with a set of filters intended for the suppression
of MGIN and the results are summarized using the standard objective measures of image quality enhancement.
Examples of the restoration results obtained with the proposed and competitive techniques allow to visually asses
the merits of the proposed denoising scheme. Finally, in section “Conclusion” conclusions are drawn and pros-
pects of improvements which can increase the effectiveness of the proposed denoising framework are outlined.

Related work

Impulsive noise removal

The most popular filtering techniques intended for the suppression of impulsive noise are based on the concept
of multivariate order statistics*'>!*. The widely used Vector Median Filter (VMF), determines the pixel from a
local neighborhood for which the sum of distances to all neighbors is minimized". This filter removes effectively
the impulsive pixels, however one of its drawbacks is that its output is always one of the pixels from the filtering
window and when the image is distorted by MGIN, the Gaussian component is not suppressed.

To diminish the number of unnecessarily processed pixels, the concept of the weighted median'>'® was
applied and to increase the capacity of VMF to suppress the Gaussian noise the average of the cluster of most
similar samples was used as filter output'”'8. A generalization of VME, which calculates the cumulated distances
to the closest pixels belonging to the filtering window and sharpens image edges, was described in Lukac et al.”®.
The VMF was also extended using the fuzzy similarity measures for vector ordering® . A detailed study and
experimental comparisons of filters based on order statistics intended for impulsive noise suppression can be
found in Celebi et al.?.
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In order to prevent unnecessary processing of undistorted pixels, various switching strategies are employed.
Their goal is to detect the corrupted pixels and replace them with an estimate based on the local neighborhood,
while keeping the remaining ones unchanged. The switching methods often rely on the vector ordering concept
and determine the corrupted pixels calculating their distance to the output of a VMF based filter**-2. To tackle
the problem of impulsive noise detection, various approaches based on fuzzy logic were elaborated. In?, the
outlier detection scheme, which compares the central pixel with its neighbors was designed. Then a weighted
averaging scheme incorporating the measure of pixel impulsiveness is used to suppress the noisy pixel. A fuzzy-
based switching technique for impulse detection and removal builds membership functions based on local pixel
similarity to its neighborhood and the results of median based filtering?-3!.

One of the most efficient filters used for the removal of impulsive noise is the Peer Group Filter (PGF)
proposed in Kenney et al.*2. This technique calculates the distances between the central pixel of the filtering
window and its neighbors, which are later sorted to find the set of the closest pixels called a peer group. Another
approach is determining the number of pixels in the filtering window whose distance does not exceed a prede-
fined threshold®. The peer-group based techniques were later extended, however, likewise other switching filters,
they remove only outlying pixels and are not effective when dealing with mixed noise®-*. In*’, a novel variational
approach to restore color images affected by impulse noise was introduced. The key innovation lies in the adaptive
weighting of a data-fidelity term within the cost function. This term, derived using statistical methods, comprises
two weighting functions and statistical control parameters for noise. Then a Bayesian framework is formulated
where likelihood functions are defined by a mixture model.

Gaussian noise reduction

The traditional methods of the restoration of color images contaminated with Gaussian noise are based on local
averaging. The important drawback of these filters is their inability to suppress the impulsive distortions, which
are treated as image structures and are preserved.

The Bilateral Filter (BF), which is highly efficient in suppressing the Gaussian noise®® builds the weighted
average of pixels belonging to a processing block, considering their topographic closeness and radiometric
similarity. However, it assigns the highest value to the central pixel and when it is corrupted, the filter tends to
preserve it. Similar problem affects the Anisotropic Diffusion, which calculates the differences between the central
pixel of a window and its members®® to perform the diffusion process. When the central pixel is an outlier, then
all the gradient magnitudes are high and the anisotropic smoothing is terminated, which again preserves the
impulses. Other approaches based on Total Variation regularization*’, which well preserve image edges, wavelet
thresholding performing the shrinkage of the corrupted wavelet coeflicients*~** and fuzzy-based filters*** face
the same problem.

The powerful Non-local Means (NLM) technique*** utilizes the image self-similarity property and the final
pixel estimation is the weighted average of all pixels which form similar patterns in the patches of the processing
block. As this method yields excellent denoising results, an extension based on Block-Matching and 3D filtering
(BM3D) exploiting the image local sparse representation in the transform domain was proposed”*®->. These
filters provide very satisfying results when the Gaussian noise is encountered, however, they are very sensitive
to impulsive noise as the utilized similarity measures between groups of pixels (patches) are susceptible to the
impact of outlying pixels and the filters tend to preserve impulsive distortions.

In®!, a pixel-level Non-Local Self Similarity (NSS) prior was introduced, wherein similar pixels across a non-
local region are sought. This approach is motivated by the feasibility of identifying closely matching pixels in
natural images. The introduced pixel-level NSS prior allows for an accurate noise level estimation method and
the development of a blind image denoising technique based on the lifting Haar transform and Wiener filtering
methods.

Mixed noise reduction

The most straightforward way of dealing with mixed noise is to classify the image pixels as either corrupted by
impulsive or Gaussian noise and to restore these pixels with appropriate filters. In*%, a Support Vector Machine
(SVM) classifier is used to detect the type of noise corrupting each pixel to select the median or bilateral filters
which suppress the impulses and the Gaussian noise component. Similar approach based on SVM was used in*
to choose between NLM and BM3D when enhancing images with noise simulating the distortions typically
encountered in natural images.

In*, a switching BF was proposed to reduce the mixed noise. First, the pixels are classified, either as impulses,
corrupted by Gaussian noise, or noise-free, using a median based technique and then the corrupted pixels are
restored by filters, whose structures are controlled by the result of the classification step. A switching BF with a
novel weighting function was also used in® to suppress mixed noise in color images. The reference pixel of the
BF is replaced by the VMF output when an impulse is detected, otherwise the standard BF is applied.

Another approach®® first detects the impulsive noise and replaces the corrupted pixels with the local median.
In the next step all pixels are processed using a fuzzy scheme relying on the values of a modified Rank Ordered
Absolute Difference, (ROAD). The ROAD statistic®’, which determines the sum of distances between a pixel and
its most similar neighbors from a filtering window, was combined with the fuzzy peer group concept in Camarena
et al.*%. The technique presented in® first identifies impulses using the Adaptive Median Filter (AMF) and subse-
quently employs a variational step to eliminate residual noise. Experimental results indicate that integrating this
approach with established methods can substantially enhance their denoising effectiveness In®, the fuzzy peer
groups were used in a two-step filter which cascades the impulse removal with fuzzy averaging, performed on
the same cluster of similar pixels, which reduces the computational complexity. A fast parallel implementation
of the fuzzy peer group processing was put forward in Arnal et al.%".

Scientific Reports |

(2023) 13:21035 | https://doi.org/10.1038/s41598-023-48036-1 nature portfolio



www.nature.com/scientificreports/

Many techniques attempt to adopt patch-based methods to deal with mixed noise. However, first the impul-
sive noise must be removed to enable the reduction of Gaussian noise in the subsequent denoising step. In%,
the impulses were detected and suppressed using the the median filter and a robust variance measure and
afterwards the BM3D technique was applied. Similar approach was presented in® where the impulses were
found using Adaptive Center-Weighted Median Filter (ACWMF)® and the strong disturbances were replaced by
AMF®. The Gaussian noise was then suppressed using BM3D and finally the previously detected weak impulses
were removed using an inpainting method based on median filtering. In®, the AMF is first applied to find the
impulsive pixels which are then replaced by the output of NLM, so that the remaining noise has approximately
a Gaussian distribution. For the removal of remaining noisy pixels similar patches are grouped and then a low
rank approximation with gradient regularization is applied to reconstruct the undistorted image. The ACWMF
and AMF was also applied sequentially in'! to remove the impulses and then a method based on Laplacian scale
mixture modeling and nonlocal low-rank regularization was applied.

Another approach that extends a patch-based framework was presented in Xiao et al.*’. In this work, impul-
sive outliers are removed using ACWMEF or AME, depending on the assumed impulsive noise model, and the
modified version of K-SVD method® was applied on outlier-free pixels to finally solve an l; — Iy minimization
problem. In®, first the pixels which are likely to be affected by the impulse noise are labeled and the image is
restored considering the remaining pixels solving an optimization problem whose objective function is com-
posed of content-dependent fidelity and a nonconvex, nonlocal low-rank regularization terms. Methods based
on weighted dictionary learning, with encorporated impulsive noise detection have been also presented in”%72.
Mixed noise removal was also considered in the problem of restoration of blurred images, in which the impulses
were again detected using AMF or ACWMEF and then the image was restored using variational framework based
on total variation or /; norm of framelet coefficients’>~7%.

All the described above approaches remove in the first stage the impulses and then smooth out the remain-
ing pixels. The second group of filters used for the reduction of MGIN performs the denoising in a single step
due to incorporated mechanisms which detect and suppress the pixels introduced by a heavy-tailed noise. The
ROAD statistic, which provides the measure of pixel corruption, was integrated within the BF in*’. The resulting
Trilateral Filter (TF) efficiently removes the impulsive noise and smooths out the Gaussian component while
preserving image edges and details. Interestingly, like in**, a weighting function with different properties as in
the standard BF was adopted, which increased the denoising capabilities of the trilateral approach. Satisfying
properties of the TF caused that it was used in various denoising schemes’, however its efficiency decreases with
the noise intensity. A fuzzy technique based on self-avoiding geodesic paths exploring the local neighborhood of
pixels whose cost was defined using a fuzzy similarity measure was described in Szczepanski et al.%. The proposed
approach is able to cope with strong MGIN, however the computational complexity of this method is very high
and usually a few iterations are required to obtain satisfactory denoising results.

The method proposed in®! decomposes a noisy image into three key components: the ideal image, Gaussian
noise, and a heavy-tailed part. To handle outliers and sparse coefficients within the ideal image, a spike and slab
prior is applied. This approach is able to adaptively infer noise statistics from the training data without requiring
adjustments to model hyper-parameters. Through extensive experimentation, the method has demonstrated
remarkable effectiveness, particularly in the context of suppressing high-intensity mixed noise.

In the group of patch-based methods, many approaches that successfully extend the NLM algorithm*® were
proposed. In®, the distances between patches are calculated considering the impulsivity of pixels expressed
through the ROAD measure. This measure is also used when obtaining the weighted average of samples in the
processing block which results in better efficiency when compared with the TF*’. The authors of** also used the
ROAD to calculate the impulsivity of pixels and utilized the estimated pixel corruption in the construction of the
fuzzy weights used in the averaging process. The methods work well for low mixed noise intensity, but fail when
denoising heavily corrupted images due to the inability of ROAD to effectively detect impulses.

Another impulsiveness measure based on the median absolute deviation was utilized within the NLM frame-
work in Xiong and Yin®. The NLM filter is applied twice with parameters ensuring the suppression of both impul-
sive and Gaussian noise. Unfortunately, this filter fails when the noise contamination is high, as the corrupted
pixels tend to be preserved, otherwise the image would suffer from excessive blur. In®, the authors propose a
NLM based procedure which first estimates the noise contamination level again using ROAD measure, then the
patches from the neighborhood of the processed pixel are compared calculating a weighted sum of distances
between corresponding pixels and finally the image is denoised applying a maximum likelihood estimator. Vari-
ous ways of improving the efficiency of NLM were proposed in Goossens et al.*®. Especially the influence of the
choice of the weighting function on the noise smoothing efficiency was investigated. In¥’, the NLM has been
combined with the region homogeneity measure, which allows to decrease the influence of impulses. Addition-
ally, an approach exploiting the Gaussian Mixture Model whose goal was to determine the degree of similarity
between image regions was used. As in the case of other approaches, this filter efficiently copes with moderate
noise intensity but encounters problems when highly corrupted images need to be restored. Another restoration
technique was proposed in Lopez-Rubio®. In the first step the degree of pixel corruption is estimated based on
Bayesian classification and then an adequate weighting of the input pixels using kernel regression framework
is performed.

Recently, Convolutional Neural Networks (CNN) have been adopted to tackle the problem of image denois-
ing. The Denoising Convolutional Neural Networks (DnCNNs), which are able to effectively exploit the global
image features were used to enhance images affected by impulsive®*~! and Gaussian noise’>**. Generally, the
methods based on the DnCNNs yield very good denoising efficiency®. However, to achieve high performance, a
time-consuming training process performed on a customized dataset is needed. What is more, the information
on the noise model and an estimation of the noise intensity ratio is often required, which limits their flexibil-
ity. To alleviate this problem, various blind denoising frameworks, capable of noise suppression without prior
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d°>%. However, their effectiveness is limited in the cases of

knowledge of its distribution model were propose
high strength of the noise contamination.

CNNss have also increasingly received attention when addressing the problem of MGIN reduction and
recently, several effective methods have been introduced®. In%, the authors propose to use two CNN models
divided into two steps. The first step of the blind denoising (BACNN) is trained to remove impulsive noise and
the second one to reduce the remaining Gaussian component. Another efficient algorithm of suppressing mixed
noise based on CNN, which adopts computationally efficient transfer learning approach was proposed in Islam
et al.””. In'", a denoising model based on Generative Adversarial Network (DeGAN), combining generator,
discriminator, and feature extractor networks was designed.

A model based on variational approach and deep learning based algorithm integrated to address mixed noise
removal was proposed in Wang et al.'°!. In'%, first a deep model was trained on mixed AWGN and RVIN and
then the Pixel-shuffle Down-sampling (PD) strategy was used to adapt the obtained model to real noise. The
authors of'®® proposed a convolutional blind denoising network (CBDNet) which was trained on a real-world
noisy images and also on their nearly noise-free counterparts. Extensive experiments performed on various
datasets demonstrated excellent performance in terms of quality metrics and subjective visual quality.

In'*, the Multi-Stage Progressive Image Restoration Network (MPRNet) was introduced for image restoration
purposes. Noteworthy performance improvements have been demonstrated by MPRNet across various datasets,
with a range of image restoration challenges, including denoising, deblurring, and deraining, being effectively
addressed. What sets MPRNet apart is its capacity to simultaneously handle all three types of artifacts within a
unified architectural framework.

An innovative method called Noise2Void (N2V) was introduced in Krull et al.'>. This method stands out
for its unique ability to train directly on the data to be denoised, without the need for noisy image pairs or clean
target images. N2V is particularly useful when dealing with images where obtaining training targets, either clean
or noisy, is not feasible. While it may be intuitive to expect N2V’s performance to be limited due to the lack of
training information compared to other methods, its denoising capabilities remain competitive, even without
prior training. Another method based on deep neural network, capable of enhancing noise corrupted images
without the need of observing the clean images was presented in Lehtinen et al.'%.

In a recent study'?, a novel deep learning-based method for blind image restoration was introduced. This
approach formulates a comprehensive Bayesian generative model to characterize the degradation process induced
by noise. Subsequently, a variational inference algorithm is employed to achieve image restoration. The meth-
od’s effectiveness is validated through experiments on blind image denoising, demonstrating its impressive
performance.

In the work!®, a framework called ResFormer, designed to enhance performance across a diverse range of
testing image resolutions, including those not previously encountered, was presented. ResFormer works by pro-
cessing replicated images of varying resolutions and introduces a scale consistency loss to promote interactive
information exchange across different scales. Notably, it employs a global-local positional embedding strategy
to smoothly adapt to input size variations, allowing it to effectively switch between different resolutions.

While deep learning algorithms bring many benefits in terms of the restoration quality, they also suffer
from significant limitations. They require large datasets of diverse images that provides the same type of noise,
preferably of similar intensity, that is later expected in the incoming data. Training and deploying deep learning
models for real-time denoising often demands significant computational resources, which can be a drawback
for resource-constrained applications. Additionally, deep learning methods may struggle with unusual or rare
noise types that are not well-represented in the training data. Traditional methods with explicit noise models
may perform better in these cases.

Robust method of MGIN reduction

Structure of the non-local means filter

The structure of the proposed filtering approach is based on the NLM framewor , which can be viewed as
an extension of the BE Let X be an image consisting of color pixels x; = {x? }, with ¢ = 1, 2, 3 denoting the color
channel, wherei = 1,..., N is the index which describes pixels position on the image domain and N denotes
their overall number. The BF assigns to each image pixel x; € X, the weighted average of the RGB channel values
of pixels from a processing block B; of size (2r + 1) x (2r + 1), whose center is x;. The output y; of BF depends
on the spatial and radiometric similarity between x; and the neighboring pixels belonging to B;

k46, 109

1
vi=7 Sowiicx,  Zi= Y wi wiyi = exp {—p’(xj,x)/0l} - exp {—|lx; — xi[*/0}7 }, (1)

ijB,' x}'EB,‘

with Z; being the normalizing factor and the weights w;; depend on the combined spatial (topographic) and
color similarity between pixels. The symbol || - || denotes the Euclidean norm in the RGB color space, p stands
for the distance between pixels on the 2D image domain, j and i are the positions of the corresponding pixels x;,
x; and o5 and o, are smoothing parameters. With o; — 00, the BF approaches the Yaroslavsky Filter'!? and for
o, — 00 it boils down to the Gaussian convolutional smoothing.

As the BF output tends to exhibit some staircase effects, introduces false edges and is sensitive to noise, many
improvements have been proposed'!'. Among them the NLM approach gained high popularity as it better
captures the similarity (closeness) between the processed pixel and its surrounding neighbors. The NLM filter
assumes the self-similarity of structures contained in a natural image and therefore dependence on the spatial
distance in (1) is omitted. The radiometric (color) similarity is expressed in terms of local neighborhoods called
patches or processing windows.
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Let us define a patch of pixels denoted W; and centered at x; as a set of # pixels x;, contained in a square
window of size (2s 4 1) x (25 + 1), where v = 1,...,n,n = (25 4 1)?, is an index associated with the pixels as
depicted in Fig. 1. The dissimilarity measure D(W;, W;) between two patches W; and W; centered at x;j and x; is
defined in the construction of NLM as the sum of squared Euclidean distances between corresponding pixels
from the patches being compared, as depicted in Fig. 2a.

n
DWW =3 Ik —xull’, n= Qs+ 1% ®)

The structure of the NLM is quite similar to that of BF formulated by (1) with the weights:
wj,i = exp {—D(Wj, W,-)/az}, where o is a smoothing parameter. The dissimilarity D(W;, W;) can be also
expressed using the Gaussian Euclidean norm, as proposed in the original definition of NLM*®, however for
small patches the Gaussian weights can be neglected. The NLM filter determines for each noisy pixel x; its
estimate based on the weighted average value of all remaining pixels of the processing block B;. The weights are
calculated using the similarity between the patches centered at x; and pixels x; from the processing block. Such
an approach is called pixelwise.

Another possibility is to calculate the dissimilarity measure D(W}, W;) and assign it to each pixel in the patch
Wi. Thus, for a pixel x;, belonging to W;, a weighted average can be built taking the corresponding pixels x;, from
the patches centered at pixels x; and belonging to the processing block B;. Hence, we obtain estimates y;, of the
pixels x;,, for v = 1,. .., n, using the notation presented in Fig. 1.

. . . Xi1 | X | X3
. X; . Xia | Xi5 | Xie
. . . Xi7 | Xig | X9

Figure 1. Indexing of pixels inside a window W; centered at x; with radius s = 1. The pair of pixels which are
symmetric with respect to the center pixel will be denoted as x;, and x;;. For example, if v = 4 thenV = 6, if
v = 1then ¥ = 9 and so forth.

X W;

Xi Wi

| | \\_\\ H:i—H:::H

—H:i:H Il \\_\\

W; Wi Wia Wis Wie Wiz Wis Wio
(b)

Figure 2. Processing block B; of radius r = 5 centered at x; with patches W;, W; and Wi with size s = 1, (a).
The processed pixel x; (marked in dark gray) is included in the central patches W, of the corresponding blocks
shifted to x;,, (v = 1,...,9) (b).
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1
V= D Wi i Zi= ) Wi 3)

! xj€B; xj€B;

For example, the estimate y,, of x4 of patch W; will be calculated considering corresponding pixels in the patches
belonging to the processing block B; as presented in Fig. 3

1
Yu= o Z Wi * Xja - (4)

xj€B;

However, a given pixel x; belongs to n patches centered at pixels belonging to the neighborhood of the pixel x;
as depicted in Fig. 2b. This offers the possibility to take the weighted average of all the estimates obtained from
the collection of n different blocks centered at the pixels from W;. This approach, called blockwise or patchwise,
due to the aggregating process, proved to offer better denoising efficiency. Using this scheme, the filter output
is defined as

n Z Wiiv * Xjp

1 xj€Biy
L= — —_—, 5
Vi n E : Z Wi ( )

xj €Bjy

where the block B;, is centered at pixel x;, and ¥ denotes the index of a pixel at a position symmetric with respect
to the central pixel of the patch, (see Fig. 1). The symmetric pixel is needed due to the translations of the process-
ing block (see Fig. 2b). In this way, the filtering output is the average of n estimates calculated for various positions
of the central pixel of the blocks B, centered at x;, whose central patch contains the pixel x;.

Yet another global way of aggregating the estimates, adopted in this paper, is to take the weighted average
without building separate estimates, that have to be averaged and calculating the NLM output as

n
DD Wi Xjp
v=1xj€Biy

yi= (6)
> Wiy

v=1 x]'EBiV

Using such an approach, the role of the small weights is diminished and only the most similar patches are being
considered. Such an aggregation procedure is obviously more robust to outliers, as the corresponding weights do
not influence significantly the final output. It is also possible to remove from the averaging the weights smaller
than a predefined thresholding value, which can be a problem when using the approach expressed in (5), as
some estimates y;, could not be computed in the case when the estimate is built relying on small weights, as it
is the case when outlying pixels are corrupting the image. The dissimilarity measure D(W;, W;) expressing the
closeness between patches is very sensitive to outliers, which can significantly increase its value. This leads to
the preservation of pixels distorted by impulsive noise, which is one of the major drawback of the NLM design.

B;

Xi4 W;

Xie4 Wi

Figure 3. The estimate of the left pixel x4 from the central patch W; is computed considering the similarity to
patches of the processing block.
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Let us assume that the central window of the processing block B and some other one show high degree of
similarity. If the noise distorts the central pixels of both windows and the impulses are of similar color, then
the distance expressed by (2) will remain low, which will produce a large weight in the NLM averaging scheme
causing that the corrupted central pixel of the block will be retained or slightly attenuated. If the impulsive noise
distorts the central pixel of the block, the distances in (2) attain high values with the exception of the weight
assigned to the central pixel, which is always equal to 1, as the NLM computes the similarity of the central patch
to itself. This undesired effect can be alleviated omitting the central pixel when calculating the weighted average
or assigning a robust estimate to the central weight, depending on the structure of the processing block and
diminishing the tendency of NLM to preserve the outlying pixels. For example, the weight assigned to the cen-
tral pixel of the block can be set to be equal to the highest weight calculated for all pixels in the block excluding
the central one or it can be estimated using various statistical or heuristic procedures'!?, which however, can be
computationally expensive.

Robust dissimilarity measure of patches

Let d(xjy, xiy) = ||lxju — xiy|| be the Euclidean distance between pixels xj, € W; and x; € W; using
the notation shown in Fig. 1, (u,v =1,...,n). Then the set of distances between a given pixel Xy
and all of the pixels x;, € W; can be sorted in ascending order and we obtain a sequence of distances:
d(xjy, xi1)) <...< d(Xju, Xik)) <...dXju> Xi(n))> where d(xj,, x;x)) denotes the k-smallest distance between
xj, and the pixels belonging to patch W;. We propose to define the dissimilarity measure between the pixel x;,
and the set of pixels contained in patch W as

1
R(xju, W) = o Z:zl & (%ju Xich) ) - )

If we take & = n, then we calculate, the average squared distance between a pixel x;,, from the patch Wj to all
pixels of W;, which is in the center of the processing block B;, taking into account all pixels injected by the noise
process. The outliers belonging to the patches surely influence the dissimilarity measure, so that windows from
similar image regions are assigned a high value of the average squared distance between them. If @ = 1, the dis-
similarity measure is equal to the smallest distance between x;,, and pixels from W;. Such a measure would be
not useful, as two similar impulses injected into patches W; and W; would cause that the dissimilarity measure
is low, even in the case of windows containing very differing pixel patterns.

As the window W; is assumed to be corrupted by mixed noise, we want to remove the influence of outliers and
scrutinize a limited number of pixels from Wj, just considering only 1 < « < n pixels, which is a compromise
allowing to neglect the effect of impulses, still being able to capture the similarity of the remaining, not so heav-
ily disturbed pixels contained in the windows being compared. Calculation of the trimmed sum of distances to
only « closest pixels has been successfully used in the construction of various filters'® and was also applied in
the detection of outliers''?.

The dissimilarity measures defined by (7) are calculated for all pixels belonging to W;. After-
wards, their values are sorted and the color pixels from W; are correspondingly ordered:
R(xj(l), Wpy<...< R(xj(k), Wi < R(xj(n), Wi = Xj(1) <...< Xj(k) <.. - Xj(n)» where R(xj(k), W;) denotes
the k-th value of the trimmed average of distances between the pixels from W; and the window W;. The pixels xj(x),
k € (1,...,n), are samples generating the nondecreasing sequence of the dissimilarity measures R(x;j(), W;). As
we are aware that the window W; may contain outliers, to make the dissimilarity robust, we consider only the set
of1 < B < npixels xj1), . . ., xj(8), which will be treated as belonging to a trimmed (pruned) window denoted
as WJ* Finally, the dissimilarity measure between the windows W; and W; denoted as A(W;, W;) is defined as

1 B
AW W) = 2>, R, W) (8)

The distance between patches W; and Wj is calculated considering only the § pixels from Wj, for which the sum
of squared distances to the « closest pixels from W; is minimized.

Figure 4 shows a simple example which explains the structure of the proposed dissimilarity measure between
two sets of points A and B in 2D case. To determine the dissimilarity between A and B, first, for each point a;,
the distances to all points of B are calculated. In the example, for a;, a4 and ag the o« = 4 closest points from set
B are depicted. Then, for each point from set A the o smallest distances to points contained in B are squared
and averaged. In this way, to each point g; the average of o smallest squared distances to points of B denoted as
R; is assigned. These averages are sorted and the dissimilarity A(A, B) is the average of the 8 smallest values of
R assigned to points of set A.

Figure 5 presents an example which shows the way, the robust similarity measure between pixel patches is
computed. First, for each pixel from W; (left) the o closest pixel intensities in W; (middle) is squared and averaged.
The results are contained in the array R (right) from which 8 smallest values are taken to obtain A(W}, W;). In
the example the Ry value assigned to the pixel x;4 with intensity 6 in W; is shown, (the intensities of closest pixels
in W; are displayed in bold). The pixels of W}, which correspond to the § = 5 smallest values of R, are marked
with green color. Thus, the trimmed window W* is composed of the pixels marked green with intensities 4, 2, 5,
6, 3, (Xj1, Xj2, Xj3, Xj, Xj3) and A(Wj, W;) is the mean of 8 smallest values of R: (2 +3 + 2 + 3 +2)/5.

Structure of the proposed denoising technique
The proposed filter output of the pixels within the filtering window W; will be calculated using the patchwise
global scheme defined by (6) as
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Figure 4. Illustration of the proposed dissimilarity measure in the 2D case. For each point a; € A, the average
of o smallest squared distances to points b; € B, is computed. Then, the mean of the 8 smallest values is
determined and it serves as a dissimilarity measure between sets A and B.

a:B:S’ 'x]4_ -

R(xja,Wi) = [(xja —xi1) + (xja — xi2) + (xja — xi6)> + (xja —xi8)* + (xja —xi0)*] /5 =
[(6—3)2+(6—6)>+(6—4)>+(6—5)>+(6—7)*]/5=[9+0+4+1+1]/5=3
AW, W) = (2+3+2+3+2)/5=24

Figure 5. Computation of the dissimilarity measure. The pixel intensities within W; nearest to x;j4 are
highlighted in bold, while pixels from W; exhibiting the highest similarity to W; are distinguished by a green
color.

n
= ZLZ Z Wiy " Xjpn  Zi = Z Z Wiy, Wi = exp (=AW, Wy)/0?).

i
v=1 xj € Biy, v=1 xj € Biy, ©)
xjp € Wy xjp € Wy

This global filtering scheme will be denoted as MINORg. Specifically, the patchwise standard approach, as defined
by Eq. (5), will be referenced as MINORg. It is worth noticing that the similarity of a patch to itself: A(W;, W;)is
not equal to 0, which allows to use the weight assigned to the central pixel of the block in the averaging process,
thus making the proposed approach insensitive to outliers, without sacrificing the ability to suppress the Gauss-
ian noise component. Besides, special treatment of the central pixels of the processing blocks needed in the BF
and NLM design aiming at removing isolated impulses can be omitted.

As illustrated in Fig. 6, for each patch in the block centered at pixel x; a different set of pixels is chosen as
belonging to the 8 most similar ones included in W, which generates a corresponding set of pixels from W;
which are assigned a weighting value and then taken for the averaging process. It is worth noticing that also the
impulses in W; will obtain their weights, as the set of pixels belonging to W is not influenced directly by the
outliers. Furthermore, it is advantageous that the patterns in Wjand W; do not necessarlly have to perfectly align,
especially in the scenario of highly corrupted images where minute details become irreversibly lost.
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X; X
Wy Wy
X; Xi
Wi Wi |

Figure 6. The structure of the trimmed window W>* and W} centered at x;, xx depends on its relation to the
central window W;. The green color highlights the pixels used in the averaging process, (8 = 5).

The application of the global averaging scheme according to Eq. (6) is advantageous, as the stack of images
produced in the standard NLM averaging approach usually contains corrupted pixels, whose averaging leads to
the creation of noise artifacts. Using the global approach, the weights originating from noisy pixels are discarded,
as they are too small to influence the final averaging result.

Computational complexity

In the classical pixelwise NLM filter, the computation of weights assigned to each pixel within a processing block
B, containing a total of b = (2r + 1)? elements, necessitates the calculation of n = (2s + 1) squared Euclidean
distances between the central patch and all other patches within the block, (see Eq. 2) . This distance computa-
tion constitutes the primary computational load of the NLM algorithm. The final output of the standard NLM
filter at a given pixel involves additional steps, including the multiplication of weights with each pixel channel
value, addition of the obtained values for each channel, and the calculation of the sums of weights, which are
required for the division that provides the three channels of the color filter output. As a result, the computational
complexity of the standard NLM filter applied to an image comprising N pixels is expressed as 0 (N - n - b)!1#115,

In the patchwise implementation, the channel values of the filter output are determined using # estimates,
as described by Eq. (5). While the patchwise implementation is more computationally demanding, the number
of required distances remains the same, and only additional processing of the weights and final averaging of the
obtained » output images are required.

Regarding complexity, our proposed MINORG filter, also adopting the patchwise approach, primarily differs
in the calculation of weights. To determine a weight, we need to compute for every pixel in the central patch all
distances to pixels in patches contained within the block, resulting in the computation of n - n squared Euclidean
distances for each patch. Furthermore, for each pixel in the central patch, we must sort the distances to find the o
smallest ones, followed by sorting the cumulated distances to find the B smallest values and corresponding pixels.
Excluding the sorting, the computational complexity of the proposed robust NLM is @ (N - n? - b), which is n
times higher than the complexity of the NLM. The MINORg version of the new filter is faster, as all weights are
multiplied with corresponding channel values and then normalized. This eliminates the need to create n separate
estimates. Instead, the final output is computed as a sum of the weights multiplied by the channel intensities and
then divided by the overall sum of weights, as shown in Egs. (6) and (9).

It is important to note that in the proposed MINORg approach, the required block size is significantly smaller
compared to using the patchwise NLM for the same Gaussian noise intensity'”. Consequently, even with the
same level of Gaussian noise and additional impulsive noise distortion, our filter operates significantly faster
and allows for real-time image processing.

Figure 7 provides a comparative analysis of the execution time for our proposed MINORg filter, as opposed to
the patchwise implementation of NLM using the parameters outlined in Table 1. The experiments were conducted
using a CUDA-compatible NVIDIA RTX2080Ti graphics card, affirming the computational efficiency of our
denoising approach. Notably, our proposed filter exhibits comparable or even reduced computational overhead
compared to the patchwise version of NLM. This efficiency is largely attributed to the smaller processing block
and patch size requirements. Processing a full HD image with a resolution of 1920x1080 takes an average of just
5 milliseconds, rendering it suitable for real-time image processing applications.

Reducing the computational complexity, which surpasses that of the NLM filter, can be achieved by employ-
ing less computationally demanding dissimilarity measures between pixels in the patches under comparison.
Moreover, integrating rapid and straightforward mechanisms to estimate the level of noise corruption within a
specific patch can facilitate the exclusion of heavily corrupted patches from the averaging process, resulting in
a reduction of computational workload'">.
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Figure 7. Comparison of execution times of the NLM and MINORg filters with recommended parameters
using images of increasing resolutions.

Filtering results

The experiments, whose aim was to evaluate the effectiveness of the proposed filter, were performed on a data-
base of 100 images of resolution 640 x 480, which consists of color test images corrupted with various degrees
of noise intensity. The dataset is available for download at http://denoising.net and also accessible as electronic
supplemental material''®. Additionally, the widely used standard color test images WINDOW, MONARCH,
PEPPERS, CAPS, MOTOCROSS and BALLOONS were chosen to perform detailed examination of the proposed
filter properties, (see Fig. 8).

These images were contaminated by Gaussian noise with standard deviation o, =p and then they were cor-
rupted by uniform impulsive noise with the percentage of corrupted pixels equal to p. The distortion with
parameter p = 10 means that the image was contaminated by Gaussian noise with standard deviation equal to
10 and impulsive noise with 10% of corrupted pixels. Such a mixture of the impulsive and Gaussian noise was
used in our previous papers and proved to simulate well the real image distortions''”!*,

In this work, we have chosen 3 noise degradation levels p = 10, 30 and 50. The denoising effectiveness was
assessed in terms of the Peak Signal to Noise Ratio (PSNR) defined as

2552 1 &
PSNR = 10log, (M—SE) MSE = 20> oy — il (10)
i=1

where||- || denotes the L, norm in RGB color space and o;, y; stand for the original and restored image pixels.
Furthermore, the Multi-Scale Similarity Measure (MSSIM) was used to better express the image restoration
quality in consistency with subjective ratings'*. In this paper this measure is presented in a logarithmic form,
to allow for a more effective analysis of the results: MSSIM, = —10log,, (1 — MSSIM).

To better express the ability of removing impulses, a “relaxed” mean squared error measure is used, which
leads to the Impulse Removal Index (IRI)!'8120

CAPS BALLOONS

Figure 8. Color test images used for the experiments.
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NLM | MINORg
P s |r |s |r |a |B
10 1 (10 |1 |1 2 |5
30 2 (17 |1 |6 4 |5
50 3117 |1 |12 |4 |5

Table 1. Recommended parameters of the patchwise NLM'*” and the proposed MINORg denoising
technique.

1 Y 2552
_ : 2 _
MSER = 3N El 01]2% lly;— ojll*, IRI= 10log,, < SER>’ (11)
i M

where o are the original (clean) pixels contained in window W; and y; is the filtering output.

The IRI enables to efficiently measure the capacity of a filter to suppress the impulsive noise as shown in
Fig. 9. If the impulsive pixel x; was restored, then the minimal distance between the filter output y; and the clean
pixels in the window W; is determined. If the impulse is retained, no close pixel in the window of the clean image
can be found, which increases the contribution to the sum in the definition of IRI. In this way, if the output of
a filter is close to one of the clean pixels from the window W;, small penalty is imposed on the IRI measure. In
consequence, the IRI provides a reliable measure of impulsive noise suppression.

Influence of filter parameters

In order to determine the optimal parameter values of the proposed patchwise filtering technique with global
weighting as described by Eq. (9), a series of comprehensive experiments was performed. Their aim was to
evaluate the influence of , 8, 0, r and s on the efficiency of the denoising approach in terms of the commonly
used PSNR quality measure.

The experiments on various images contaminated with different noise intensities revealed that the patch
size 3 x 3 is sufficient to obtain satisfactory denoising results for all contamination levels and the increase of s
did not improve the quality parameters or even made it worse. Therefore, we set s = 1in all of the performed
experiments. Then, we evaluated the impact of the radius r of the processing block B and the parameter « on the
denoising efficiency of the proposed filter. For the analysis, exhaustive examination of all sets of parameters was
performed, («, B € [1,9],7 € [1,15]and o € [1, 100] with step 1).

The dependence of PSNR on the radius r and « using the test image PEPPERS and BALLOONS is presented
in Fig. 10. As can be observed, satisfying results were achieved for the 3 x 3 filtering block, (r = 1) for low noise
contamination (p = 10). However, the size of the block must be increased when the noise is stronger. Good
results are obtained when using r = 6 for filtering images corrupted with noise intensity p = 30 and r € [9, 13]
is needed for p = 50. These parameter values are consistent with those obtained using a database of 100 images.
The boxplot presented in Fig. 11a confirms the values of the recommended block size r needed to achieve best
possible results in terms of PSNR.

It is worth noticing that in the classic NLM algorithm, the recommended block sizes are much larger'®. For
images distorted with Gaussian noise of standard deviation oy, less than 15, the required block size is r = 10
and for those exceeding 30, the suggested r is 17. The recommended patch size is like in our algorithm s =1
for low contamination, however it must be increased to s = 3 for moderate noise intensity (30 < o, < 45) and
even to s = 5 for very strong pollution. It can be concluded that the required block and patch sizes needed to
obtain satisfying results using our technique are significantly lower that in the case of the classic NLM, which
translates directly into a significant reduction of the computational burden, which is proportional to squared s
and r parameter values.

The analysis of the results depicted in Figs. 10 and 11b shows that for low contaminations the parameter o
should be set to 2. For higher contaminations the optimal value of « is 4. The parameter § is not significantly

clean noisy filtered

Figure 9. The metric IRI expresses the ability of a filter to suppress impulsive noise. If the yellow pixel in the
noisy image is replaced by a pixel from the filtering window of the clean image, then the sum in Eq. (11) will be
not increased. If the impulse in the filtered image is preserved, the sum will be considerably increased.

Scientific Reports|  (2023) 13:21035 | https://doi.org/10.1038/s41598-023-48036-1 nature portfolio



www.nature

.com/scientificreports/

151

23.00
33.00
22.80
28.50

32.00 22.60

| 3100 & 28.00 & 240
PR « 2.00 &
e &~ ~ &
27.50 22.00
29.00 21.80
27.00 21.60
28.00
21.40
PEPPERS
28.00
22.00
31.00
27.50
30.50 20.00
T 2000 g 0 g
30.00 & =1 «
2 26.50 é é
18.00
2050 26.00
29.00 25.50 1600
2 3 4 5 6 7 8 ¢

«

BALLOONS

Figure 10. Best achievable PSNR values obtained for various r and « parameters using images depicted in
Fig. 8.

dependent on the noise intensity as depicted in Figs. 11c and 12. The setting 8 = 5 generally yields quality
measure values close to the optimal.

Finally, Figs. 11d and 13 illustrate the influence of the parameter o and the block size r on the denoising effi-
ciency of the proposed filter for the analyzed noise contamination levels. As can be observed, the recommended
value of the o is 20 for low intensity level and 40 for higher contaminations using the previously found optimal
size r of the processing blocks. Figure 14 confirms that the recommended values of the filter parameters give
satisfactory denoising quality evaluated through the PSNR measure. The optimal parameter values for the 3 levels
of MGIN contamination are summarized in Table 1. These parameter settings were used for the comparisons of
the proposed denoising approach with competitive filters.

Comparison with competitive denoising techniques
The evaluation of the new filter’s performance was performed using a set of the well known filtering methods
with parameter settings suggested in the respective papers describing them. These filters are listed below:

Fuzzy Weighted Non-Local Means method, (FWNLM)®,

TV-based restoration with £(TV-norm data fidelity, ({¢TV)'?,

Weighted Encoding with Sparse Nonlocal Regularization, (WESNR)”},

Non-Local Means, (NLM)'%,

Robust Local Similarity Filter, (RLSF)'?7,

Trilateral Filter, (TF)*’,

Patch-based Approach to Remove Impulse-Gaussian Nolse, (PARIGI)®,

Restricted Marginal Median Filter, (RMMF)'?,

Combined Reduced Marginal Ordering, (CROMO)'%,

Annihilating LOw-rank HAnkel matrix filter, (ALOHA)'*,

Self-Avoiding Walks based filter, (SAW)*,

RObust Mean Shift, (ROMS)!'8.

Noise2Void-learning denoising from single noisy images, (N2V)!%°
ResFormer:Scaling ViTs with Multi-Resolution Training, (ResFormer)'%

Adaptive Variational Method for Restoring color images, (AVMR)*

Modified Laplacian Scale Mixture Modeling and Nonlocal Low Rank approximation, (MLSM-NLR)!"*
NLH: A blind pixel-Level non-local method for real-world image denoising, (NLH)*!
Blind Denoising of Mixed Gaussian-impulse Noise by Single CNN, (BACNN)*
Convolutional Blind Denoising Network, (CBDNet)!%

Multi-stage Progressive image Restoration NeTwork, (MPRNeT)!04123
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Figure 11. Distribution of parameters yielding the best possible PSNR values, evaluated on a set of 100 color
images''®!"8, corrupted with MGIN of levels p = 10, 30, 50.

¢ DPixel-shuffle Down-sampling Denoising, (PD)'*
o Weighted KSVD, (WKSVD)'?’
® Variational Image Restoration Network, (VIRNet)'"

We compared the proposed MINOR filter using the global averaging, (indicated by the subscript G -
MINORg), according to Eq. (6), and using the standard blockwise implementation, (denoted as MINORg),
which performs the averaging of a stack of n = (2s + 1) images. As can be seen, the global averaging provides
slightly better results in terms of PSNR for higher contaminations. However, when scrutinizing the MSSIMy, and
IRI measures, MINORg performs better also for images contaminated with low intensity noise.

Upon scrutinizing the Table 2, which encapsulates the PSNR, MSSIMj, and IRI measures across a range
of 23 filters, noteworthy observations emerge. Specifically, the MLSM-NLR, TE, PD, WKSVD, and BACNNN
filters demonstrate high efficiency, particularly evident in their performance with low-contamination images.
However, it is noteworthy that the proposed MINOR filter consistently ranks among the top 5 methods, irrespec-
tive of the test image or the quality metric applied. Notably, when confronted with higher contamination levels,
our proposed denoising approach consistently yields the most favorable objective quality measures. It notably
outperforms competitive filters, particularly excelling in terms of the IRI index.

Figures 15 and 16 present a comparative analysis of filtering outcomes achieved with the BALLOONS and
MONARCH test images, both contaminated by noise at an intensity level of p = 30. The MINORg filter, utilizing
the recommended parameters, demonstrates favorable results in preserving edges and suppressing noise within
homogeneous image regions. However, its limitation lies in the challenge of preserving intricate details in slightly
distorted images, attributed to the design of the dissimilarity measure applied to patches, which does not account
for the spatial pixel arrangement. Nevertheless, this specific design is advantageous for the restoration of heavily
degraded images where fine details are typically lost.

Scientific Reports |

(2023) 13:21035 | https://doi.org/10.1038/s41598-023-48036-1 nature portfolio



www.nature.com/scientificreports/

23.00
33.00 )
28.00 22.00
32.50
27.00
= = 21.00 =
3200 = = =
] =3 =
Z ) Z =
7] 26.00 @# 3
31.50 ™~ -» 20.00 @
31.00 25.00 19.00
30.50 2400 18.00
PEPPERS
28.00
32.00 22.00
27.1
31.50 7.00
21.00
31.00 g 26.00 g E
= = 20.00 =
3050 % z &
o zZ o
25.00 19.00
30.00
29.50 24.00 18.00
. SN 29.00 17.00
2 4 5 6 7 8
a
BALLOONS
Figure 12. Dependence of « and 8 parameters providing the best possible PSNR values using the images
depicted in Fig. 8.
p=10 p=50
23.00
32.50
28.50
22.50
32.00
_ 28.00 22.00
=) =) =
3150 = = =
£~ £ z
£ 2750 £ 2150 &
31.00
21.00
27.00
30.50
20.50
20 40 60 80 100 60 80 00 20 40 60 80 100
a a a
PEPPERS
31.50 28.00
’ 22.50
31.00 :
27.50 22.00
30.50 % E; %
e o o 21.50 o
& 27.00 & Z
7 7 7
A A~ ~
I 30.00 1 21.00
) 4 26.50
20.50
29.50
20 40 60 80 100 20 40 60 80 100
a a
BALLOONS

Figure 13. Dependence between the block size r and parameter o yielding the best achievable PSNR values.
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Figure 14. Dependence of the best possible PSNR values on the « and o when 8 = 5 (a—c) and on Band o
when o = 4 (d-f) using image PEPPERS and setting block size r = 6.

The conducted experiments demonstrate that the suggested algorithm efficiently accomplishes denoising in
a single step when using the recommended parameter values. Additional denoising attempts, even with adjusted
parameters « and o, result in excessive image smoothing. However, for the highly distorted image at p = 50, as
anticipated, a second iteration effectively eliminates residual noise and enhances denoising performance. Given
that the filter executes denoising in a single pass, its computational complexity is akin to methods employing
local averaging, such as NLM, TE, FWNLM, and RLSE

Figure 17 displays color error maps, showcasing the discrepancies between the restored and clean images.
These error maps represent the absolute differences between corresponding color components of the compared
images, each value multiplied by a factor of 10 to enhance visibility. The pixel intensity within the error map
corresponds to the accuracy of color restoration, where darker regions indicate accurately recovered pixels, while
brighter regions signify poorly restored pixels. The hue in these regions is indicative of the channel that was most
poorly reconstructed. Furthermore, the values of the Mean Absolute Error (MAE)

N 3
1
MAE= =33 fof =i, (12)

i=1 g=1

widely used for assessing image detail preservation, are also provided, (0 and y denote the original and denoised
images).

The competitive filters often exhibit tendencies to either overly smooth noisy images or leave residual blotches
and incorrectly suppressed impulses. When addressing heavily corrupted images, notably successful denoising
outcomes were achieved using deep learning-based approaches, such as PD and BACNN. Figure 17 illustrates the
discernible preservation of image details and effective noise suppression in smooth image regions, highlighted by
the darker areas in the error map of the BALLOONS test image. However, the performance of the deep learning
based filters is contingent upon the structure of the images, occasionally resulting in visible artifacts, especially
at edges.

The error maps, alongside the MAE values, affirm the strong denoising capability of the proposed filter-
ing framework. It is important to highlight that the MINORg method effectively filters the test images with a
contamination level of p = 30, showcasing the lowest MAE values and signifying its high capacity to preserve
image details.

The performance of the MINOR method can be also assessed when filtering real noise contamination in
cDNA image which determines gene expression levels'?. As can be observed in Fig. 18, impulsive noise is
removed, edges are well restored and the visible color artifacts, resulting from incorrect alignment, are elimi-
nated. The beneficial properties of the new filter are also illustrated when denoising a part of the painting “Girl
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Original

MLSM-NLR

AWMR

Figure 15. Efficiency of the evaluated filters when using the BALLOONS test image contaminated with MGIN
of p = 30.

with a Pear] Earring” by J. Vermeer, (Fig. 19). The painting cracks are removed, no color speckles are created in
the painting’s homogeneous areas and the details are well preserved.

Conclusion

In this paper, a novel technique intended for the reduction of high intensity mixed Gaussian and impulsive
noise in color images has been proposed. The elaborated approach is based on the novel dissimilarity measure
between image patches, incorporated into the design of the Non-Local Means technique. The new filter discards
from each patch the pixels with the highest dissimilarity to the central window of the processing block, which
ensures the suppression of impulsive noise and enables to smooth out the Gaussian noise component. Thus, for
each patch in the block, the most similar pixels to the central patch are determined and used for blockwise NLM
smoothing. The proposed approach is well suited for highly contaminated images, whose corrupted pixels should
be excluded from the averaging process. Additionally, we observed that for high noise contamination level, the
classic approach used in NLM, which is based on averaging of a stack of images created from corresponding pixels
from the local patches, does not fully exploit the potential of the proposed framework, especially in terms of visual
quality and the ability to remove the impulsive noise. Better denoising efficiency is achieved when averaging
globally all pixels in the block. In this way, the role of the low weights assigned to corrupted pixels is diminished
and the final restoration result is composed of pixels which were not significantly affected by the mixed noise.
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Figure 16. Efficiency of the evaluated filters when using the MONARCH test image contaminated with MGIN
of p = 30.
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PD, (8.4) ' BdCNN, (7.8) AWMR, (10.0)
MONARCH

Figure 17. Error maps of the most efficient filters when using the BALLOONS and MONARCH test images
contaminated with MGIN of p = 30. The MAE values are enclosed in brackets.

The comparison with a variety of filters intended for the suppression of mixed noise in color images revealed
the satisfactory properties of the proposed denoising framework, especially at high contamination levels. The
efficiency of the new filter was confirmed on a large set of test color images and was also verified when denoising
images corrupted by noise of unknown structure. The computational efficiency of the proposed filter is moderate,
comparable to NLM, allowing for its implementation in real-time scenarios.

Future work will be focused on the refinement of the proposed dissimilarity between image patches by taking
into account the measure of pixel corruption evaluated using digital paths exploring the local neighbourhood
of pixels. Additional effort will be devoted to the elaboration of an adaptive technique, which will automatically
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Original MINORg

Figure 18. Filtering efficiency of the proposed MINORg filter when denoising a noisy cDNA image. The
artifacts caused by misalignment of the spots are successfully removed.

Original MINORg

Figure 19. Filtering efficiency of the proposed MINOR; filter when performing a virtual restoration of the
painting “Girl with a Pearl Earring” by J. Vermeer.

adjust the two parameters of the novel dissimilarity index, so that the filter will be able to tune its parameters to
local image and noise structures.
The source code is available for download at https://github.com/dkusnik/ MINOR.

Received: 3 August 2023; Accepted: 21 November 2023
Published online: 29 November 2023
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