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Using broadband infrastructure 
as a social sensor to detect 
inequities in unemployment 
during the COVID‑19 pandemic
Nicola Ritsch  1* & Daniel Erian Armanios 2

This study explores the potential of using physical infrastructure as a “social sensor” for identifying 
marginalized communities. Prior work tends to explore biases in infrastructure as a retrospective 
“social autopsy”. Instead, our study aims to create an introspective “social biopsy”, using existing 
infrastructure gaps to inform how future policy and investment can address existing inequities more 
sharply and proactively. Specifically, this work explores the possibility of using U.S. county-level 
broadband penetration rates as a social sensor to predict rates of unemployment amidst the COVID-19 
pandemic. The result is a 2 × 2 typology of where broadband as a social sensor is sharper (or coarser), 
as well as prone to error (either false positives or false negatives). We further explore combining 
broadband with other forms of physical infrastructure (i.e., bridges, buildings, and WiFi-enabled 
libraries) to create a sensor “array” to further enhance detection. Overall, this work proposes an 
“infrastructure-as-sensor” approach to better detect social vulnerability during times of crises in hopes 
of enhancing resilience through providing services more quickly and precisely to those who most need 
it.

While the built environment has long been known to impact human behavior1, recent computational advance-
ments and data availability allow us to explore such effects at unprecedented granularity and resolution. 
Particular configurations of infrastructure, ranging from clusters of buildings and bridges down to a single 
building and bridge site, are shown to impact mobility, decision-making, response time, well-being, and even 
entrepreneurship2–5. Such an approach is precise enough to detect behavior amidst crises as global as a pandemic6, 
and as local as an active shooter situation7. Moreover, a series of scaffolding technologies have now been shown 
to enhance data acquisition, communication, and coordination around such systems. These range from sensors 
measuring floor vibrations induced by an individual8,9 all the way to sensors used for social media tracking10 
and digital twins11,12, as well as augmented and virtual reality operating across these individual and systems-
level scales13–17.

Our study aims to take the conceptual terrain from this important body of work and expand it to address 
issues of equity. Seminal work undergirding this area18,19 find that not everyone equally benefits from infra-
structure or the technologies that support it; infrastructure linkages to local communities are often skewed 
and biased6,20–25. However to borrow from a medical analogy used in this space, prior studies tend to evaluate 
infrastructure systems, and the calamities which impact such systems, as a retrospective post-mortem “social 
autopsy”26.

Our study asks can we transform such analyses into a “social biopsy” (rather than a social autopsy), allowing 
for a more immediate and introspective sampling of infrastructure gaps to identify and alleviate bias in real-
time? We see a possibility for doing so by treating infrastructure as a social sensor of such bias and inequity. In 
other words instead of just analyzing how infrastructure was skewed by past bias, we treat current infrastructure 
asymmetries as characterizing the present impacts of said bias (i.e., infrastructure → present bias instead of past 
bias → infrastructure). In taking a social sensor approach, this study seeks to transcend the prevailing approach 
of documenting biases in existing infrastructure in order to start crafting more real-time solutions to alleviate 
such challenges.

Treating infrastructure as a social sensor complements the prevailing human-as-sensors approach9,11 which 
focuses on developing sensing mechanisms that are sensitive to an individual’s activity, thereby identifying human 
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behavior and mobility at ever more precise and granular resolutions. However, scaling this latter human-as-
sensors approach is computationally, capital, and environmentally intensive27,28. Currently, prevailing solutions 
are algorithmic in nature, whereby the approach is either creating more parsimonious algorithms that require 
less computational resources27,28, or optimizations that help increase savings by leveraging differences across a 
set of infrastructure assets29. Moreover, these approaches (1) rely primarily on propriety data which is challeng-
ing to make reproducible or available for government use, let alone do so in a way that is adequately sensitive to 
privacy issues; and (2) largely propose and evaluate possible sensors rather than provide guidelines for sensor 
choice and deployment.

Our “infrastructure-as-sensor” method proposes an alternative synergistic approach. In identifying those 
infrastructure configurations that lead to the most bias and inequity, we can better identify where to deploy 
more granular human-as-sensor approaches in ways that can realize greater benefits at less cost. In this manner, 
infrastructure-informed targeting could help further minimize costs by bringing into greater focus those areas 
that are most likely suffering from infrastructure-driven bias for which human-as-sensors approaches could more 
efficiently and effectively be deployed to better track and mitigate. Our approach uses thinking in urban studies1 
and sociology19,26 to inform infrastructure sensor choice for these purposes. Furthermore, our approach relies 
only on public data, ensuring that the methods and outcomes of such research can be reproducible as well as 
be pragmatically integrated and deployed by government agencies in decision making processes. Overall while 
most prior sensing approaches rely on private data or indirect capture of inequity (i.e., social media)30–32, our 
approach sees what is feasible with more publicly available, and therefore more easily and cheaply accessible, 
data on infrastructure networks closer to the physical enablers and barriers of bias and inequity.

To explore the feasibility of our proposed infrastructure-as-sensor approach, we explore the asymmetries in 
broadband deployment and how that impacted unemployment amidst COVID-19. We chose this setting for sev-
eral reasons. First, there is already an extensive literature that documents the impacts of broadband penetration 
and availability on unemployment (for a more detailed review, see SI Appendix A)33–40. Therefore, we keep the 
study’s focus on whether infrastructure is a useful social sensor of marginalized groups, especially those sensi-
tive to the linkages between broadband and unemployment. Second, we find that economic vulnerability is best 
captured through unemployment rather than other commonly used metrics such as wages. As Fig. F11 in the SI 
shows, wages largely do not change while employment does during COVID-19, which suggests unemployment 
is a better more immediate benchmark of vulnerability. To our knowledge, there are only two other studies which 
explore the impact of broadband access during the COVID-19 pandemic. The first piece primarily focuses on 
the ability of an individual to work from home in light of their broadband connectivity and does not focus on 
what the lack of broadband connectivity may mean for employment41. The second finds that broadband adop-
tion and availability may be associated with employment in rural America during March and April of 202042. 
However, this work does not cover the entire United States, uses a limited set of broadband measures, and does 
not use empirical methods which allow for analyzing the change in unemployment before vs. during COVID-19.

Second, COVID-19 is a useful multidimensional shock. COVID-19 led to stay-at-home mandates imple-
mented by all states, which required individuals to work from home if they were performing non-essential work 
(the dates for which are documented in SI Appendix B). This also required children to conduct much of their 
schooling from home and led to business shutdowns due to inability to patronize local establishments. While 
this shock has been used as an effective natural experiment in other studies43, the prevailing view with regards 
to broadband is that connectivity impacts unemployment through enhanced digital connectivity33. Given this 
is the case, broadband should largely influence those aspects of COVID-19 such as stay-at-home mandates for 
work or schooling that necessitate such digital connectivity. However, broadband deployment should not drive 
other aspects that do not depend on digital connectivity, namely business closures due to people unable to patron 
establishments such as hotels, restaurants, and other service-oriented firms. This multidimensional nature of 
the pandemic gives us a unique opportunity to gauge where infrastructure as a social sensor should increase 
sharpness and where it should increase coarseness (i.e., shed insight on those groups and facets for which the 
infrastructure provision should impact resilience vs. those that it should not).

As informed by prior theory1,21,25, our core proposition of this study is that infrastructure can serve as a social 
sensor that allows for sharper detection of groups whom are most vulnerable to disruption. From that core 
proposition, we develop two hypotheses that are specific to the context of broadband access and the COVID-
19 stay-at-home mandates, both of which focus on the sensitivity of social sensors:

Hypothesis 1 (Social Sensor Sharpness): Populations that depend on broadband for work (i.e., people 
who work from home and people employed in the tech industry), or who historically lack broadband 
access (i.e., Latino/Hispanic and African American/Black households and Single Parent and Low-Income 
households) will exhibit greater rates of unemployment from COVID-19 due to broadband access.
Hypothesis 2 (Social Sensor Coarseness): Populations with less reliance on broadband for their employ-
ment (i.e. people who are employed in service work or essential industries and Rural communities) 
will exhibit lower rates of unemployment from COVID-19 due to broadband access.

As with any sensor, we expect there will be some slippage and error in the accuracy of this sensor. Thus, we 
also explore the following two boundary conditions:

Boundary Condition 1 (sensor slippage): Dimensions that are further away from what the sensor measures 
(i.e., broadband-dependent work) will exhibit weaker signaling effects.
Boundary Condition 2 (sensor array): Triangulating across multiple sensors will improve targeting along 
the most key dimensions and to the most critical locations.
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We now proceed to present the main results and how different groups are (or are not) impacted by broadband 
access amidst the COVID-19 stay-at-home mandates. To empirically analyze boundary condition 1, we split 
cases into three subsets: (1) those that directly depend on broadband for work; (2) those that indirectly measure 
broadband access; and (3) those that do not directly depend on broadband. The intuition is that our social sensor 
will exhibit the strongest signals for cases in set (1) and the weakest for cases in set (3). To empirically analyze 
boundary condition 2, we then conduct a proof-of-concept supplementary analysis of how one could scale from 
broadband as a single senor measuring high-speed Internet access to an “array” of sensors that incorporate the 
built environment to see if we can more holistically and precisely capture such vulnerabilities. This includes 
buildings, bridges, and WiFi-enabled libraries. We conclude with a summary of the findings and discuss the 
implications and possible uses for this infrastructure-as-sensor approach.

Results
Mainline results for broadband: asymmetries in broadband access increase unemployment
Before discussing the results, we must first define empirically our key variable, namely what we mean by broad-
band access. We start with the definition used by the Federal Communications Commission (FCC) which states 
that broadband is “high-speed internet access that is always on and faster than the traditional dial-up access”. 
They define adequate broadband access for an individual as at least 25 Mbps upload speed and 3 Mbps down-
load speed44. Broadband access can be measured in terms of several different metrics including a) actual speed 
(measured by Microsoft (MSFT), Ookla and MLab), b) advertised availability (measured by the FCC), and 
c) adoption (measured by the American Community Survey (ACS)). Therefore, our operating definition of 
broadband access is the degree to which an individual can access high-speed internet as measured either in terms 
of self-reported access, advertised speed, and/or actual speed tests. For the purposes of this study, “adequate” either 
means 50% or more of the population has 25 Mbps upload and 3 Mbps download in terms of advertised or actual 
speed, or 50% of the population or more report access to broadband. This definition aligns with those of other 
well-regarded sources45. We discuss the differences in these broadband metrics further in the Methods section 
and in SI Appendices C, D, and E. Table 1 also highlights how each metric is measured.

Figure 1 presents our base case results exploring the efficacy of using broadband as a social sensor to detect 
unemployment during the COVID-19 pandemic. When we refer to the “base case” throughout the study, we 
are referring to the use of the Microsoft (MSFT) 2020 dataset to separate out treated counties (50% or more 
broadband penetration) and control counties (less than 50% broadband penetration).We use this as the base case 
for our work because this data represents actual user speeds and is the most publicly accessible dataset with the 
widest geographic coverage. In this base case, when all else is equal after the shock of the stay-at-home orders, 
we find that counties with more than 50% of the population having access to 25 Mbps download/3 Mbps upload 
broadband speeds experience an increase of 1.34% in their unemployment rate over similar counties that have 
less than 50% access. Presented on the right-hand size of Fig. 1 is the parallel trends plot for the base regression 
which shows that the unemployment rates for both treatment and control counties remain constant prior to the 
impact of COVID, which visually demonstrates that the parallel trends assumption is upheld (Fig. 7 provides a 
more formalized statistical test). We also conduct a synthetic controls analysis, which relaxes the parallel trends 
assumption and combines this approach with fixed effects as explained in prior work 46 (see Table 3 and Appen-
dix H for more details), and results remain robust to this approach. Presented on the left-hand side of Fig. 1 are 
the difference-in-differences (DiD) estimators for each kind of broadband data considered in the study, using 
varying levels of penetration to define the control and treatment groups in the regression models (cases using 
M-Lab and Ookla data are available in Appendix G). When using MSFT, FCC or ACS as the treatment lens, this 
positive impact on unemployment remains robust across these different datasets and across different penetration 
levels (i.e., 25%, 40%, 50%, and 75%). While the results are robust across indicators, they do demonstrate vari-
ation based on what is being measured. At 50%, the results range from an increase of 0.84% in unemployment 

Table 1.   A summary of each broadband metric used and an explanation of how it is measured and collected. 

FCC form 47772 M-Lab NDT72 Ookla speedtest72 ACS census Microsoft

Type of measurement Advertised availability Actual speed Actual speed Adoption Actual speed

Geographic precision Census Block
Aggregated by any geography, 
though smaller than county 
or city not recommended

Aggregated in a grid 
of ~ 610.8 m2 tiles which 
can be used down to census 
tract level

Census tract County

Metrics

Internet service provider (ISP 
reports) maximum advertised 
upload and download link 
capacity by access type (fiber, 
cable, direct subscriber lines, 
satellite and fixed wireless)

Single stream Transmission 
Control Protocol (TCP) 
measure of Bulk Transport 
Capacity. Measures the 
download & upload speed 
and latency the user’s device 
is getting from the router

Multi-stream TCP measure 
estimating link capacity. 
Measures the average of 
download/upload speeds, 
average latency, # tests, and 
# devices that the user’s 
router device is getting from 
their ISP

Individual reported access

Multi-stream TCP measure 
estimating link capacity. 
Percentage of population with 
25/3 download and upload 
speed

Data collection
ISP-contributed, free and 
open access to aggregate 
data. Collection method left 
to the ISP

User-contributed, free and 
open access to individual data 
points. Open source server 
run by M-Lab

User-contributed, free and 
open access to aggregate data. 
Closed source server that is 
available for others to run

Census workers collect from 
individual households

User-contributed whenever 
user utilizes Microsoft prod-
uct. Free and open to access
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reported from FCC 2019 data to an increase of 2.31% in unemployment as reported by the ACS 2020 data. The 
regression models that serve as the basis for the heat maps in Fig. 1 are in SI Appendix I.

One may find this baseline result surprising as one would surmise greater broadband access means easier 
ability to stay-at-home to work, which should better ensure individuals can stay employed. However, what this 
immediate intuition does not consider is the tension between how broadband access is typically measured vs. 
what prior empirics, especially in the social sciences, tell us about how infrastructure is distributed. This has 
important empirical and conceptual implications.

Empirically, all sets of publicly available broadband data are currently measured by spatial area. While this 
is the convention in prior work33,47,48, a tacit assumption then is that access levels are evenly distributed across 
the spatial unit of analysis. For example, if we measure that 90% of the population within a spatial unit has 
adequate broadband access, the expectation is that 90% is evenly scattered across the unit. In our case, let’s 
assume a county has 100 neighborhoods, each with equivalent populations, this implies 90% of the people 
in each neighborhood has adequate access. However, several studies note that infrastructure access is actually not 
evenly distributed18,21,49,50. In other words, let’s revisit our fictitious county with 100 neighborhoods. The reality 
could be that if we measure on average 90% of a population within a county that has adequate access, perhaps 
100% of the population in 90 of the county’s neighborhoods have adequate access but no one in the remaining 
10 neighborhoods have adequate access. This would still arrive at an average of 90% coverage. For illustrative 
purposes in this example, we assume uneven distribution is based on space, but such unevenness can also be 
based on specific industries or populations that are known to have asymmetric need for broadband or access to 
it. We will discuss this in the next section.

Conceptually then, those without access being confined to ever more concentrated areas may be “out of sight, 
out mind”. If employers increasingly see that those around them have broadband access, then they are likely 
to assume everyone has access. In essence, what we theoretically argue is happening is a “halo effect”, whereby 
employers assume everyone can access broadband to continue work as they increasingly do not observe those 
ever concentrated few without such access.

Considering these empirical and conceptual considerations, we would expect unemployment is sensitive to 
lack of access being confined to a specific set of neighborhoods, especially for counties where the majority have 
adequate access. We find evidence that this may indeed be the case. To gain insight into this, we sought census 
tract data that is the finest grained publicly available data that approximates the level of a neighborhood. While 
ACS, FCC and Ookla datasets all release broadband penetration estimates at the census-tract level annually, 
unemployment records at the census-tract level are only available from the ACS 5-year estimates, failing to pro-
vide the monthly temporal resolution required to run the prescribed DiD regression models. In order to make 
use of the data which is available, Fig. 2 shows the DiD estimator for sub-groups of counties which have above 
a given number of census-tracts with broadband access. In this subset, we use Ookla as our base case as this is 
the only dataset available at both a county and a census-tract level which measures quality of broadband speed 
thresholds. We find in Fig. 2 that as we subset the treated counties to ever greater percentages of census tracts 

Figure 1.   Left: difference-in-difference estimators for the full dataset. Robust standard errors, clustered at the 
state level, are included below each estimate with statistical significance indicated by the stars based off of a 
two-tailed test. In the base case (MSFT 2020 data, 50% penetration) when all else equal, after COVID, counties 
with more than 50% access to 25 Mbps download and 3 Mbps upload, experience an increase of 1.34% in their 
unemployment rate over similar counties that have less than 50% access. Right: parallel trends between the 
control (below adequate access to broadband at a county level for MSFT 2020) and treatment (above adequate 
access to broadband on average at a county level for MSFT 2020). Parallel trends hold prior to the shock of the 
COVID-19 pandemic.
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with adequate (25%, 40%, 50%, and 75%) access, we see the unemployment rate increase between the treated 
vs. control counties. As we argue and anticipate, this suggests that lack of access is not evenly distributed but 
concentrated and when it is, employers are arguably more likely not able to adequately detect and accommodate 
those without adequate broadband access. This further implies that broadband may be a useful social sensor 
in detecting gaps at ever finer spatial scales to more sharply identify those groups which most need broadband 
support in times of crises such as during a pandemic.

Fine tuning the sensor using socioeconomic and sociodemographic data
In light of the findings at this point, our aim now is to detect gaps in broadband spatial data and not assume the 
measure means even distribution across the spatial unit of analysis. In this spirit, we unpack who specifically 
within a spatial unit (in our case, a given county) does not have adequate broadband access, and in turn, is most 
negatively impacted by stay-at-home mandates implemented during the COVID pandemic. This is done by sub-
setting to specific populations known to have lower access levels or industries known to need broadband access 
more to work productively. If these gaps are consequential, we assert that unemployment will be higher for those 
counties where lack of access is indeed concentrated to particular groups or industries, hence the formulation 
of our aforementioned hypotheses.

Sensor sharpening and coarsening
To reiterate our hypotheses, broadband should sharpen as a social sensor for groups whose lack of broadband 
access makes them less resilient to the COVID-19 stay-at-home mandates, while broadband as a social sensor 
should coarsen for groups and locations where such access should be inconsequential in their ability to manage 
the pandemic. Several groupings lend support to our hypotheses. While we report the summary of our results 
in Fig. 3 and Table 2, the full regression models are all available in the SI Appendix I.

The first subset focuses on regulatory-based mechanisms resulting from the stay-at-home orders which man-
dated that some groups work in-person based on their role in the local economy. In this scenario, we expect to 
see a greater impact on unemployment in those counties that have below median numbers of essential industry 
designated (EID) workers, because these workers were more reliant on having broadband access to both comply 
with stay-at-home mandates and to maintain their employment. For counties with above the median EID work-
ers, when all else is equal, the base case finds that treated counties experience an increase in unemployment rate 
of 1.04% compared to control counties after the onset of COVID-19. For counties below the median number 
of EID workers, when all else is equal, the base case finds that the unemployment rate difference is 1.55% for 
treated counties when compared to control counties after the onset of COVID-19. We see in this gap that the 
sensor behaves as we expect; lower levels of essential workers sharpen the sensor and identify a larger gap in 
unemployment, while higher levels serve to coarsen the sensor.

To further solidify this mechanism, we also look at occupations that, by the nature of the tasks required for 
the work, are more amenable to the work-from-home mandates51. Here we expect that for counties that have on 
average higher numbers of people that are able to work from home prior to the pandemic, the impact of the forced 
work-from-home mandates during the COVID pandemic would have less of an impact as these occupations 

Figure 2.   Left: difference-in-difference estimators for the dataset, subset by percentage of census-tracts which 
have access to adequate broadband within the treated group of counties. Robust standard errors, clustered at 
the state level, are included below each estimate with statistical significance indicated by the stars based off of 
a two-tailed test. In the base case (Ookla data, 50% of census-tracts with access in the county) when all else is 
equal, after COVID, counties with more than 50% of their census-tracts having adequate access to broadband 
experience an increase of 1.10% in their unemployment rate over similar counties that have less than 50% of the 
census-tracts in their county with adequate access. The plot of the parallel trends between the control (below 
adequate access to broadband at a county level) and treatment (above adequate access to broadband on average 
at a county level, parsed out by counties with varying levels of census tracts with adequate broadband access) is 
available in Appendix G. The parallel trends hold prior to the shock of the COVID-19 pandemic, and while the 
differences between treated and controls groups are small they can be observed in the plots. The ideas here is to 
assess whether concentrated in-access is what drives these potential effects. The full regressions that underpin 
these results are in SI Appendix I.
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already allowed them to pivot to working from home (WFH) more easily. We find this to be the case. For coun-
ties with above the median numbers of people employed in industries that could easily work from home, when 
all else is equal, the base case finds that treated counties experience an increase in unemployment rate of 0.96% 
compared to control counties after the onset of COVID-19. For counties below the median numbers of people 
employed in industries that could easily work from home, the base case finds that the unemployment rate differ-
ence is 1.29% for treated counties when compared to control counties after the onset of COVID-19. Here we see 
the effect that people working in occupations and industries better suited to working online experienced lower 
rates of unemployment as a result of the work-from-home mandates.

The second subset focuses on marginalization. Certain groups, specifically Black and Hispanic populations, 
are known to have less access to broadband52 and we therefore expect them to be asymmetrically impacted when 
resilience depends upon broadband access during the stay-at-home mandates. Given this premise, we expect 
to see counties with higher median percentages of Black and Hispanic populations to also have higher rates of 
unemployment. For counties with above median percentage of Hispanic and Black populations, the base cases 
respectively find an increase of 1.62% and 1.42% in the unemployment rate of treated counties over control 
counties after the onset of COVID-19. For those counties below the median, when all else equal, the base cases 
respectively find that treated counties experience a lesser unemployment rate increase of 0.69% and 0.95% over 
the control counties after the onset of COVID-19. The difference for counties which have higher percentages of 
Hispanic and Black populations suggest that marginalized groups are indeed more detrimentally impacted by 
COVID-mandated stay-at-home orders, likely due to their systematically lower broadband access; higher levels 
of Hispanic and Black populations sharpen the sensor and lower levels coarsen it.

Figure 3.   This 2 × 2 matrix typology shows where broadband as a social sensor is appropriately sharpened and 
coarsened, as well as prone to error (either false positives or false negatives). Robust standard errors, clustered at 
the state level, are included below each estimate with statistical significance indicated by the stars based off of a 
two-tailed test. The above figure includes regression results for an example of each scenario, but one should note 
here that this is just a representative sample of each case, hence why we document all other variables that fit into 
each cell in a line below these representative samples. The full regressions that underpin these results are in SI 
Appendix I.
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The third group focuses on industrial composition. We first look at industrial composition as demarcated by 
geography and how that should impact the importance of broadband access during COVID-19. Rural and urban 
areas are fundamentally different in their demand and supply for broadband services. The industries which drive 
the economic engines in rural areas (e.g., agriculture) are less dependent on broadband access. Therefore, we 
expect to see less impact on unemployment in rural areas when using broadband access to demarcate treatment 

Table 2.   The difference-in-difference regression estimators for each of the mechanism explorations are 
included in this table, along with the expected result, and a description of what this means for use as a social 
sensor. Here MSFT 2020 indicates setting the treated and control counties based off of the indicated level of 
broadband penetration according to the Microsoft 2020 dataset. Similarly, PL indicates setting the treated and 
control counites based off of access to public libraries in the county. By sharpening, we mean an increase that 
is relatively greater for that sub-group, and by coarsening, we mean an insignificant effect or an effect that is 
relatively smaller for that sub-group. For instance, above median percentage black counties have a relatively 
larger increase than below median percentage black counties, so we argue the former sharpens the sensor, 
while the latter coarsens it. False negative is if the effect is insignificantly different between sub-groups (i.e., 
non-overlapping standard errors when comparing sub-groups above and below median threshold) or acts 
in the opposite direction than expected. False positive is if there is an identified effect that was unexpected. 
Robust standard errors, clustered at the state level, are included below each estimate with statistical significance 
indicated by the stars based off of a two-tailed test. Full regression models and actual p-values for all 
coefficients are reported in SI Appendix I.

Sensor target Theorized behavior as a social sensor

DiD estimator 
for MSFT 2020  
Data (Robust 
Standard Error)

Actual behavior as a social-
sensor

DiD estimator 
for PL 
2020 Data 
(Robust 
Standard 
Error)

Actual behavior as a 
social-sensor

Full dataset 1.34*** (0.16) 1.10*** (0.25) Signal aligns with broadband

Urban Higher unemployment rates as dependent on 
connectivity for local economy 1.12*** (0.15) Sharpens sensor (supported) 0.91** (0.29) Sharpening consistent but 

insignificant

Rural Lower unemployment rates as local economy 
less dependent on connectivity −0.23 (0.34) Coarsens sensor (supported) 0.67* (0.27) Coarsening consistent but 

insignificant

Above median essential 
industry workers

Lower unemployment rates as these jobs contin-
ued on-site during the pandemic 1.04*** (0.18) Coarsens sensor (supported) 1.06* (0.40) Coarsening consistent but 

insignificant

Below median essential 
industry workers

Higher unemployment rates as jobs had to 
continue from home so need connectivity 1.55*** (0.24) Sharpens sensor (supported) 1.26** (0.31) Sharpening consistent but 

insignificant

Above median income Lower unemployment rates as more able to 
afford an improved internet plan 1.55*** (0.22) False negative (coarsening 

unsupported) 1.29*** (0.29) Coarsening unsupported but 
insignificant

Below median income Higher unemployment rates as less able to 
afford an improved internet plan 1.03*** (0.16) False negative (sharpening 

unsupported) 0.90** (0.30) Sharpening unsupported but 
insignificant

Above median percentage 
Black

Higher unemployment rates as populous known 
to have less broadband access 1.42*** (0.20) Sharpens sensor (supported) 1.13** (0.31) Sharpening consistent but 

insignificant

Below median percentage 
Black

Lower unemployment rates as populous known 
to have more broadband access 0.95*** (0.24) Coarsens sensor (supported) 0.99** (0.31) Coarsening consistent but 

insignificant

Above median percentage 
Hispanic

Higher unemployment rates as populous known 
to have less broadband access 1.62*** (0.21) Sharpens sensor (supported) 0.91** (0.29) Sharpening inconsistent but 

insignificant

Below median percentage 
Hispanic

Lower unemployment rates as populous known 
to have more broadband access 0.69** (0.22) Coarsens sensor (supported) 1.16*** (0.28) Coarsening inconsistent but 

insignificant

Above median WFH Lower unemployment rates as these jobs were 
prepared to WFH already 0.96*** (0.22) Coarsens sensor (supported) 0.67** (0.27) Coarsens sensor (Supported)

Below median WFH Higher unemployment rates as more jobs had to 
pivot to WFH 1.29*** (0.20) Sharpens sensor (supported) 1.32*** (0.31) Sharpens sensor (Supported)

Above median percentage of 
tech industry

Higher unemployment rates as high tech-based 
industries depend on connectivity 1.01*** (0.16) Sharpens sensor (supported) 0.80* (0.31) Sharpening consistent but 

insignificant

Below median percentage of 
tech industry

Lower unemployment rates as low tech-based 
industries depend on connectivity 0.45 (0.22) Coarsens sensor (supported) 0.76** (0.27) Coarsening consistent but 

insignificant

Above median number of 
service workers

No difference as service work arguably less 
dependent on broadband 1.17*** (0.17) False positive (coarsening 

unsupported) 0.94* (0.33) Coarsening unsupported but 
insignificant

Below median number of 
service workers

No difference as service work arguably less 
dependent on broadband 0.51* (0.24) False positive (sharpening 

unsupported) 0.76** (0.26) Sharpening unsupported but 
insignificant

Above median number of 
single parents

Higher unemployment rates as single parents 
need to stay with children 1.39*** (0.16) Sharpening consistent but 

insignificant 0.97** (0.33) Sharpening inconsistent but 
insignificant

Below median number of 
single parents

Lower unemployment rates as multiple parents 
allow greater flexibility 1.26*** (0.24) Coarsening consistent but 

insignificant 1.22*** (0.28) Coarsening inconsistent but 
insignificant

Above median number of 
households with children

Higher unemployment rates as need to stay at 
home with kids 1.27*** (0.24) False negative (sharpening 

unsupported) 1.04*** (0.26) Sharpening unsupported but 
insignificant

Below median number of 
households with children

Lower unemployment rates as need to stay at 
home with kids 1.39*** (0.17) False negative (coarsening 

unsupported) 1.15*** (0.28) Coarsening unsupported but 
insignificant
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and control groups. For urban counties and mixed urban/rural counties, when all else is equal, the base case 
finds an increase of 1.12% in the unemployment rate for treated counties over control counties after the onset of 
COVID-19. For solely rural counties, when all else is equal, the base case finds a statistically insignificant impact 
on unemployment after the onset of COVID-19. These findings suggest that the use of broadband as a social sen-
sor is sharpened in urban areas, where the primary economic motors are more influenced by broadband access, 
and the sensor is coarsened in rural areas whose local economies are less dependent on broadband.

In addition to exploring the broad economic sectors associated with urban and rural areas, we also explore 
how work gets done in specific sectors can also impact social sensor sharpening or coarsening. For instance, the 
computational and analytical work in technology sectors likely necessitate greater reliance on broadband, so we 
would expect to see those counties with higher proportions of individuals employed in these sectors impacted 
more than individuals employed in other sectors. For counties with above median number of tech workers, when 
all else is held equal, the base case finds that treated counties experience an increase of 1.01% in unemployment 
over control counties after the onset of COVID-19. For counties below the median, when all else is equal, the 
base case increase in unemployment rate is insignificant for treated counties over control counties after the onset 
of COVID-19. This aligns with our expectations; given broadband is crucial for tech industry work, high-tech 
employment levels sharpen the sensor, while low-tech employment levels coarsen the sensor.

False negatives and positives
So far, broadband operates effectively as a social sensor when what it measures (i.e., broadband access) is pre-
dominantly driving unemployment impacts for the social group of concern. However, as we know from engi-
neering, sensors can start experiencing error when what it measures is conflated with other signals53. What that 
means is while we find alignment with our hypotheses for the subsets we discuss above, broadband will not 
always coarsen and sharpen as a social sensor in anticipated ways if subsets capture multiple conflating signals 
beyond broadband access. In particular, we seek to characterize both type I errors (false positives) and type II 
errors (false negatives).

False positives are those subgroupings that we expected not to affect our social sensor but demonstrate an 
effect. For example, we anticipate no effect on employment for service workers because their reasons for unem-
ployment are due to COVID-induced business closures and arguably not access to broadband (i.e., you cannot 
necessarily deliver food, laundry, or run concierge services purely online). However, we find that for counties 
with above median levels of service workers, when all else is equal, the base case finds an increase in unemploy-
ment rate of 1.17% for treated counties over control counties after the onset of COVID-19. For those counties 
below the median, when all is equal, the base case finds an unemployment rate increase of 0.51% for treated over 
control counties after the onset of COVID-19. While this could mean such services are increasingly moving 
online54, this may also be due to confounding aspects associated with service metrics. For instance, the service 
sector is strongly associated and co-located with high-tech sectors (r = 0.47), which suggests those who work in 
high-tech also increasingly use such services. This suggests collinearity between industry variables that is spuri-
ously picked up by broadband. Therefore in this case, the conflating signal that is leading to error is arguably the 
spatial and sectoral linkages between service sectors that are less broadband-dependent with high-tech sectors 
that are more broadband dependent.

False negatives are those subgroupings that we expected to sharpen (or coarsen) our social sensor but prove 
inconclusive. For example, we would expect that counties which have higher average income would experience a 
less severe impact from stay-at-home orders due to the capability of being able to purchase improved broadband 
speeds. However, we find that in counties with above median average incomes, when all else is equal, treated 
counties experience an increase in unemployment of 1.55% over control counties after the onset of COVID-19. 
Conversely for below median counties, when all else is equal, treated counties experience an increase in unem-
ployment of 1.03% over control counties after the onset of COVID-19. This again is likely due to the fact that 
there are confounding aspects associated with income metrics such as education considerations (population 
with bachelor’s degree or higher—r = 0.49). In this case, the conflating factor is other proximate and interlinked 
sociodemographic characteristics that one must carefully tune and calibrate upon deployment. For instance, 
income may potentially be conflating sociodemographic factors that drive lack of broadband access (i.e., income) 
with those that reflect greater capabilities and skills to put it to good use (i.e., education).

We see similar false negatives with households with children. Here, we posit due to the need for children to 
engage in virtual school due to stay-at-home mandates, these households would likely require the parent to stay 
at home to tend to their children during these times, risking their employment. However, here too we do not find 
this expected impact as there is little difference in the unemployment rate increases in the base cases (households 
with children: 1.27% unemployment rate increase for above median vs. 1.39% for below median). We do see this 
is more consistently the case for counties with above vs. below median levels of single parent households, but 
the differences between the groups overlap, suggesting they are less significant (see Table 2). Again in this case, 
the conflating factor may be linkages to other sociodemographic characteristics. For example and as suggested 
above, perhaps these false negatives are conflating family composition with income, such that a larger family 
may be able to afford child support with children than smaller families. This suggests one interlinkage between 
income and family composition that is difficult to disentangle.

Overall then, social sensors are designed to measure one signal (in our case, access to high-speed internet 
from broadband). Inevitably then, when that signal no longer dominates and/or has other conflating and com-
peting signals, errors are likely to result. Figure 3 presents a 2 × 2 typology that summarizes the results from 
our analysis and presents an indicative heatmap that reflects each cell of the typology. Table 2 reports all DiD 
coefficient estimates from these regressions and provides a synopsis of what we expected versus what we actually 
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find in our analysis. In line with Boundary Condition 1, Fig. 4 shows how the strongest signals are closest to 
those dimensions that most directly measure broadband-based dependent work.

Creating an array of social sensors: additional built environment sensors—a proof‑of‑concept
How then can we help mitigate the errors from a social sensor (in this case broadband)? Perhaps as in engineer-
ing, sensors are more effective when they are arrayed, whereby multiple sensors that read different signals are 
linked together to mitigate weakeness in any one sensor. This reflects practices in the field of engineering to 
understand how sensors are developed and used to measure various parameters. One means for doing this is to 
have a set of redundant measures to ensure accurate readings. We see this in the field of atmospheric science. 
When measuring the temperature of clouds, which is a critical predictor of storm dynamics and cloud forma-
tion, both radiosondes and drone profiling are used to get the most accurate measure possible to include in the 
models55. We argue that this holds true for the use of infrastructure as a social sensor. We can perhaps strengthen 
the sensor by incorporating other, additional sensor measures highlighting the relationship between broadband 
internet and unemployment. Secondly, while there are some applications where a single sensor is enough to 
measure a given parameter, this is not always the case for more complex parameters. For example, one can get an 
accurate reading of temperature by only using a thermometer. However, in order to track an object’s movement, 
a complementary array of sensors may be required, including but not limited to an accelerometer and optical 
tracking capabilities56. In order to understand the complex dynamics of economic metrics during times of crises, 
a full array of infrastructure sensors may more accurately pinpoint counties which are detrimentally impacted.

We start by assessing how a redundant measure of broadband access, WiFi enabled public libraries, may 
work to strengthen the results of our study. Public libraries serve as a “first choice, first refuge, and last resort in 
a range of emergency and e–government circumstances”57, and many people who did not have access to broad-
band in their homes during COVID made use of their local public libraries to help fill the broadband gap58. 
For this redundant public (as opposed to private household) measure check, we created a parallel metric to our 
broadband metric which assessed what percent of a county’s population falls within the “legal service area” of 
a public library, defined as the population that lives within the boundaries of the geographic area the library 
was established to serve. For an additional sensor to be a useful component in an array, there should be some 
orthogonality, which suggests that the additional sensor is providing information that is not being captured in 
the existing sensors used. In this case, there is some correlation between public libraries and broadband access, 
but not perfect correlation, which suggests libraries are providing additional information not captured in our 
core broadband sensor. We find the correlation between the metrics, when in binary form of treated vs control, 
to be 0.2. Using this metric, we classify counties with below 50% of their population in the legal service area of 
a public library (akin to our below 50% penetration of broadband at a county level) as our control group and we 
classify counties with above 50% of their population in the legal service area of a public library as the treatment 
group (akin to our above 50% penetration for broadband). We separately run the same model presented above 
and find that our results directionally hold with the results using broadband access as the sensor, but that the 
signal of the results on average across most of the cases are smaller and less significant on average. We argue this 
suggests that public access to broadband helped reduce gaps seen in private access to broadband. The results 
from this analysis are included in Table 2. Triangulating across multiple sensor signals also not just reduces the 
instance of false positive and false negatives, but also isolates which subset provides the strongest signal for which 
to inform more targeted policy support. In this case, coupling libraries and broadband renders insignificant much 
of the false positives and negatives found in broadband alone, and helps identify occupations most equipped to 
work from home as the subset with the strongest signal for which to target policy support as both broadband and 
libraries detect this effect. Perhaps the reason for this is that public access to broadband is more suitable for less 
data-intensive needs (e.g., email or accessing websites) and less so for more data-intensive needs (e.g., Zoom calls 
and computational analyses) for which many occupations that were yet equipped for WFH may have necessitated.

To further explore the creation of sensor arrays to detect gaps, we also selected two forms of physical infra-
structure which serve to complement the upstream and downstream rollout of broadband—bridges per county 
and new building permits per state (selected based on data availability). We selected these because they capture 
different dimensions as to how the built environment can influence broadband through rollout and point of 

Figure 4.   This figure presents a graphical summary of case consistency. As expected per Boundary Condition 1, 
the social sensor weakens as dimension is increasingly distant from broadband-dependent work.
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access. Building networks are likely where broadband is deployed more downstream and therefore where it is 
accessed. Building networks have a correlation with the broadband access metric of 0.15. Bridge networks impact 
urban connectivity and therefore may influence where broadband is rolled out more upstream. Bridge networks 
have a correlation with broadband of 0.2559. As with libraries, building and bridge networks are adding novel 
information to our core broadband sensor. As a result of this, we would expect that by integrating both sets of 
physical infrastructure into our broadband models, this would help sharpen the (broadband) sensor. Perhaps 
also areas with physical connectivity enhance the expectation of digital connectivity more than areas without 
such connectivity.

As shown in Fig. 5, for counties with above median number of new building permits per state, when all 
else is equal, the base case finds treated counties experience an increase in unemployment rate of 1.35% over 
control counties after the onset of the COVID-19 stay-at-home mandates. This is compared to an increase in 
unemployment rate of 0.94% for counties below the median. For counties with above median number of bridges, 
the increase in unemployment for the base case is 1.35%, compared to the below median subset with a 0.88% 
increase, holding all else qual after the onset of COVID-19. Given the built environment has similar upstream 
and downstream impacts, we then further assessed whether these are complementary or substitutive. These 
effects seem to be complementary as the subset of areas where both bridges and buildings are above the median 
generate the largest delta (1.42%) between the treated and control counties in the base case. One may presume 
that perhaps these impacts are due to multicollinearity and that bridges and buildings are simply collocated 
with each other. This appears to not be the case as the correlation between our binary measures of bridges and 
buildings is near to zero (r = −0.02).

Overall, this suggests linking sensors into “arrays” strengthens the signal, reduces errors, mitigates detec-
tion gaps, and helps identify the most prominent subsets for targeting. In this case, public libraries reduce the 
false positives and negatives from broadband alone, help prioritize which subset yields most promising gaps 
for targeting (i.e., occupations yet equipped for WFH), and identifies more precisely where broadband signals 
weaken. Moreover in incorporating additional built environment features, we can detect influences on these 
broadband gaps based on gaps in rollout (bridges) or gaps in points of access (buildings). Clearly, we can conceive 

Figure 5.   Top: difference-in-difference estimators for the full dataset. Robust standard errors, clustered at the 
state level, are included below each estimate with statistical significance indicated by the stars based off of a two-
tailed test. Under the base case using MSFT 2020 data and a 50% penetration rate as the treatment and control 
groups, in the subset of counties which have above the median number of new building permits per county, all 
else equal and after the shock of the stay-at-home mandates, experience an increase in unemployment of 1.35%. 
This is compared to an increase in unemployment of 0.94% when the subset has a below median number of new 
buildings. We see that in the subset with above median number of bridges, the increase in unemployment for 
the base case is 1.35%, compared to the below median number of bridge subset with 0.88% increase. Bottom: 
based off the findings in the top figure, we investigate further the compounding effect of infrastructure and 
find that in counties with above median density of bridges and new houses, the impact on unemployment is 
further exacerbated, suggesting that infrastructure services may be integrated with the provision of broadband. 
The parallel trends between the control (below adequate access to broadband at a county level) and treatment 
(above adequate access to broadband on average at a county level) for both number of buildings (upper row) 
and number of bridges (bottom row) can be found in Appendix G. Parallel trends hold prior to the shock of the 
COVID-19 pandemic. The full regressions that underpin these results are in SI Appendix I.
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many other different sensors for such an array, so we see this as demonstrating a proof-of-concept for future 
work to explore more systematically other sensor arrays and outcomes, even beyond those centrally focused on 
broadband and unemployment. Overall in line with Boundary Condition 2, using multiple sensors in an array 
improves targeting to the most key variables (i.e., occupations not yet equipped for WFH) and to the most key 
locations (i.e., those with both upstream rollout and downstream access infrastructure).

Discussion
Our study explores the possibility of using gaps in infrastructure as a “social sensor” to help us more introspec-
tively target policy and investment towards areas whose resilience is especially fragile to disruptions and other 
exogenous events. We develop an “infrastructure-as-sensor” approach by analyzing the impacts that broadband 
access has on unemployment in the United States during the stay-at-home mandates implemented during the 
COVID-19 pandemic. The result is a 2 × 2 typology that explains what factors sharpen the sensor, coarsen it, and 
render it prone to error (both false positives and negatives). We further supplement this work by demonstrating 
how errors and gaps in the sensor can be addressed through creating a sensor “array” that couples broadband 
with other infrastructural measurements of access (i.e., libraries) as well as with other factors that may influence 
upstream rollout (i.e., bridges), or downstream points of access (i.e., buildings).

Besides the main objective of providing support more quickly to communities susceptible to disruption, 
we see several contributions resulting from this work. First, the infrastructure-as-sensor approach can poten-
tially better address structural factors that hinder promising human-as-sensor interventions. Prior work from 
a human-as-sensors approach show how enhanced granularity can be achieved, but focuses less on how to best 
target the deployment of such approaches in lieu of their large computational costs27,28. An infrastructure-as-
sensor approach can help identify the most promising subsets for targeting, and then focusing a human-as-
sensors approach on these subsets can help maximize the approach’s benefits while mitigating its costs. Simply 
put, an infrastructure-as-sensor approach can help detect the most promising areas for which a human-as-sensor 
approach can bring greater granularity and value. More specifically, prior human-based social sensing approaches 
focus more on different individual interpretations of the surrounding social world60. Our infrastructure-based 
social sensing approach pioneered here focuses more on how infrastructure influences what comes to be avail-
able in one’s social world well before interpretations are made.

Second, we demonstrate the value of not just using one sensor, but a sensor array. Prior work on social sen-
sors focuses primarily on the value of using one specific sensor but very little work looks at the interdependencies 
and interplay across sensors. Sensors for engineering applications are often designed to measure one signal61. 
However, sensors in social applications are often more complex whereby multiple social signals are interdepend-
ent and so measuring one may not always be sufficient to adequately characterize key behaviors and activities. 
Moreover, intertwined social signals may muddy the ability to measure any one signal that a sensor is intending 
to measure. As a practical example, consider the ambitions around smart city initiatives. The vision for smart 
cities is to integrate several data layers in real-time so cities can “self-diagnose” problems62. This requires com-
bining different infrastructure data, each equipped to best measure different social activity. Moreover, each of 
these data have differing assumptions and biases as to what data most matters that could perpetuate when such 
approaches are scaled to a city level. One particular issue is that the algorithms used in such approaches are likely 
trained on data that are not necessarily representative24. In taking our infrastructure-as-sensor approach and, 
more importantly, using multiple sensors in an array, we see our work helping to address these issues in several 
ways. For instance, we find integrating social sensors in an array helps better sharpen and detect gaps and skews 
present in any one sensor alone. Perhaps then, these arrays could be used to penalize overfit in smart city plan-
ning models to observed priors when such gaps and skews are found increasingly present. This could be done 
through weighting residuals by the number of social sensors in the array present at a given location. We also find 
integrating sensors in an array helps further triangulate which subsets are more promising for more granular 
analysis (such as with a humans-as-sensor approach previously discussed). This can better ensure models are 
less reliant on proxies of access (such as spatial measures) that obscure and mask important gaps and skews that 
have significant equity implications.

Third, we highlight that our approach provides a novel method for using publicly available data to assess 
existing community vulnerabilities to infrastructure service gaps, which contrasts with existing approaches that 
rely on extensive computing power and large-scale proprietary data. Currently, much of the work in this space is 
focused either on how to use human online presence and commentary to gain insight into physical world events30 
or how to use data collected about humans to understand how they interact with their physical environment, 
for example through the use of smart-wearables31 or by assessing point clouds which outline the coarse body 
shape of people in order to understand actions 32. All these approaches require the collection of large-scale sets 
of private data. Our approach uses infrastructure data that is publicly available and so further increases data 
access ease and speed. Given its basis is public data, such an approach is also arguably more scalable in ways that 
are more sensitive to privacy concerns.

Moreover, we use urban studies and sociological thinking to guide sensor choices. Prior literature pro-
vides more guidance on evaluation of infrastructure deployment5,21,25, but less guidance on how to inform sen-
sor choices (i.e., what a given infrastructure of interest can or cannot best detect). With such methodological 
advancements, government agencies can use the insight from such analyses to assess more quickly who in the 
future may most immediately need broadband support before the next pandemic occurs. To explain how that 
could occur using this work, we provide a demonstration case (Fig. 6) for which we highlight two sets of repre-
sentative counties. We selected counties housed in similar moderately sized cities throughout the United States 
and focused only on treated counties in order to understand where gaps of in-access occur. We see that in both 
Orange County, CA and Sedgwick County, KS, the two treated counties which have a higher percent change in 
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unemployment, there is more concentrated in-access of broadband at the census-tract level (i.e., fewer areas of 
lighter green shading). On the other hand, Nueces County, TX and St. Joaquin County, CA, which had increases 
in unemployment but not as much as Orange and Sedgwick Counties, have more distributed areas of in-access 
(i.e., larger areas of lighter green shading), making lack of broadband access in these areas arguably more observ-
able to employers. This tracks with our key findings and mechanism around a halo effect (i.e., employees more 
likely to wrongly assume all have broadband to continue to work as lack of access becomes more concentrated). In 
response to this, our sensor would prescribe that federal support, such as vouchers or other forms of emergency 
support, be concentrated in these few low-access census tracts in high access counties to achieve the greatest 
unemployment impacts. Furthermore, once such isolated tracts have been identified, we would argue that the 
practice of using humans-as-sensors approaches can be more effectively implemented in order to understand 
the micro-level impacts of such access. Our argument is that the humans-as-sensor approach has shown the 

Figure 6.   Top: Counties in the United States, presented in terciles of percent change in unemployment for 
the 6 months leading up to the COVID shock and for the 6 months following the COVID shock. Counties are 
colored according to being in the treatment (shades of orange = more than 50% of the population in the county 
has access to 25 mbps download speed, according to MSFT) or control (shades of blue = less than 50% of the 
population in the county has access to 25 mbps download speed, according to MSFT) groups. The darker the 
color, the higher the change in unemployment was from pre-COVID to post-COVID. Bottom: A highlight 
of treated counties which showcase how access is more clustered for treated counties with higher average 
unemployment. We see that in Orange and Sedgwick counties, the lack of broadband access is heavily clustered 
whereas in Nueces and St Joaquin County, the broadband access is more distributed. Maps created by Ritsch, 
N. Percent change in unemployment, by control and treated counties, featuring highlighted hot-spot counties 
[map]. Using: ArcGIS Pro [GIS software]. Version 2.6.
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possibility and benefits of granularity but there is no systematic analysis of where such granular techniques can 
realize the greatest benefits. Our infrastructure-as-sensors approach helps provide a framework for where these 
granular, though more computationally and even labor-intensive approaches, are most suitable for enhancing 
equity. The findings from this work could be directly incorporated into decision response frameworks as a less 
computational-intense indicator for what areas might have underlying vulnerabilities, especially in instances 
where response speed is critical as is the case with a pandemic.

Finally, this approach entirely rethinks the fundamental incorporation of infrastructure in social and eco-
nomic based studies. We can no longer consider infrastructure as an exogenous input that is equally accessible 
by all (as much of the existing analysis considers). Rather infrastructure is an endogenous input that is asym-
metrically distributed and whose interdependencies matter. As such, we cannot take infrastructure for-granted 
as an equally accessible input that all can use to create value.

Overall, we hope this study motivates future work to advance the agenda that we propose around using infra-
structure as a social sensor to better detect inequity and bias. If we take seriously the numerous retrospective 
studies that note infrastructure is more a measure of bias than equity, then we can more introspectively use such 
networks to detect harm in the moment, rather than ponder “what if ” as structural inequalities continue to ossify.

Methods
The primary methodological approach used here is difference-in-differences (DiD) regression modeling. Several 
critical assumptions underpin DiD models. The first assumption states that the treatment and control groups 
behave similarly pre-shock and that there is not an unobserved factor sorting the groups which would violate 
strict exogeneity, an extension of Gauss-Markov’s zero-conditional mean of the error assumption63. A key way to 
assess this assumption is to analyze if the trends between the control and treatment groups track similarly prior 
to the onset of the treatment, commonly called the parallel trend assumption64. In this case, this means treatment 
and control group trends, as defined by broadband penetration levels, should track similarly prior to the onset 
of the COVID-19 stay-at-home mandate shock. To verify this, we present a parallel trends plot, which provides 
a visual check on the zero condition mean of the errors assumption required for the DiD analysis, for the main 
analysis in Fig. 1 and present the rest of the parallel trends plots throughout the SI to further demonstrate that 
these trend assumptions are qualitatively supported. In addition to these plots, we also create an event-study plot 
which shows how the difference in percent change between each group, when zeroed to the shock year, is close 
to zero in the pre-trend years and grows after the shock occurs. This can be found in Fig. 7. Furthermore, we 
find that the basic assumptions required to run a DiD regression model, such as the data is randomly sampled 
from the population and that the variables are normally distributed, are upheld and these checks can be found 
in SI Appendix F. We also conduct a generalized synthetic controls approach and separately a Bayesian causal 
Inference approach to further assess and verify whether the parallel trends assumption holds true (see Appendix 
H for more details). We also need to make assumptions about broadband treatment consistency over time. To 
ensure this penetration holds, we vary treatment based on different broadband penetration rate thresholds and 
even on different measures of broadband that appear throughout the paper and SI. We also run a robustness 

Figure 7.   The graph presented in the top of this figure shows an event study plot that looks at the eight months 
prior to COVID-19 and the eight months post COVID-19. Prior to COVID, unemployment rate differences 
between the treated and control units are largely not different from zero. However, after the COVID pandemic 
we see differences between the treated and control units are increasingly and significantly different from zero.
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check on the counties that remain in either treated or control categories over the years of 2019 and 2020, the 
results of which are consistent and robust (found in SI Appendix G).

Data
Resolution of data
This analysis is run at a county-level spatial and monthly time resolution. As of the 2020 U.S. census, there are 
3143 counites65. We use the complete dataset where there is data available across all dependent and independent 
variables. We drop data for 8 counties due to lack of unemployment data (02063—Chugach Census Area(AK), 
02066—Copper River Census Area (AK), 15005—Kalawao County (HI)), lack of demographic data (02195—
Petersburg Census Area, (AK), 22059—La Salle Parish (LA), 35013—Dona Ana County (NM)), and lack of 
education data (02158—Kusilvak Census Area (AK), 46102—Oglala Lakota County (SD)). Where there is miss-
ing data across the splits, these counties are removed only for that analysis, as is represented in the observation 
counts presented in the regression tables in Appendix I.

Dependent variable: unemployment
This work focuses on unemployment rates as the dependent variable. As used in numerous prior other studies33,35, 
data from the Local Area Unemployment Statistics (LAUS) Dataset, published by Bureau of Labor Statistics (BLS), 
is used to construct the dependent variable. Specifically, we use the LAUS’ unemployment rate data, which is 
measured as the ratio of unemployed people to the total civilian labor force, in a percentage form66. We download 
the data directly from the BLS user interface, at a monthly and county-based resolution. We then combine this 
data with the finalized list of counties as defined in the 2020 census. For the main models, we use the unemploy-
ment rate as a percent. Due to potential concerns of non-normality (see SI Appendix F), we also re-run this 
analysis using log of unemployment rate, and the results were even stronger and more robust (see SI Appendix F).

Independent variable: broadband and COVID‑19
The first measure of broadband we consider is the speed threshold measures. For the purposes of our work, there 
are three primary datasets which aim to measure speed thresholds. The Microsoft dataset counts the number of 
devices that have connected to the internet at broadband speed per each zip code67, while Ookla68 and M-Lab69 
use individually conducted speed tests to assess median internet speed at a census-tract and county level respec-
tively. MSFT data is used as the base case in this paper as it is the only dataset which measures speed thresholds 
for broadband quality systematically, without reliance on the user initiating the speed test (as is required by Ookla 
and M-Lab). However, the MSFT data only assesses devices using MSFT tools and Ookla and M-Lab are user 
defined. The MSFT data is pulled directly from Microsoft’s Github account for both 2019 and 202070, while the 
Ookla and M-Lab data are sourced from the Indicators of Broadband Need Map in 202071, a tool managed by the 
United States Department of Commerce and National Telecommunications and Information Administration. 
One should note that the MSFT dataset does have limitations in that the speed tests are only conducted anytime 
a user connects to a MSFT application, which in turn does not capture a full measure of servers being used72. 
Moreover, we choose to ground our interpretations at a 50% penetration rate because this aligns with prior work 
in this area which argues that in order to achieve adequate economic impact, digital infrastructure must reach 
at least 50% of the population73. When we refer to “base case” throughout the study, we are referring to this case 
(MSFT 2020 data with treatment being those counties as on or above 50% penetration rate and control being 
those counties with less than a 50% penetration rate). The results remain largely consistent across the various 
datasets and penetration rates and are presented for transparency.

The second measures broadband advertised availability. The most widely used dataset is published by FCC 
under the Form 477 which is available at census-block on a 6-month basis or county annually. Federal reporting 
mandates require that companies self-report their maximum advertised broadband level at every census tract. 
This is then assumed to be the level of access at that census tract. While this data is audited by a third party, the 
self-reported nature of this data is cause for concern74. Further, the dataset is predicated on the highest level 
of advertised broadband in a census tract, rather than being a measure of what speeds are actually measured. 
While this data is primarily available at the census-tract level, the FCC aggregates the data to county level on an 
annual basis. In order to keep our dataset comparable to other analyses run with both FCC and MSFT data, we 
use the measures of FCC data already included with the MSFT base data70. One should note that the FCC data 
is the only dataset which separates out mobile data. While this is not ideal for comparability across the datasets, 
we feel that the results are still indicative of general directionality.

The third and final measure of broadband internet assess adoption. The U.S. Census incorporates a question 
into the 5-year American Community Survey (ACS) which asks if a household has access to internet (which is 
divided out into broadband access, dial-up access and subscription access). This data does not assess the quality 
(primarily measured in speed) nor reliability (how often is the speed reported) of the internet connection. This 
data is available at census-tract level on an annual basis, although the data is not comparable over adjacent years 
due to ACS’s methodological data development75. This data was obtained from the Indicators of Broadband 
Need database71.

The average number of people with access to adequate levels of broadband, at a county level, are used to define 
the treatment and control groups for our DiD analysis. As we noted in the main body of the manuscript, adequate 
access to broadband is defined as 25 Mbps download and 3 Mbps upload. Though we use a 50% penetration rate 
for our base case, we vary the threshold for penetration rates (from above 25% to above 75%) to ensure greater 
robustness in our findings. Moreover, we further ran a robustness where we only keep those counties that are 
consistently in the treatment (or consistently in the control) between MSFT 2019 and MSFT 2020 data to ensure 
our treatment is consistent and robust in its findings (these results are in the SI Appendix G).
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The COVID-19 shock was measured as the month in which a majority of the stay-at-home orders were put 
in place in response, which was March 2020 (1-on or after March 2020; 0-before). We run a sensitivity analysis, 
as is discussed in Appendix G, on shifting the shock month from March to April, and we find that the results are 
robust. We further ran a placebo regression where we shifted the shock month to either 6 months prior (Sep-
tember 2019) or 6 months after the start of COVID (August 2020), and found the results no longer hold. Thus, 
the results seems due to COVID and not some other secular trends.

Moderating variables
To assess sensor sharpening and coarsening as well as where broadband as a social sensor is prone to error, we 
use several moderating variables to subset the data. Regarding regulatory factors, we measured the number of 
essential industrial workers at the state level using the federal government’s definition of Essential Workers76.

Regarding marginalization factors, we used data from the 2019 ACS and 2020 Decadal Census which we 
pulled via the Census API interface in R, tidycensus77. We calculate the percent of Black/African American popu-
lation by dividing the total population who is Black (B02001_003E in ACS 2019 and P1_004N in Decadal Census) 
by the total population (B01003_001E in ACS 2019 and P1_001N in Decadal Census). We calculate a similar 
metric for the percent of the population who is Latino/Hispanic by dividing the total population who is Latino/
Hispanic (B03002_012E in ACS 2019 and P2_002Nin Decadal Census) by the total population (B01003_001E in 
ACS 2019 and P1_001N in Decadal Census). We pull the average household income directly from the ACS 2019 
data (B19013_001E). We calculate the number of single parent households by summing the number of single 
fathers (B11005_006) with the number of single mothers (B11005_007), divided by total number of households 
(B11005_001) in ACS 2019. Similarly, we calculate the percentage of households with children under the age of 18 
by dividing the number of households with children under 18 (B11003_001) by the total number of households 
(B11005_001). For industry factors, we consider both geographic and industry composition.

Regarding geography, the NCHS’s Urban-Rural Classification scheme for counties takes into consideration 
the population density at a county level and ranks the county as being solely urban, a mix of rural and urban, 
or only rural78. The analysis is run using subsets that separate out solely urban counties and mixed rural/urban 
counties from solely rural counties. This is done to capture the effect occurring in rural counties.

Regarding industry, we separate out the counties with above median numbers of employees working in “High 
Tech Fields” as defined by the National Science Foundation in their Science and Engineering Indicators79 and 
collect the data by county from the Bureau of Labor Statistics. We also measure the number of service sector 
workers in a county. Here, we define the service sector using NAICS Sector codes80 Retail Sales (44–45) and 
Accommodation and Food Services (72). We collect this data directly from the Bureau of Labor Statistics (BLS) 
Quarterly Workforce Indicators (QWI) database. We also separate out counties with above and below median 
numbers of employees that work in occupations which most likely can be done from home, and therefore already 
arguably have adequate broadband access. Here, we used the definition provided by Dingel and Neiman and 
focused on the industry they identified as having the highest share of jobs that can be done completely from 
home, Educational Services51. This analysis assesses the potential for conducting all work-related tasks from 
home, which implicitly assumes adequate broadband coverage. We collect this data again directly from BLS 
QWI database using NAICS Sector code 61.

Regarding additional built environment factors for creating the sensor arrays, we select three key supple-
mental infrastructure systems. To assess the interaction between bridges and broadband, we look at counties 
with above and below median number of bridges per county using data pulled directly from the National Bridge 
Inventory for 2020. For buildings, we look at the number of new building permits per state according to the 
US Census Bureau81. This is the only publicly available data we could find on building density. To assess wifi-
enabled libraries, we use data from the Public Library Survey, available from the Institute of Museum and Library 
Services82. From the total 9245 public libraries included in the initial sample, we only kept those that had either 
"External Wifi Access Before COVID-19" or "External Wifi Access Added During COVID-19" and that did not 
have their legal service area data suppressed. This reduced the total sample to 7626. We summarized by county 
the unduplicated legal service area which provides an estimate of the number of people each library serves with 
any potential duplicate people removed. We then replicate the broadband metrics by taking the total number of 
people with "access" to a public library (i.e., are within the legal service area) and divide that by the total county 
population to get our percent library access for the county.

Controls
We controlled for key demographic factors obtainable through the U.S. Census and known to affect the role of 
broadband on employment. In particular, we control for education levels, ethnicity and population density in 
order to control for differences between counties, as is done in prior work37,41. We include education as a regres-
sor because by increasing the broadband coverage in an area, it is likely that individuals who have previously not 
been able to access other forms of online education, may be able to access additional education, which would in 
turn result in greater likelihood of future employment. Education may also influence one’s digital literacy to use 
broadband connectivity for such productive purposes83. We capture the baseline of educational attainment as 
the number of people over the age of 25 with a Bachelors’ degree and the percentage change in the population 
over 25 which holds a Bachelors’ degree. We also include aspects of demographics as control metrics, such as the 
number of people who are Black and Hispanic in each county as demographics can reflect structural barriers or 
enablers to employment, irrespective of broadband access. These controls are included in all regressions which 
are run. These datasets are also used, in part, for the splits run on race. We also include population density as a 
way of controlling for larger cities and urban areas likely receiving “treatment” of broadband access earlier. We 
also included year and state fixed effects. For added robustness, we also ran models that included a wider range 
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of controls that include more granular employment levels across several prominent sectors, COVID case loads, 
amongst other covariates found in prior work 84. These models with such additional controls led to similar and 
robust results (see Appendix G in the SI).

Statistical methods
As we noted previously, we employ a DiD approach for this analysis as it allows the investigation to be struc-
tured into a quasi-experimental framework. In this approach, measurements of employment for both control 
and treatment groups before and after the “shock” of COVID are used as the dependent variables. While varied 
and assessed in the robustness check for correctness, the baseline analysis establish the control group as any 
county that has below the industry standard of 25 Mbps download and 3 Mbps upload speed85 for 50% of the 
population. The treatment group then include any county with above adequate levels broadband speed for 50% 
of the population. DiD allows us to compare the change in the treatment group after the impact of the shock 
(COVID in our scenario) to a comparable control group in order to understand how the treatment (in this case 
broadband access) impacts the dependent variables of interest. In essence, this design allows us to compare 
treatment group counties to highly comparable counterfactual controls to understand what impact broadband 
access has on unemployment.

Based off of this, the base regression model is presented in Eq. (1):

Unemployment Rate is the average monthly unemployment rate for county i at month t. Broadband is a 
binary variable, reflecting if the county is above or below the threshold for adequate access to broadband at the 
given penetration rate. DiD approaches assume treatment and control groups remain constant throughout the 
analysis, so this should only vary by county i and not by month t. As stated earlier, this is checked and confirmed 
in Appendix G. COVID is a binary variable for when COVID began (0—July 2019 through February 2020; 
1—March 2020 through December 2020). This impacts all counties, irrespective if they are in the treatment or 
not, so this impacts month t and not county i. The DiD indicator is the coefficient of the interaction between 
Broadband × COVID. The remaining terms are county-level controls, which vary over space. These variables do 
not vary by time due to the availability of data of the timeframe analyzed. Therefore, the pre-pandemic (2019) 
levels for the controls were included to ensure that the pre-pandemic levels are what drove the results and not 
any post-movements. ε is the error term. Given the policies were initiated at the state level (see SI Appendix B for 
complete list of state policies), the error term is clustered at the state level to reflect that policy reality. Moreover 
when running additional robustness checks, we ran a well-known variant of this DiD model that only includes 
the DiD estimator (Broadband × COVID) and fixed effects for time (month) and unit (state), known as a two-way 
fixed effect DiD model86, and find similar results. These results are available in Appendix G.

In addition to checking different scenarios for robustness, we also conduct a check on the parallel trends 
assumption. Figure 7 shows an event-study plot depicting the percent change between the treatment and control 
groups for the base case in the 8 time periods leading up to the introduction of the shock and for the 8 time 
periods after the introduction of the shock. We see that the trend leading up to the start of COVID show that the 
differences between the control and treatment group are not statistically different from zero and that following 
the start of COVID, we see that the percentage change in each group after COVID is statistically different from 
zero. This further demonstrates that the parallel trends assumption is upheld for this analysis.

Robustness checks
In order to further perturb these results, we also conduct a range of robustness checks to ensure that the results 
are robust across a variety of different theoretical arguments. We summarize these 8 key checks below for added 
clarity and point to where the specific results can be found in the SI information:

1.	 Inclusion of fixed effects at the state and monthly level (SI Appendix G, Table G1)
2.	 Additional explanatory controls for industry employment (SI Appendix, , Table G2). This emulates work 

done by Isley and Low which includes controls for the percentage of the population employed in NAICS 
2-digit industries84.

3.	 Controlling for COVID case load (SI Appendix, , Table G3)
4.	 Use of the various outlined datasets of broadband access at a county level. This check has been integrated 

throughout the analysis given how fundamental the critiques are across the different datasets and given 
the discussion around what each dataset is measuring include a range of other metrics which could create 
confounding effects.

5.	 Parametrizing what percentage of the population has access to 25 Mbps download and 3 Mbps of upload 
speed. This check is also incorporated throughout the paper.

6.	 Assessing consistency of control and treated groups over time (SI Appendix, Table G4)
7.	 Perturbing when COVID-19 occurred. This includes adjusting the implementation of the shock from March 

to April of 2020 to show the results are directionally and statistically consistent (SI Appendix, Table G5). 
This check also included running falsification tests to demonstrate how shifting the shock to a different 
month (either September 2019 or August 2020) greatly reduces the effects to confirm the findings are due 
to COVID-19 rather than some other secular trend (SI Appendix, Table G6 and G7)

8.	 Running the regressions using Ookla and Mlab data (SI Appendix G8).

(1)
UnemploymentRatei,t = β0 + β1(Broadband)i + β2(COVID)t + β3(Broadband × COVID)i,t + βk(Controls)i,t + εi,t
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We find that the results of all these robustness checks are directionally consistent and statistically robust to 
our base case findings.

Supplementary analysis
We also ran several supplementary analyses to gauge robustness beyond our core DiD framework. We run a 
generalized synthetic controls approach46 as well as a Bayesian approach87 that aligns with our study’s panel 
data to ensure even tighter treatment counterfactuals. We use these techniques, as opposed to others such as 
Coarsened Exact Matching (CEM), as they are more appropriate to deploy both within a DiD framework and 
with panel data88. The results from the generalized synthetic control and Bayesian approaches are both robust 
and consistent with the results found in the main paper. A more detailed explanation of these methods can be 
found in the SI Appendix H, and we summarize the results of these robustness checks in Table 3.

Boundary conditions: COVID case load
Another key assumption is that DiD also assumes no simultaneity (i.e., no other change that occurred at the 
same time that could plausibly change the results). While we cannot think of any other shock that would have 
occurred at the same time as COVID, we want to consider what impact COVID itself had. For instance, the 
Emergency Broadband Benefit program provided households with a supplemental income of $50/month to 
help pay for increased broadband access 89. Perhaps then, COVID-19 infection rates could drive how many take 
advantage of such a program. To probe into this, we separately did a placebo where we defined the treatment 
and control groups based on above and below median average COVID-19 cases for July 2020 (a representative 
month for the time frame we considered90). While we found some significance for these models, these effects 
greatly diminish once we incorporate the full set of controls (these results can be found in SI Appendix G9–G12). 
Moreover, they do not explain the same level of variation by industry as do the models where the treatment 
and control groups are based on broadband penetration (see Appendix G13 for these industry-specific results). 
Thus, we see this as evidence of the distinct role that broadband plays on unemployment beyond those impacts 
from increased COVID-19 infection rates. Nonetheless, COVID-19 case load naturally may still play a role in 
influencing how broadband impacts unemployment amidst the pandemic and hence we note it is an important 
boundary condition.

Data availability
All data used in this study is open-source, publicly available data. Some of the data is sourced through various 
APIs provided in the code above. When the data was pulled directly from an online repository, the downloaded 
file and relevant URL are also available at https://​github.​com/​nikki​ritsch/​broad​band_​socia​lsens​or.​git.

Code availability
The code used to run these difference-in-difference regression models is available online at https://​github.​com/​
nikki​ritsch/​broad​band_​socia​lsens​or.​git.

Table 3.   For all methods, the treated units were those whose populations have above 50% access to 
broadband. Robust standard errors, clustered at the state level, are included below each estimate with statistical 
significance indicated by the stars based off of a two-tailed test. Method (1) uses a standard difference in 
difference regression approach, using the lm_robust regression package91, only including the variables of 
treatment and shock and we see the results are highly similar to our main results. Method (2) uses a standard 
difference in difference regression approach, again using the lm_robust regression package, including all 
proposed control variables used throughout the study. Method (3) uses the generalized synthetic control 
approach proposed by Xu46, as executed by the gsynth algorithm92. This approach relaxes the assumptions 
required for difference in difference analysis as they pertain to parallel trend assumptions, while combining the 
synthetic control approach with linear fixed effects. Method (4) uses a Bayesian approach proposed by Pang 
et al., as executed by their bpCausal algorithm87, in order to conduct a method that can integrate time-invariant 
covariates that the generalized synthetic approach cannot accommodate. This Bayesian approach is initialized 
through diffuse priors that come from a mixed normal-exponential distribution with a tuning parameter that 
seeks to balance between model variance and bias using values recommended from prior literature93.

(1) (2) (3) (4)

DiD DiD Gsynth bpCausal

Treated w/broadband × COVID shock 1.36*** (0.17) 1.34*** (0.16) 3.47*** (0.63) 2.26*** (0.16)

Growth rate of 25 + with BS degrees +  −0.34 (0.25) 0.09*** (0.02)

Percent of population 25 + with a BS degree +  1.00** (2.10) -0.33*** (0.02)

Log of population density 0.50*** (0.09) 0.08*** (0.03)

Percent of population Black 2.24 (1.35) 0.35*** (0.02)

Percent of population Hispanic 0.54 (0.81) 0.19*** (0.02)

Percent of population Asian 1.70 (2.9) 0.02 (0.02)

Percent of population native American 4.71* (1.49) 0.32*** (0.02)

No. obs 49,984 49,984 49,984 49,984

https://github.com/nikkiritsch/broadband_socialsensor.git
https://github.com/nikkiritsch/broadband_socialsensor.git
https://github.com/nikkiritsch/broadband_socialsensor.git
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