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Neural networks memorise 
personal information from one 
sample
John Hartley 1,3*, Pedro P. Sanchez 1,3, Fasih Haider 1 & Sotirios A. Tsaftaris 1,2

Deep neural networks (DNNs) have achieved high accuracy in diagnosing multiple diseases/conditions 
at a large scale. However, a number of concerns have been raised about safeguarding data privacy 
and algorithmic bias of the neural network models. We demonstrate that unique features (UFs), such 
as names, IDs, or other patient information can be memorised (and eventually leaked) by neural 
networks even when it occurs on a single training data sample within the dataset. We explain this 
memorisation phenomenon by showing that it is more likely to occur when UFs are an instance of 
a rare concept. We propose methods to identify whether a given model does or does not memorise 
a given (known) feature. Importantly, our method does not require access to the training data 
and therefore can be deployed by an external entity. We conclude that memorisation does have 
implications on model robustness, but it can also pose a risk to the privacy of patients who consent to 
the use of their data for training models.

The objective of a deep neural network (DNN) is to learn the fundamental underlying relationships between the 
inputs and target outputs of a training dataset, such that the network generalises to give desired outputs when 
presented with novel unseen data inputs. However, DNNs have been shown to frequently assign predictions 
based only on a single example in their training  data1–4. Such learning type is also referred to memorisation.

This study focuses on unique feature memorisation (UFM) and how UFM relates to model robustness and 
consequently to the privacy of individuals when training neural networks. UFM is the unintended memorisation 
of specific features that occur once in training data as opposed to memorisation of examples or training labels. 
Whilst training examples have been shown to be  memorised1, it is not clear whether an example is memorised 
in its entirety or a specific feature of the example (e.g. the image) is memorised.

Let us consider a medical imaging example where data are  sensitive5,6, a private feature such as a person’s 
or healthcare professional’s name (a unique and unusual feature) has survived sanitisation  processes7 and is 
displayed on a single image (and hence it is very rare). Our hypothesis is that a classifier trained on data contain-
ing patient or healthcare professionals names may memorise this private feature. This has two consequences. 
First, there is an obvious privacy risk: the model has potentially learned this unique (and private) feature and 
has retained this information within its parameters. Thus, it is possible that such information can be leaked. An 
adversary with access to the weights of a trained neural network could potentially use them to infer information 
about the training examples.

Second, this classifier might misdiagnose other patients if this feature appears in another patient’s medical 
scan, as illustrated in Fig. 1. The unintended presence of UF may lead to incomplete extraction of the correct 
discriminative features from the  image8. Such a risk is similar to decision-making based on spurious correlations 
or  shortcuts9–12, except that only a single spurious feature is present in the dataset.

In this article, we evaluate whether neural networks memorise unique features and show how to measure it. 
We conducted experiments to demonstrate why this phenomenon happens, and discuss its consequences for 
privacy.

Methods
In the following section, we define the essential concepts for studying UFM, propose a way of measuring it with 
the M score and describe a series of experiments that enhance understanding of UFM and when it happens.
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Understanding unique feature memorisation in DNNs trained for classification
Task.  We explore memorisation in artificial neural networks f (x;Dt) trained for classification. f maps input data 
x to a vector prediction ŷ via a softmax activation function. Each element of ŷ represents the conditional probabil-
ity of the class label y given the image x . Dt = {xi , yi}Ni=0 is the training data where xp ∈ R

l×l , and y is the ground 
truth class label of x . Dt may or may not contain a data sample xp having a unique feature zu ∈ R

m×m with m < l.
The unique feature (UF).  We define a unique feature (UF), zu , as a feature or attribute which occurs once 

in a single sample xu in a training dataset. In image datasets, zu is a set of neighbouring pixels in an image. 
Throughout the paper, we assume known zu . A unique feature label (UFL) yu is the label of the unique feature 
on the original training image.

Unique feature memorisation (UFM).  We hypothesise that zu is memorised by f, when f has higher confi-
dence on images containing zu than without zu . Learning which occurs for zu is memorisation since zu is unique 
and cannot be learnt from any other label structure in the training data. We measure UFM in three different 
settings using the M score detailed in Equation 1.

Sensitivity to unique feature.  To approximate the memorisation of zu we measure the sensitivity of f (x;Dt) 
to a set of image pairs which are clean, i.e. images not containing zu , vs. those containing zu.

Concepts.  We hypothesise that unique features (e.g. “JOHN”) are more likely to be memorised because they 
indeed introduce a new and rare concept (e.g. “name”) in the training data. Features are instantiations of concepts. 
We explain the the difference between feature and concept with an example: on some occasions, patient informa-
tion such as their name “JOHN” is embedded in the image. How the name appears on the image constitutes a 
feature. This feature can appear once (infrequent) or several times. Considering the name as a new concept. It will 
be a rare concept if only one or very few images contain features of a name (as opposed to most images containing 
names). On the other hand, a concept is not rare if several images contain different (yet infrequent) names of 
patients (e.g. we have still one image with “JOHN” in the dataset, but we have other images with other names).

Private settings.  UFM poses privacy concerns. Therefore, we also evaluate how to identify memorisation in 
more restrictive settings. In all situations, we assume access to the unique feature and the output of the last layer 
of the NN. We also consider two other settings where 

1. we do have access to the unique feature and training data but do not have access to the unique feature label 
and the model weights, which we call the “grey box” setting;

2. we additionally remove access to the training data, i.e. the “black box” setting, where we only have access to 
unique feature. The “black box” setting is more realistic since models are routinely exposed behind applica-
tion interfaces or are made publicly available, whereas their training data are not.

 See illustration of these settings in Fig. 2.

M score
M score is a simple method to measure the memorisation of unique features in neural networks. We demonstrate 
our approach in three settings of increasing difficulty and realism from an attacker’s perspective, i.e. different 
privacy settings.

White box
We introduce the M-score for measuring unique feature memorisation in a setting where we have access to the 
training data, Dt , and the unique feature label yu . Let Dyu be a subset of the training data with the same label yu 
as the unique feature. The score is given by

Figure 1.  Unique image features, which may contain private information (e.g. name JOHN), unintentionally 
left in training data can be memorised by a neural network. They are unique because they are unusual with 
respect to the remaining features of the dataset and occur only once. We propose methods to identify if a feature 
has been memorised. As seen in the GradCAM heatmaps (right), memorised features have an unreasonably 
high influence in the neural network’s decision. *Note the name JOHN in the figure is fictitious and it was 
artificially added to the images for visualisation purposes. Therefore, the name JOHN cannot be used re-identify 
the patient in the image. The x-ray images are from the publicly available Chexpert dataset.
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where xu , xc represent the same data sample x with label y, either injected with a unique feature ( xu ) or left 
intact ( xc ; with c denoting this ‘clean’ datum). Intuitively M is the average difference in the label likelihoods 
between inferences on the {xu, xc} image pairs. This makes the scale of our M score particularly straightforward 
to interpret.

A similar score was used to measure rare spurious  correlations13. However, instead of averaging over the 
training data, M is the fraction of samples with M < ǫ . In practice, we do not find outliers which distort our 
average score since we scale our model outputs using a softmax function. In addition, our results show that M 
has a greater sensitivity to unique features which occur only once in the training data set. M runs from -1 to 1. 
Values of M larger than zero correspond to increasing memorisation since the signal from the unique feature is 
greater than the images without the unique feature.

Grey box
In the grey box setting we remove the assumption that we know the unique feature label y. In practice this means 
we know some information, e.g. a patient’s name, but we do not know the patient’s pathology. In the grey box 
setting we propose that we can infer y from the score from Mwhite score Mi over each possible label yi and the 
final Mgrey will be the maximum Mwhite across labels. The M-score in the grey setting can therefore be written as

Black box
We now develop a memorisation score M for practical settings where disclosure agreements prevent us from 
having access to the training dataset or its distribution. In the black box setting we remove the assumption that we 
have access to the training data, Dt . This is the most restrictive setting and represents the case where an attacker 
has obtained a neural network model and knowledge of the unique feature’s style. In this setting we simply use 
another randomly selected dataset Dr . In practice the data distribution does not appear to influence the results 
and therefore any data set can be used.

Statistical significance
We statistically test every M score result in our experiments. We construct two samples from inferences on the 
test data Xu = {P(y|xiu)}

n
i=0 and Xc = {P(y|xic)}

n
i=0 . We quantify the statistical significance ( p < 0.05 ) of the M 

score using a one-tailed t-test with an alternative hypothesis that the population mean of xu is greater than xc . 
We consider that a NN memorised a unique feature when the alternative hypothesis is true.

Metrics
To mitigate stochasticity in measuring memorisation, we run training of neural networks for multiple seeds, all 
else remaining the same. In some experiments, we run up to 1000 different seeds. We only consider the statisti-
cally significant higher M score as memorised networks. To report these results over many seeds, we use the 
proportion of memorised networks, average M score, maximum M score.

(1)Mwhite = Ex∼Dyu

[

P(yu|xu)− P(yu|xc)
]

,

(2)Mgrey = max
{

Ex∼Dyi

[

P(yi|xu)− P(yi|xc)
]

| ∀yi

}

,

(3)Mblack = max
{

Ex∼Dr

[

P(yi|xu)− P(yi|xc)
]

| ∀yi

}

,

Figure 2.  Our method can identify memorisation across different data availability settings which we classify 
as (i) white box which assumes access to the training data; (ii) grey box which assumes access to the label of the 
unique feature; and (iii) black box where only the unique feature is needed to identify memorisation. The faces 
in the figure are from the publicly available dataset CelebA.
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Datasets and unique features
We measure memorisation in several datasets containing a single unique feature (artificially introduced). For 
imaging datasets, we use F-MNIST14, CIFAR-1015, Celeb-A16, and  CheXpert17. Celeb-A has multiple labels. We 
found that many classification tasks were very easy to solve, and the networks found easy shortcuts. Therefore, 
we choose a binary classification task of attractive/non-attractive whose discriminative features are less well-
defined. These datasets span several image sizes, dataset size, contents and styles, and are fairly representative of 
the problem of image classification in computer vision.

We use “two moons”18 as a generic low-dimensional dataset in order to characterise and explain UFM in 
general. In our “two moons” setting, all the classification-related information is present in the x- and y-axes. 
The z dimension would correspond to a new concept. We consider the z-axis to be an uninformative additional 
dimension to which the unique feature may be introduced.

We increase the generality of our results by using several unique features. For the datasets F-MNIST, CIFAR-
10, and Celeb-A we use a 5× 5 image patch of the letter ‘A’ two pixels from the upper-left corner of the training 
image as shown in Fig. 2. For the CheXpert dataset we use a fictitious patient name ‘JOHN’. Our two-moons 
experiment is instead simpler: the unique feature is a single value in the 3rd (z-axis) direction.

Models and training strategies
We evaluate our memorisation score using several common architectural styles of neural networks summarised 
in Table 1.

MLP-1 is trained on MNIST and F-MNIST datasets. We train MLP-1 with a learning rate of 3× 10−4 and a 
batch size of 128 samples. We train MLP-2 on the two moons datasets. CNN-1 a simple 2-layer convolutional 
neural network trained with a batch size of 128 samples. We perform image classification on CIFAR-10 and 
Celeb-A using  ResNet1819. This model is formulated specifically for small images 32× 32 pixels. We train with 
a learning rate of 1e-5 and a batch size of 32 samples. We use 5 patient epochs and train for a maximum of 100 
epochs. To classify CheXpert images, we use  DenseNet12120. We use the same hyperparameters as in the original 
 work17 and train on only on chest X-rays orientated toward the front.

We aim to show that feature memorisation occurs before overfitting, therefore we train with early stopping 
and fine-tune the number of patient epochs by hand. After training, we select the final model weights from the 
epoch with the lowest validation loss. We train all models using the Adam optimiser and a cross-entropy loss 
 function21. We use the PyTorch deep learning framework to train and evaluate  models22 and  SciPy23 to perform 
significance testing. We train models using a  Nvidia® Titan RTX™. We estimate the computation time for the 
experiments to be around 200 GPU hours.

Experimental setup
We proceed to propose a series of experiments to study UFM.

Evaluating unique feature memorisation
We measure UFM by evaluating how sensitive a trained DNN is to the insertion of a unique feature into a data 
sample. We hypothesise that if a DNN has memorised a unique feature, it will be more sensitive to images con-
taining it. Any (statistically significant) increase in confidence after insertion of the unique feature must be due 

Table 1.  Neural networks used in this paper.

Model Architecture Learning rate

MLP-1

Dense(512) ReLU 3× 10
−4

Dense(256) ReLU

Dense(128) ReLU

Dense(#classes) Softmax

MLP-2

Dense(3) ReLU 1× 10
−3

Dense(32) ReLU

Dense(128) ReLU

Dense(128) ReLU

Dense(2) Softmax

CNN-1

Conv2D(32,3,3) ReLU 1× 10
−3

Conv2D(64,3,3) ReLU

MaxPool2d(2,2))

Dense(128) ReLU

Dense(128) ReLU

Dense(#classes) Softmax

ResNet18 19
1× 10

−5

DenseNet121 20
1× 10

−4
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to memorisation since the feature is unique and cannot be learnt from any other label in the training data. We 
measure the M score as a proxy of an increase in confidence for UFM. We consider a white box setting for this 
experiment.

Does regularisation prevent unique feature memorisation?
Regularisation strategies for training models are typically employed to reduce the ability of a model to overfit. 
These strategies aim to promote learning of features which generalise well to samples outside the training data. 
Since neural networks are historically assumed to learn common patterns first and memorise labels later during 
the training  process2,24, it is expected that learning of unique features which do not occur in the test set will be 
reduced by training with regularisation methods.

In our experiments, we build on these works to understand how regularisation strategies affect unique fea-
ture memorisation in image classification models. Using common regularisation strategies  (dropout25, data 
augmentation, weight  decay26, and batch  normalisation27), we train each model with early stopping to eliminate 
overfitting on average across the dataset. We train two neural network models MLP-2 and CNN-1 over MNIST 
and F-MNIST over 10 random training and measure the maximum M score across runs. We consider a white 
box setting for this experiment.

UFM and training dynamics
We train 100 NNs over the toy “two moons” dataset with one data point containing a unique feature in the third 
dimension. We measure the proportion of memorised networks at each epoch and mean accuracy across runs. 
We consider a white box setting.

Rare concepts and UFM
It is a well-known fact that specific hidden units of NNs can be associated with concepts in the  data28. We explore 
the interplay between how often features appear in the data and whether they do or do not introduce a rare 
concept. We hypothesise that the presence of a unique feature introduces a new latent dimension in the space 
where decisions are made. We train a MLP model on “two moons”. In this setting, all the classification-related 
information is present in the x- and y-axes. The z dimension would correspond to a new concept. We consider 
the z-axis to be an uninformative additional dimension to which the unique feature may be introduced. We 
investigate if rarity in z-axis influences memorisation. We measure, in two settings, the proportion of memorised 
networks from training data containing a single data point with z = 1 : (i) z = 0 for all data samples except for 
one sample which has z = 1 , i.e. non-zero values in the z dimension are rare; (ii) we add Gaussian noise along 
the z-axis for samples in the training data while keeping the one data point with z = 1 . For each case, we train 
500 NNs with different seeds, all else kept the same. We consider a white box setting. This toy setting allows us 
to disregard all questions related to the actual characteristics of the unique features (e.g. a letter “A” or “B” or an 
entire word “JOHN”) since we are only dealing with scalars as opposed to image features. This setting emulates 
many real-world scenarios. For instance, a patient’s name should not be informative about their diagnosis. Or, 
in most X-ray images, the edges would be black (representing a ubiquitous “background” concept) and do not 
contain any informative features for diagnosis.

M score and sensitivity to unique features.
We train a model with a single image containing a UF. At test time, we estimate the M score after progressively 
removing pixels from the unique feature, keeping all else the same.

UFM and risks in medical imaging
Memorisation of data samples poses a privacy risk to individuals whose data is used to train neural networks. This 
is because information relating to training samples is encoded directly in the weights of a neural  network29,30. An 
 adversary31 could construct a readout function acting on the weights or network outputs to discover informa-
tion about a given  sample32. Data leakage is particularly problematic when datasets contain private information 
for which disclosure must be controlled. For example, DNNs used in healthcare may encode information about 
patients in their  weights9,10, for which disclosure is legally restricted in the EU by the General Data Protection 
Regulation (GDPR).

Medical imaging offers a practical and realistic example of the risks posed by unique feature memorisation. 
Hospitals frequently employ sanitisation processes to remove patient names when they appear overlaid on X-ray 
films (see Fig. 1). There is a possibility that these processes may fail, resulting in the addition of personal private 
data to training data. Hence a properly designed readout function may indeed lead to the recovery of such private 
information from the model.

There is another risk with the inclusion of such unique features. A classifier trained on such data may mis-
diagnose other patients with the same name if those names have not also been removed during the sanitisation 
process. Alternatively, the unintended presence may lead to incomplete extraction of the correct discriminative 
features from the  image8. Such a risk is similar to decision-making based on spurious correlations, except that 
only a single spurious feature is present in the  dataset9–12.

We train a classifier on the CheXpert chest X-Ray dataset. We add a unique feature ‘JOHN’ to a single training 
image in the upper left corner, and overlay a black rectangle image of the same size over the other images. We 
generated explanations of the classification with a GradCAM heatmap for predictions made by the NN trained 
on our modified CheXpert dataset.
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Identifying memorisation in private settings
Since UFM poses privacy concerns, we now focus on identifying memorisation in more restrictive settings where 

1. we do have access to the unique feature and training data but do not have access to the unique feature label 
and the model weights, which we call the “grey box” setting;

2. we additionally remove access to the training data, i.e. the “black box” setting, where we only have access to 
unique feature.

 In all situations, we assume access to the unique feature and the output of the last layer of the NN. See illustration 
of these settings in Fig. 2. The “black box” setting is more realistic since models are routinely exposed behind 
application interfaces or are made publicly available, whereas their training data are not.

Grey box setting.  We remove access to the unique feature label for “grey box” M score. We train 10 models 
on F-MNIST dataset, each trained with a unique feature inserted into a different randomly selected training 
image from class 1. Then, we measure the “white box” M score and the “grey box” M score to verify if they are 
indeed correlated. For each model, we also indicate the predicted unique feature label ŷ in the “grey box” box 
setting. Next, we repeat this experiment for the Celeb-A dataset.

Black box setting.  We remove access to the training dataset for “black box” M score. We train 10 models on 
Celeb-A and CIFAR-10 datasets, each trained with a unique feature inserted into a different randomly selected 
training image from class 1. Then, we measurethe “white box” M score and the “black box” M score. We evaluate 
the memorisation of the unique feature in CIFAR-10 and Celeb-A using Celeb-A and CIFAR-10 respectively at 
inference time.

Results
We now show empirical results demonstrating that 

1. neural networks memorise unique features in several datasets for a range of model architectures;
2. memorisation of unique features cannot be prevented using typical regularisation strategies;
3. memorisation happens due to the presence of such a rare feature which is unusual and hence unique with 

respect to (they are unusual only once) features in concepts which are rare (unusual) in the data and it hap-
pens from the first epoch and over the entire unique feature;

4. we are able to audit models with the M score in a grey or black box setting (different settings are illustrated 
in Fig. 2).

We refer the reader to the Methods section for full details of the datasets, models, training schemes and memo-
risation scores.

Neural networks memorise unique features
 Following the experiment described in section 2.5, Table 2 shows that UFM occurs frequently in a range of 
neural network architectures and benchmark datasets from simple to complex: a variation of the two moons 
 dataset18 (described in Fig. 3), F-MNIST14,  CIFAR1015,  CheXpert17,  CelebA16. We conducted experiments using 
different training seeds and training stochasticity as shown in Table 2 (i.e. number of runs). Based on the propor-
tion of memorised networks (where M is statistically significant with p < 0.05 ), it is noted that memorisation 
is not always present. Hence, different training seeds and training stochasticity lead to different memorisation 
results. We further visualise in Fig. 3b), for setting (i), the decision boundary in the x-y plane for z ∈ {0, 1} and 
the differences for networks that memorised the datapoint in z = 1 and networks that did not. The memorising 
networks have a stronger shift in the decision boundary in the z = 1 plane, which would correspond to hav-
ing test images which contain unique features. This experiment illustrates how unique feature memorisation 
increases the risk of misclassification when the unique feature is present in the test data. Indeed, there are more 
misclassifications of samples which include the unique feature ( z = 1 plane) and those with representative x-y 
features of the opposite class.

Regularisation does not prevent unique feature memorisation
 Results shown in Table 3 empirically demonstrate that regularisation does not significantly reduce the M score 
(UFM). This is in line with recent works showing that regularisation strategies do not eliminate memorisation in 
neural networks. For example, explicit regularisation does not prevent sample-based  memorisation1 or feature-
based memorisation in language  modelling33, 34. More recently, it has been shown that the influence of rare spuri-
ous features could not be eliminated by either weight decay or by introducing Gaussian noise to training  inputs13.

Memorisation happens early during training
 Some networks memorise unique features from the first training epoch. We find that learning of unique features 
occurs early in training process, similarly to sample  memorisation35 and feature memorisation in language 
 modelling33,34. Thus, it appears that UFM occurs even when the feature values in the sample are not overfitted. 
We depict in Fig. 4 an experiment with a toy dataset showing that memorisation happens in around 40% since 
the first epoch. We illustrate that, while the likelihood of memorisation increases with overfitting, memorisation 
happens from the beginning of training.
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Rare concepts lead to unique feature memorisation
 We found, as we illustrate in Fig. 3 a), that 82.6% of the networks memorised for setting (i) while only 41.4% did 
in (ii). This result indicates that a rare concept leads to memorisation even with the introduction of Gaussian 
noise. We show that memorisation is stronger when rarity in concept and in feature coincide, creating a unique 
feature (UF).

M score measures sensitivity to unique features
 As described in section “M score and sensitivity to unique features”, removing a single pixel from the unique 
feature changes the score significantly. This implies that the model has learned to capture the whole unique feature 
verbatim. It has not for example extracted representations that approximate the UF (e.g. its edges, corners etc). 
We find that unique features are captured by the M score in their entirety (see Fig. 5).

UFM poses a robustness and privacy risk to medical imaging
 Based on the experiment detailed in section “UFM and risks in medical imaging”, Fig. 8 shows GradCAM 
explanations for predictions on ‘Consolidation’ for three models trained with the unique feature on different 
images. The upper heatmaps clearly show that the private personal information feature explains the model’s 
prediction, and that true explanatory features relating to the physiology of the patient are considerably less 

1
0

1 1

0

1
0.5

0.0

1.0

Memorisation Ratio 41.4%

1
0

1 1

0

1
0.5

0.0

1.0

Memorisation Ratio 82.6%

Added noise 
along z

z = 0

N
on

-m
em

or
is

in
g

D
N

N

z = 1

z = 0

M
em

or
is

in
g

D
N

N

z = 1
x

x

y

y

z

z

a) b)

Sample with unique feature

yradnuob
ni

noitrotsi
D

Figure 3.  A study of neural network memorisation with the “two moon” toy dataset. All the classification-
relevant information is present along the x and y. We study situations when a data sample with a unique feature 
in the z (depicted with a triangle marker) dimension is memorised. (a) Top, is the case where the dataset has 
a unique feature on z-dimension. 82.6% of NNs memorised the feature. Bottom, here noise is added along 
z, and now the concept is not unique. Indeed now, the proportion of NNs which memorised the unique 
feature is much smaller (41.4%). (b) We now explore how decision boundaries change whether a unique 
feature is memorised or not. The decision boundaries for z = 1 (i.e. data points with the unique feature) differ 
considerably between a network that memorised (bottom) and one that did not (top).

Table 2.  Unique feature memorisation occurs frequently in neural networks. Here we show average M scores 
for a range of datasets and model architectures.

Dataset Model Number of runs Proportion of memorised networks Average M score

Two moons MLP-2 1000 65% 0.51

F-MNIST CNN-1 10 20% 0.4

CIFAR-10 ResNet18 100 46% 0.03

Celeb-A ResNet18 10 80% 0.01

CheXpert DenseNet121 10 60% 0.007
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Table 3.  Max M scores for models with explicit and implicit regularisers, such as dropout, data augmentation, 
and batch normalisation.

Dataset Model Regularisation Max. M score

MNIST MLP-1 Dropout 0.010

MNIST MLP-1 Data augmentation 0.010

MNIST MLP-1 Weight decay 0.018

MNIST MLP-1 Batch normalisation 0.020

MNIST CNN-1 Dropout 0.008

MNIST CNN-1 Data augmentation 0.009

MNIST CNN-1 Weight decay 0.011

MNIST CNN-1 Batch normalisation 0.008

F-MNIST MLP-1 Dropout 0.109

F-MNIST MLP-1 Data augmentation 0.077

F-MNIST MLP-1 Weight decay 0.104

F-MNIST MLP-1 Batch normalisation 0.131

F-MNIST CNN-1 Dropout 0.190

F-MNIST CNN-1 Data augmentation 0.039

F-MNIST CNN-1 Weight decay 0.140
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Figure 4.  Memorisation during training. We depict the proportion (in percentage) of networks which 
memorised the unique feature per epoch, out of 100 runs with different seeds. We also display the mean test 
accuracy over the 100 NNs for each epoch.

Figure 5.  We measure unique feature memorisation in CIFAR-10 by inferring a trained model’s confidences 
on test images containing the unique feature. We find that the memorisation score reduces when we corrupt the 
unique feature by successively removing pixels during inference. This indicates that the model memorises the 
entire unique feature and not a corrupted version.
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explanatory. However, when the unique feature is removed from the lower images, the explanations for the 
pathology surround physical features which are expected. The upper heatmaps clearly show that the private 
personal information feature explains the model’s prediction, and that true explanatory features relating to 
the physiology of the patient are considerably less explanatory. However, when the unique feature is removed 
from the lower images, the explanations for the pathology surround physical features which are expected. This 
simulates the removal of private personal information and the counter-case of accidentally missing some unique 
private personal information.

Identifying memorisation in private settings
 In the grey box setting, Fig. 7 shows the “white box”, “grey box” and “black box” M scores are correlated on the 
Celeb-A dataset. In this context, white box setting is seen as the ground truth. In the black box setting, we observe 
that NNs are more sensitive to a data point after the insertion of the unique feature. Interestingly, the specific data 
distribution is not important, since our method finds only the relative distances between model outputs from 
image pair inputs. “black box” M score is less accurate on models trained on the CIFAR-10 dataset, see Fig. 6.

Discussion
Unique Feature Memorisation
 We show that unique feature memorisation is not uncommon in classification neural networks for low-dimen-
sional data and in a range of deep learning models for image classification. Also, we find that regularisation does 
not eliminate UFM, and that similarly to language modelling, singly occurring unique features are learnt early 
in training. A letter or name, for example, written on a natural image can often be memorised by DNNs trained 
using the backpropagation algorithm. We hypothesise and validate empirically that these features are more likely 
to be memorised when they appear in explored dimensions, as shown in Fig.  3.

Typically, we would expect the learning algorithm to ignore the unique feature. This is because under the 
information bottleneck (IB) principle, information learnt from the other samples in the training dataset is suf-
ficient to reduce the uncertainty of the label  distribution36,37. However, in practice this does not seem to be the 
case. We suggest the following explanation for this behaviour. Let us assume that the classifier is extracting a 
latent space from the input data. We can theoretically partition the latents in two parts: those learned from the 
samples according to the IB principle and those attributed to the unique feature. Indeed our results in Fig. 3 hint 
at this. The decision boundary in 2D for samples without the unique feature ( z = 0 ) is the expected hyperplane, 
whereas the decision boundary is completely shifted for samples with the unique feature ( z = 1 ). Under the 
Principle of Least Effort11, the learning algorithm may shortcut over the unique feature since it is easy to learn, 
and as our results suggest it may do so early on in training (Fig. 3). We believe that studying learning dynamics 
(model behaviour during training) is a good way of understanding the memorisation phenomenon critically. 
Similarly, recent works show that shortcuts (a similar concept) are memorised in the beginning of  training38,39 
and the connection between local minima in the loss  landscape39.

Previous research has established that over-trained, over-parameterised deep neural networks are able to 
memorise randomised training labels, and randomised data  samples1. As a result of this finding, a number of 
methods have been developed to measure label and sample  memorisation3,4,40,40–49. Early work on understanding 
memorisation suggested that neural networks learn patterns early in training and memorise random patterns 
 later2. More recently, it has been shown that learning and sample memorisation occur  simultaneously35. Few 
studies have investigated the memorisation of features. Recent works on the privacy risks of Large Language 
Models (LLMS) established that LLMs memorise features even when they rarely appear in training  data33,34. 

Figure 6.  Correlation between M score in “white box” and “black box” setting for the Cifar-10 dataset. We 
show that unique feature memorisation can be measured without access to the original training data or to the 
unique feature label.
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Decision-making based on spurious correlations is a similar topic to feature  memorisation9–13. Our investigation 
into unique feature memorisation follows naturally from these works. We distinguish ourselves by investigat-
ing feature memorisation in its most extreme form: where a unique feature occurs only once in training data.

Privacy and Unique Features
 Unique features might contain personal information, which poses serious privacy concerns in certain settings 
such as decision-making in healthcare. We identify that models leak information about unique features that were 
memorised during training. More importantly, we show that we can audit if models memorised specific features 
in private settings, when the auditor does not have access to the training data nor to the unique feature label.

Other works propose privacy attacks which also exploit data leakage to uncover information about training 
data. We now detail some techniques from the literature and how our work differentiates, in particular 

1. membership inference attacks deduce, whether a sample is in the training set by exploiting a model’s over-
confidence on examples it has  seen32,50–53. We focus on the memorisation of unique features and not whole 
data samples or datasets.

2. backdoor attacks attempt to adversarially change a model’s predictions by injecting an optimised image patch 
onto training examples such that when this patch occurs on an attack example at test time, the predictions of 
the model can be  controlled31,54–59. In contrast, we show that a unique feature which occurs in the training 
data is memorised. This feature is not optimised to modify the outputs of the model at test time.

3. property inference attacks attempt to learn a group property/feature of the dataset. For example, what pro-
portion of people in the training set wear glasses?60,61. These attacks are typically white box and proceed 

Figure 7.  Correlation between M score in different privacy settings for the Celeb-A dataset. We show that 
unique feature memorisation can be measured without access to the original training data or to the unique 
feature label. The “white box” M score is shown along the x-axis and the “grey box” (a) or “black box” (b) M 
score is shown on the y-axis.
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by using a shadow model to make inferences on the target model weights. Feature memorisation, as we 
investigate here, can be viewed as an extreme property inference attack where a unique feature, a person 
who wears glasses, occurs only once in the dataset. Existing approaches, however, cannot address unique 
feature memorisation since labelling the training weights to train the shadow model requires ground-truth 
knowledge of whether the feature was memorised or not.

Guidelines and Best Practices
The findings of this study highlight the need to develop strategies to protect personal information when present 
as a unique feature. One of the possible ways to avoid the presence/influence of unique features is to develop 
automatic solutions to detect personal information printed on training images for removal before moving forward 
with machine learning training. Another suggestion for safeguarding is to develop a privacy filter (testing stage) 
that rejects/modifies an image with identifiable information printed on it so that an attacker will not be able to 
get access to identifiable information learned by neural networks. By doing that, a data scientist is lowering the 
possibility of linking a breached patient record (as happened in England (https:// www. bbc. co. uk/ news/ techn 
ology- 44682 369)) to training data of their ML model. The findings will also inform policymakers to develop 
practices and guidelines for data scientists and companies to protect personal information for those situations 
according to policy document (https:// www. gov. uk/ gover nment/ publi catio ns/ ai- regul ation-a- pro- innov ation- 
appro ach/ white- paper) by safeguarding against bad actors.

Data availability
All imaging datasets used in this paper are publicly available. The code for generating the synthetic two moons 
dataset can be found at https:// github. com/ jasmi nium/ featu re- memor isati on.

Code availability
Code to reproduce the experiments is available at: https:// github. com/ jasmi nium/ one_ sample_ memor isati on.
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