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In several regions across the globe, snow has a significant impact on hydrology. The amounts of water 
that infiltrate the ground and flow as runoff are driven by the melting of snow. Therefore, it is crucial 
to study the magnitude and effect of snowmelt. Snow droughts, resulting from reduced snow storage, 
can drastically impact the water supplies in basins where snow predominates, such as in the western 
United States. Hence, it is important to detect the time and severity of snow droughts efficiently. We 
propose the Snow Drought Response Index or SnoDRI, a novel indicator that could be used to identify 
and quantify snow drought occurrences. Our index is calculated using cutting‑edge ML algorithms 
from various snow‑related variables. The self‑supervised learning of an autoencoder is combined with 
mutual information in the model. In this study, we use Random Forests for feature extraction for 
SnoDRI and assess the importance of each variable. We use reanalysis data (NLDAS‑2) from 1981 to 
2021 for the Pacific United States to study the efficacy of the new snow drought index. We evaluate 
the index by confirming the coincidence of its interpretation and the actual snow drought incidents.

In many regions worldwide, snow has a vital contribution to drought  occurrence1, evident from the role of snow 
in regional and global water resources and  climate2–4. Recently, it has led to a broad discussion on the association 
between droughts and snow, along with the emergence of several studies focusing on “snow drought,” indicative 
of lower-than-normal snow  conditions1,5–9. However, a consistent way of characterizing snow droughts is missing 
in these past studies, resulting in the absence of a solid framework to detect snow droughts.

Different authors defined snow droughts differently, making the analysis of these droughts conditioned upon 
and potentially sensitive to the definitions. For example, a recent study assessing the global snow drought hotspots 
and characteristics considered a snow drought event as a deficit of snow water equivalent (SWE)1. Another study 
argued that defining snow droughts just in terms of SWE might not be sufficient, and it referred to snow drought 
as a combination of general droughts and shortages in snow storage, reflecting both the lack of winter precipita-
tion and  SWE5. Subsequently, Hatchett & McEvoy (2018) defined different types of snow droughts based on the 
origination, persistence, and termination of below-normal snow accumulations. Later, several studies expressed 
snow droughts in terms of threshold percentiles, which is essentially  subjective8,10. Some of these studies used 
the median SWE (of the cooler months in the entire time period) to identify snow droughts, whereas others used 
maximum  SWE8,10. Although we need an index to study and predict snow droughts, the lack of coherence in the 
characterization of snow droughts potentially questions the reliability of a snow drought index based on strict 
definitions. Therefore, we need a framework to calculate a snow drought index independent of such definitions, 
which, at the same time, can also capture the signals of a snow drought, considering factors connected to snow 
accumulation and ablation.

To date, only a limited number of studies have been conducted on snow drought indices. The recently devel-
oped Standardized Snow Water Equivalent Index (SWEI) is obtained through the inverse standard normal 
distribution of probabilities associated with SWE integrated over three  months1. Keyantash and  Dracup11 devel-
oped the aggregated drought index (ADI) based on rainfall, evapotranspiration, streamflow, reservoir storage, 
soil moisture, and snow water content variables. Here, a principal component analysis (PCA) was employed to 
reduce the dimensionality and explain the key variabilities represented by the selected variables. Staudinger et al.12 
developed an extension to the Standardized Precipitation Index (SPI) named Standardized Snow Melt and Rain 
Index (SMRI), where they used the sum of rainfall and snowmelt variables instead of precipitation.  Qiu13 modi-
fied the standard Palmer Drought Severity Index (PDSI; Palmer,  196514) by including degree day factor (DDF), 
an empirical threshold temperature-based snowmelt model, to account for snow processes. This modification 
improved the drought monitoring capabilities in several snow-dominated  regions13,15. However, these indices 
often depend upon in-situ observations, which might not be readily available in many regions, and the problem 
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is exacerbated in ungauged or sparsely gauged regions. This calls for an index that can leverage remote sensing 
datasets and bypass the need for extensive in-situ observation networks.

Merging and extracting necessary information on snow droughts from a wide range of variables present in 
remote sensing datasets can be challenging since not all variables are equally related to the formation of snow 
droughts. However, we need to identify important variables so that they can be merged to form one single 
index. Machine learning (ML)-based feature selection algorithms are promising in this regard since they can 
filter our variables based on their  importance16–19. Thus, we can use ML techniques to infer the influence of 
hydroclimatic variables on snow droughts. Apart from this, information theory-based methods can manifest 
the relative influence of variables and their causal  connections20–22. Mutual Information (MI), a measure of how 
much information about one random variable is contained in another random variable, has been widely applied 
in feature selection  problems23,24.

In this study, we introduce a new snow drought index, the Snow Drought Response Index (SnoDRI), and 
a novel drought index estimation approach using a combination of ML techniques and MI. Our framework 
is advantageous for multiple reasons: (1) our index is not based on any specific variable, instead, it aggregates 
information from multiple variables, (2) we do not require any in-situ observations, thus enabling snow drought 
detection in ungauged basins, (3) our framework is explainable, i.e., it can provide insights into crucial features 
impacting the occurrence of snow drought. Our results show that SnoDRI could successfully detect the signals 
of a historical snow drought event.

Methods
Study area
The Western United States is characterized as a snow drought hot spot where snow drought becomes wide-
spread, intensified, and  prolonged1. Snow plays a significant role in the hydrology of the Western United States. 
The maximum annual SWE accumulation in the region is 1176 mm (elevation 2835 m) at Mammoth Pass, 
 California25. During spring or early summer, discharge in the high-elevation watersheds that drain through 
mountains contains a substantial amount of water as a result of warming snowpacks and  snowmelt26,27. Recent 
events have shown that the water resources and management in this region are hugely influenced by snow 
 droughts5. Therefore, this study focuses on three states (Pacific Coast States) in the western USA: Washington, 
California, and Oregon (Fig. 1). The highest elevation of this region ranged from 1,547 m in California to 520 m 
in Washington State. As a result of significant fluctuation in the elevation, the orographic precipitation and the 
variability in average annual maximum snow water accumulation are considerable.

To validate our results, we select a mountainous area situated in the upper Tuolumne River basin of the Sierra 
 Nevada28. About 60% of water in Southern California is received from the Sierra Nevada  snowpack29. As such, the 
snowpack plays a vital role in this region, which was confirmed by the impacts of below-normal snow conditions 
on water resources, ecosystems, and  recreation8. Due to the mountainous region and varied elevation, individual 
climatological extreme events can produce a drastically different response in magnitude and spatial variability 
of the snowpack in this  region30. Recently, 2014 and 2015 showed a lack of snow accumulation and winter pre-
cipitation, indicating snow drought events in the upper Tuolumne  basin5,8,9. The historical precipitation trends 
in this region have shifted from snow to rain, resulting in more frequent  droughts10,31. This shift has impacted 
headwater hydrology and downstream reservoir management of basins in the Sierra  Nevada32.

Figure 1.  The Pacific Coast States of the United States showing the study basins. Created using QGIS 
3.22.1-Białowieża. Reference: QGIS Development Team, 2023. QGIS Geographic Information System. Open 
Source Geospatial Foundation. URL http:// qgis. org.

http://qgis.org
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Data used for SnoDRI
NLDAS‑2 variables
The North American Land Data Assimilation System (NLDAS) is a multi-institutional partnership project 
intended to develop land-surface model datasets from observations and reanalysis with quality control that 
is coherent across space and  time33. NLDAS data is comprised of hourly data in gridded format with a spatial 
resolution of 0.125° × 0.125°. An improved version, NLDAS-2, was later developed by determining and rectifying 
existing errors in forcing data and  models34. NLDAS-2 changed data sources and their inherent biases, upgraded 
the model along with recalibrated parameters, and increased the period of forcing data and  simulations34. We 
use NLDAS-2 primary (File A) forcing data, which provides a total of eleven variables, given in Table 1. All 
these variables are spatially aggregated for interested basins and converted to monthly time series (cumulative 
variables-APCP, PEVAP, CAPE, DLWRF, and DSWRF- are added, others averaged). It is important to note that we 
do not use snowfall separately since there could be important information in the total precipitation. For example, 
rain-on-snow events significantly impact snow accumulation and  melt35. We might inhibit the model from learn-
ing crucial information using only snowfall. Here, in our framework, the idea is to provide available data, which 
might or might not be important in drought stress formation, and let the model figure out the key information.

Standardized precipitation index (SPI)
The Standardized Precipitation Index (SPI) is an index widely used for quantifying precipitation  anomalies36. The 
SPI is obtained by mapping the actual probability distribution of precipitation to a normal distribution. A zero 
SPI indicates normal conditions. The positive values of SPI represent wet conditions, whereas the negative values 
represent dry conditions. The larger the negative value of SPI, the higher the severity of drought conditions. We 
calculate SPIs at three timescales (3, 4, and 6 months) and provide them as inputs for the SnoDRI because they 
provide a combined measure of precipitation over multiple time scales. The SPI at 3, 4, and 6 months timescales 
are chosen because the snow processes and the impact of reduced winter precipitation generally occur at these 
timescales. These SPIs can reflect the reduced snowpack and discharge from snowmelt. For the same reason, 
SPIs at longer timescales (such as SPI-12 and 60) are potentially unimportant for snow droughts. Therefore, we 
have also fed the model with SPI-12 and SPI-60 as a sanity check to see whether the model can discard irrelevant 
information, which is confirmed by our results (see Sect. “weights from mutual information”). The SPI calculation 
only requires precipitation; it smoothens the time series data and maps the actual distribution of precipitation to 
normal distribution. We use the basin-aggregated NLDAS-2 precipitation for computing SPIs.

Snow water equivalent
We use snow water equivalent (SWE) as an indicator variable for the snow drought case used for validation. 
SWE is the target variable for the Random Forest model (discussed in a later section) used in selecting the input 
features for our index. We obtained SWE data and snow depth from assimilated in-situ and modeled data over 
the conterminous US, Version  137,38 from the National Snow and Ice Data Center (NSIDC). This data provides 
daily SWE and snow depth at a spatial resolution of 4 km x 4 km for the conterminous United States (CONUS). 
We collected the SWE data from 1982 to 2020, spatially aggregated them for the study basins, and converted 
them to monthly time series.

CAMELS basin shapefiles
Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) provide the time series of mete-
orological forcings and attributes of 671 basins across the  CONUS39,40. These basins are least affected by human 
 actions40. The dataset contains different categories of basin attributes: topography, climate, streamflow, land 

Table 1.  List of variables considered for analysis.

# Variables name Abbreviat-ion Reso-lution Period Sources

1 U wind component (m/s) at 10 m above the surface UGRD

0.125° × 0.125° 1979–2020
Hourly NLDAS 2

2 V wind component (m/s) at 10 m above the surface VGRD

3 Air temperature (K) at 2 m above the surface TMP

4 Specific humidity (kg/kg) at 2 m above the surface SPFH

5 Surface pressure (Pa) PRES

6 Surface downward longwave radiation (W/m^2) DLWRF

7 Surface downward shortwave radiation (W/m^2) DSWRF

8 Precipitation hourly total (kg/m^2) APCP

9 Fraction of total precipitation that is convective (no units) CONVfrac

10 Convective available potential energy (J/kg) CAPE

11 Potential evaporation (kg/m2) PEVAP

12 SWE SWE 4 x 4 km 1982–2020
Daily NSIDC

13 Discharge Q Point 1979–2020
Daily USGS
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cover, soil, and  geology40. We use the basin shapefiles provided in the dataset and filtered basins (a total of 85) 
belonging to the Pacific Coast states. The gridded datasets are aggregated to the basin scale using these shapefiles.

Discharge
The discharge data for these basins were collected from the US Geological Survey’s (USGS) streamflow meas-
urements provided in the CAMELS dataset. USGS collects, monitors, and analyzes existing resource conditions 
across the different sites in the US. USGS stations measure velocity through a current meter or acoustic Doppler 
current profiler. The discharge is computed by multiplying the cross-sectional area by the estimated velocity. 
For this study, daily data were obtained from 1979 through 2020. The daily flow records for USGS gage stations 
provide the value of mean discharge for each day of the water  year41.

SnoDRI framework
In this work, as shown in Fig. 2, we propose a novel index calculation framework. Here, we start with an available 
pool of meteorological variables, which might or might not be relevant to the drought type (snow droughts in 
our case). Firstly, the variables are filtered based on Random Forest regressions with available sets of observed 
variables, which can be indicators of droughts, as targets. Since we are interested in snow droughts and their 
hydrological impacts, we use SWE and discharge as target variables in the feature selection part of the framework 
(using Random Forest). It should be noted that a snow drought from the perspective of hydrological impacts 
cannot be equated to just a low SWE anomaly since several other meteorological factors would also influence 
the hydrological response. Based on the application, our framework allows the flexibility to assess any kind of 
drought stress by changing the potential indicator variables. After filtering variables, all of them were standard-
ized up front, and the weight of each input variable was found from a self-supervised autoencoder model coupled 
with mutual information. Once the weights are obtained, each variable is multiplied with the corresponding 
weight, and the weighted inputs are added. Thus, the resultant values are standardized to obtain the SnoDRI 
index. Note that we utilize the initial 75% of the time series data, which pertains to the cooler months (October 
to May), to filter variables and determine their weights. The remaining data is reserved for validating the index, 
which is computed based on the filtered variables and their weights. In order to validate the index, we could find 
only limited observed records of potential indicators in the basin considered. This led us to validate the index 
based on SWE, SWE anomaly, snow fraction, temperature anomaly, precipitation, snow depth, and discharge. 
The details of the above-mentioned components of the framework are discussed in the subsequent sections.

Figure 2.  The methodology used for developing SnoDRI. On the left-hand side is the flowchart with the steps 
followed in this study. On the right-hand side is the framework with autoencoder (top) and Mutual Information 
used to calculate the weight of each input variable. Inside the square bracket is the number of nodes in each 
layer of the autoencoder.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20664  | https://doi.org/10.1038/s41598-023-47999-5

www.nature.com/scientificreports/

Random forest regression
Random Forests are a collection of decision trees. Each tree in a Random Forest is built based on a random subset 
of variables from bootstrapped data, which can be used for classification and regression  problems42. Since every 
regression tree inside the Random Forest identifies an order of variables to classify the training dataset, we can 
leverage the random forest regression algorithm to find the feature importance of training variables in predicting 
the target variable. In this study, we use Random Forest regression to select the important variables to develop 
SnoDRI. We aggregated the NLDAS-2 variables for 85 CAMELS basins in the Western US and regressed it against 
SWE and discharge within the basins. This yields two sets of feature importance corresponding to SWE and 
discharges for each basin. Then, by taking the mean of all basins, the average feature importance of variables for 
the Western US is calculated. The union of the top three variables in average feature importance for predicting 
SWE and discharge is used to compute SnoDRI. Note that both SWE and discharge variables are in effect only 
during the Random Forest feature selection. The idea here is to use available measured variables, which poten-
tially indicate droughts, to filter variables accounted for the index calculation for the region. Once we obtain the 
filtered variables and their weights (discussed in a later section), they can be transferred to other ungauged basins 
in the region for calculating the index, which enables us to calculate the index for ungauged basins.

Self‑supervised learning with autoencoder
Given the fact that we are trying to develop a novel snow drought index derived from different snow variables, 
we do not have a target variable to train a model. The absence of a target variable makes our problem a case of 
unsupervised learning. We used the ML algorithm of autoencoders, a particular type of neural network that 
is used for dimensionality  reduction43. During the learning process, autoencoders “discard” the insignificant 
information present in the dataset. An autoencoder consists of an input layer, an encoder with hidden layers, a 
bottleneck layer, a decoder with hidden layers, and an output layer that tries to reconstruct the input data (self-
supervised learning). The NLDAS-2 variables identified through Random Forest regression (Sect. “Random 
forest regression”) are initially passed to the input layer. As the data passes through the encoder and reaches the 
bottleneck layer, it encodes the entire data into a reduced form, which can be regarded as a ‘compressed’ form of 
important information in the entire dataset. After several trial-and-error iterations, we finalized an autoencoder 
network with three hidden layers, including a bottleneck. The structure of the autoencoder network is shown in 
Fig. 2. The bottleneck layer consists of one neuron, and the other two hidden layers consist of fifteen neurons. 
The hidden layers and the bottleneck layer used tanh activation functions, which take care of the nonlinearities 
in the model. We find that the Adam optimization algorithm with the Huber loss function gives better training 
of our model. The training of the model in 3000 epochs as single batches provided the best possible accuracy 
with the given datasets. Loss and accuracy stayed nearly the same regardless of the additional increase in the 
number of epochs. We use 75% of the entire dataset (those belonging to Oct-May) to train the autoencoder.

Mutual information as weights
Once the autoencoder is trained, we obtain the bottleneck output (or the encoder output) of the model, which 
is a single time series since the bottleneck consists of only one node. Our framework calculates the Mutual 
Information (MI) between the bottleneck output and each input variable, which is used as their weights (e.g., 
the weight of temperature equals the MI between bottleneck output and temperature). MI is a measure of how 
much information, on average, can one random variable tell us about another random  variable22,44,45. It can be 
conceptualized as the reduction in entropy of one variable, given the information about another  variable21. MI 
between two random variables, X and Y, expressed as I(X;Y), is calculated using Eq. (1)22,44.

Here  PX (x) and  PY (y) are marginal probabilities, and  PXY(x,y) is the joint probability. As shown in Fig. 2, the 
weights of each variable are multiplied by themselves and added (weighted sum), which is then standardized to 
obtain SnoDRI values. Since the bottleneck represents a “compressed” version of all input data, the MI shows 
how much of each variable is contained inside the “compressed” form.

A valid question here is why we cannot directly use the weights of the trained autoencoder. To explain this, 
referring to Fig. 3, we must look at all possible trajectories of “information flow” from one input variable to the 
compressed bottleneck output. We can see that other input variables also influence the weights. For example, the 
highlighted path in Fig. 3 shows possible trajectories of “information flow” from input X1 before it reaches the 
compressed bottleneck output. Since the nodes in the second layer are connected to all input nodes from previous 
layers, weights W(2)

11  and W(2)
12  are optimized based on the information from all input variables. As the information 

from each input node is divided and passed to all nodes in the hidden layer, weights W(1)
11  and W(1)

12  are optimized 
based on the division of information from input nodes. Therefore, the weights inside the autoencoder network 
are not representative of the relative contribution of each input to the compressed bottleneck output. This issue 
led to the use of an alternative method, i.e., MI, to infer the weights for each input feature.

Rain‑snow partitioning
We also use snow fraction as an input into the model. In the modeling realm, there are different rain-snow parti-
tioning schemes based on which precipitation variable is used as the forcing is separated into snow and rainfall. 
Classifying rain and snow based on a threshold temperature is the most straightforward scheme. This method 
is susceptible to the choice of threshold temperature. In another scheme proposed by Jordan (1991), the snow 
percent is calculated as a linear stepwise function of air temperature. In this study, we estimate the snow fraction 
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based on a sigmoid function of wet bulb temperature, as Wang et al.47 proposed. The wet bulb temperature is 
calculated from air temperature, specific humidity, and surface pressure from the NLDAS-2 dataset.

Validation
There is no single framework for validating a drought index. Based on the purpose of the new index, one must 
examine whether the index follows the drought indicators, such as the scarcity of relevant environmental vari-
ables. This study uses the anomaly in SWE as an indicator variable. A negative anomaly represents the lack of 
snow accumulation compared to normal and vice versa. The lower the anomaly, the more severe the snow 
drought. The discharge co-occurring with SWE is another indicator variable. Reduced discharge due to low 
meltwater contribution can be a potential impact of the snow drought. A lower discharge following a lower SWE 
is a prime case of snow drought.

We compare the novel SnoDRI with patterns of SWE and discharge in the Upper Tuolumne basin of Cali-
fornia. Hatchett et al.8 and Harpold and  Dettinger5 reported a snow drought in this region during the winter 
(Jan to Apr) of 2014 and 2015. A lower SWE, along with a lower discharge, is taken as a signal of snow drought 
in the basin. We check if these signals correspond to a lower value of SnoDRI. Meanwhile, the index should not 
give a false positive forecast.

Results
Feature importance
Through Random Forest regressions for 85 CAMELS basins, we obtained the average feature importance of 
NLDAS-2 variables for the Pacific Coast States of the US in predicting SWE and discharge. This method gives 
a sense of the relative significance of each variable in generating SWE or discharge. Figure 4a shows the feature 
importance for predicting SWE. We see that temperature is the top significant variable in determining SWE. 
This is most likely because the temperature decides the amount of snowfall (vs. rainfall) in the precipitation. 
Several rain-snow partitioning schemes are highly sensitive to  temperatures46–49. After temperature, the down-
ward shortwave radiation affects the SWE most. Since the primary source of energy that drives the atmospheric 
process is the incoming shortwave radiation, we can expect that the formation and accumulation of snow are 
highly dependent on shortwave radiation. Specific humidity is the third most crucial variable for SWE as obtained 
from Random Forest regression. Specific humidity (the measure of water content in the atmosphere) could have 
a significant effect on the formation of snow.

Figure 4b indicates the average feature importance for predicting discharge for the Pacific Coast States of 
the US. The results show that precipitation has a very high significance for estimating discharge in the basin. It 
is intuitive that the incoming precipitation, whether as snow, rain, or both, would contribute the most to gen-
erating river runoff as precipitation is the primary water source for any basin. This influence is pertinent when 
we consider cooler months separately, during which the precipitation occurs mainly as snow, which drives the 
snow accumulation and melting crucial for runoff generation. Though temperature, zonal wind, and downward 
shortwave radiation are most important after precipitation, their importance is far lower than precipitation, as 
the results of Random Forest regression suggest.

From both cases, Random Forest regression targeting SWE and discharge, we identified the top three vari-
ables having the highest average feature importance for our study area. In the case of SWE, the top three vari-
ables are TMP, DSWRF, and SPFH (Fig. 4a). Whereas for Q, the top three variables are APCP, TMP, and VGRD 

Figure 3.  The encoder portion (first half) of the autoencoder neural network. The highlighted paths show two 
possible “information flows” (black arrowed lines) from the first input feature to the compressed bottleneck 
output.
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(Fig. 4b). The union of these two sets of variables gives a set of APCP, TMP, DSWRF, SPFH, and VGRD, which 
are used as input variables in SnoDRI calculations. Note that the union ended up with five variables since TMP 
is repeating in both sets.

Weights from mutual information
The MI between the compressed bottleneck output and each input variable measured the relative importance of 
the corresponding variable in the compressed data (bottleneck output). Figure 5 shows the approach for obtaining 
weights and the subsequent results. We can see that the downward shortwave radiation, SPIs, temperature, and 
snow fraction are found to be carrying more weight than other variables. Downward shortwave radiation from 
the sun entering the atmosphere, besides acting as the sole energy source of hydroclimatic processes, causes the 
direct melting of snow. This shows how important the downward shortwave radiation can be in the occurrence 
of snow droughts, which is reflected as the highest weight estimated by our framework. However, many of the 
previous studies on snow droughts have not considered the impact of downward shortwave radiation in their 
 assessment1,7,12. Our result suggests further investigating the direct and indirect association between downward 
shortwave radiation and snow droughts. The model also identifies shorter-scale SPIs (3, 4, and 6 months) as 
significant. Since SPIs represent the lack of precipitation in the case of drought, they can be a proxy for lower 
snowfall and snowpack conditions. Following this, the model assigns more weight to temperature, complying 
with the fact that temperature drives snow processes from the formation of snow to the melting of snow. Snow 
fraction, another variable with considerable weight, can be directly related to the amount of snowpack. The lower 
the snow fraction, the lower the snowfall, leading to snow drought conditions. Interestingly, the model identifies 

Figure 4.  Average Feature importance for SWE (a) and Q (b) in basins of Pacific states. The long names of 
variables are provided in Table 1.

Figure 5.  Weights obtained for each input variable as the Mutual Information in each variable and the 
compressed bottleneck output.
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that precipitation as such does not have a severe influence. The reason could be that the SPIs, which are the 
precipitation mapped to a normal distribution, already contain the information of precipitation. This can also 
be attributed to the ability of the model to dismiss redundant information. The lowermost weights are assigned 
to the SPI-12 and 60, two variables presupposed to be irrelevant for snow droughts, additionally confirming the 
aforementioned ability of the model.

SnoDRI evaluation
With the newly developed snow drought index, SnoDRI, we analyzed the conditions of snow drought in the 
Upper Tuolumne River basin from February 2013 to May 2019. This period is included in the evaluation period. 
In other words, the model has never seen the input dataset of this duration throughout its training. Over this 
evaluation period, the new index shows a good performance in capturing snow drought events. Figure 6 shows 
the SnoDRI calculated for the Upper Tuolumne Basin in California, indicating a lower value corresponding to the 
reported snow droughts during the winter of 2013/14 and 2014/2015. Negative (positive) values of the SnoDRI 
suggest the presence (absence) and severity of the snow drought.

In addition, we place SnoDRI and the potential signals of the snow drought in juxtaposition. Comparing 
SnoDRI with the anomaly in SWE, SnoDRI shows lower (more negative) values when the SWE anomaly is 
shallow. For instance, in 2014, 2015, and 2018, the Upper Tuolumne Basin showed a negative anomaly in SWE 
(Fig. 6). During these years, SnoDRI shows lower values, indicating the occurrence of snow drought. On the 
other hand, in 2017, the region observed higher snow accumulation, leading to a positive SWE anomaly. SnoDRI 
indicates a continuous positive value during this period. Moreover, the higher (in 2017) and lower (in 2014, 2015, 
and 2018) values of original SWE and snow depth are reflected in SnoDRI. A lower discharge accompanied by 
lower SWE is another indicator of snow drought. In Fig. 6, during all winters from 2013 to 2019, except for 2017 
and 2019, the Upper Tuolumne basin produced low discharges. SnoDRI identifies this signal. Whereas in 2017 
and 2019, the basin received a higher snow accumulation, and as a result, the basin generated a higher discharge. 
This absence of snow drought is reflected in the SnoDRI, as seen in Fig. 6. The higher the temperature, the higher 
the chance of snow droughts, leading to reduced snowfall and rapid snowmelt. In accordance with Fig. 6, negative 
SnoDRI matches with positive anomalies in temperature and vice versa.

Figure 6.  SnoDRI, SWE anomaly, SWE, and discharge in the Upper Tuolumne basin during the validation 
period.
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Given the ability of SnoDRI to capture snow droughts, we can implement the following steps to apply our new 
framework for a selected basin (in Pacific states) in a selected year: (1) obtain the filtered NLDAS-2 variables for 
the year of interest and aggregate them over the basin of interest, (2) calculate the SPIs and snow fraction, (3) 
derive the monthly time series and standardize them, (4) multiply the pre-calculated weights (see Fig. 5) with 
each variable and add them up, and (5) standardize the time series thus acquired.

Discussion
Generally, this study proposes a new framework to calculate SnoDRI, an index that can measure snow droughts. 
The framework could be advantageous due to the multiple strengths that we identified. Firstly, it can be applied 
in ungauged basins. Since we use only the selected features from NLDAS-2 forcings, a gridded dataset integrat-
ing satellite observation with measurement gauges and radars, we do not need to rely on any ground-measured 
variables to calculate SnoDRI. Several basins worldwide are still ungauged, especially in developing countries, 
leading to a lack of an efficient drought monitoring system. Our framework can act as an alternative snow drought 
indication framework in such regions. Note that while NLDAS-2 integrates ground-based observations in their 
reanalysis process, it does not impede the applicability of the index over ungauged basins, as the gridded data 
extends over these areas. Secondly, our framework reduces the subjectivity in choosing the input variables by 
using Random Forest models to select important features. Previous studies examined snow droughts with defi-
nitions based on a handful of variables (mostly precipitation, temperature, and SWE) selected based on expert 
knowledge and assumptions, which add subjectivity to the  analysis1,12. Thirdly, our framework, besides calculat-
ing the index, can give insights into what factors drive snow drought conditions, as represented by the weights 
from the autoencoder with MI. Typically, studies investigating snow droughts calculate the index based on the 
abnormal variations in snow variables. Fourthly, regardless of several model inputs that possess multicollinearity, 
a common issue while using multiple predictor variables, we can see that the SnoDRI framework could eliminate 
redundant information to a certain extent. For instance, the model gave a lower weight to specific humidity, a 
variable used along with temperature to calculate snow fraction. Finally, unlike SPI or Palmer Drought Sever-
ity Index (PDSI; Palmer,  196514), the proposed ML-based framework is not sensitive to the time series length. 
Once the model is trained, its weights are fixed and can be applied to a new dataset, no matter the range of time. 
Moreover, since ML models are known for their capacity to learn complex patterns, we can relax the assumption 
of stationarity. However, the efficacy of SnoDRI in capturing multi-scale (both spatial and temporal) droughts 
needs to be explored in greater depth. The abovementioned capabilities of the framework highlight the com-
petence of ML and information theory metrics in assessing snow droughts (or any drought, for that matter).

Formulating the framework for drought index calculation came with several challenges. Most importantly, the 
absence of a target variable to train and test the ML model. It is not straightforward to establish the performance 
of the index with a statistical metric (e.g., NSE or KGE). Rather, we had to compare and contrast the indicator 
variables with the index to see whether it was able to capture the signals of drought. This gave rise to another 
challenge: the lack of characterization of snow droughts in the present literature. Despite the ongoing interest in 
the topic, researchers have not reached an established definition of snow drought. Although our framework can 
overcome this issue since it is independent of a definition based on a single variable, more detailed investigation 
on snow drought characterization can better help assess their presence. Our framework, using the autoencoder, 
calculates the stress in the combined effect of hydrometeorological variables instead of looking at a single variable. 
However, validating this ability of the index can be tricky given the lack of understanding of the snow drought 
mechanism and the availability of observed data. This limits the validation process to be solely based on avail-
able records of indicator variables—another challenge in this study. It is a common problem in all drought index 
development  studies50. Generally, the researchers compare a new index with some of the reported drought events 
to validate the  index51–53. Nevertheless, this does not show exclusively the ability of an index to capture all the 
drought events. Some studies validate their index by checking its congruency with the US Drought  Monitor53,54. 
There is vast room for research in developing an established framework for validating drought indices. A possible 
way to create a validation framework is to verify the closeness of the distributions of relevant variables with that 
of the index. The closeness of different distributions can be quantified with statistical methods.

We acknowledge that, to some extent, the index is susceptible to the group of input variables we start with 
before the Random Forest feature selection. The importance of any variable obtained from the Random Forest 
feature selection depends on the whole set of input variables. In other words, adding more variables or choosing 
a different dataset might produce a different order of feature importance. Several studies have employed a feature 
selection strategy based on sensitivity analysis (e.g., with normalized sensitivity coefficients)55–57. The effects 
of incorporating such methods, which could potentially further the feature selection component of the new 
framework, need to be explored. Although we only considered the NLDAS-2 variables in calculating SnoDRI, 
the framework can be applied to any set of time series input variables. For example, the ERA5-Land dataset, 
which provides a larger number of variables with a more extended  period58, and the data from Land Information 
System (LIS) simulations. In spite of the high computational cost, it would be interesting to see the performance 
of the framework with ERA-5 or LIS variables. We have executed the framework at a basin scale in the western 
US. Future efforts can be directed towards establishing the framework in a gridded manner at continental or 
global scales.

Although we focus on snow droughts, this framework can be applied to identify any type of drought, given 
the appropriate input variables and feature selection. We select variables by regressing Random Forests against 
SWE and discharge. Training the Random Forests against different target variables relevant to the interested 
drought type would give another set of input variables. These can be transformed into an index by following 
the steps in our framework. Thus, by design, our framework is transferrable. We can set up the framework for 
any region of interest by training the Random Forest (for feature selection) and autoencoder (for estimating the 
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weights of selected features through MI scores) with the data of that region. It should be noted that, for different 
regions, the model might assign different weights to variables depending on the hydroclimatic characteristics of 
the region. For instance, in the regions where temperature variability has greater influence, temperature is most 
likely to control the compressed bottleneck information inside the autoencoder, leading to a higher MI score 
for temperature (with bottleneck information). This aspect of our framework can be used to get insights about 
the impact of each variable on droughts.

Conclusion
We developed a framework to calculate a new index, SnoDRI, that can be used to identify snow droughts. We 
trained Random Forest models for 85 basins across the West Coast to select the input features for the index 
calculation. Our novel framework showed the capability of combining autoencoders (a self-supervised machine-
learning algorithm) with MI (a degree of mutual dependency between two variables) to estimate the importance 
of input variables in the occurrence of snow droughts. We found that the downward shortwave radiation, SPIs, 
temperature, and snow fraction considerably influence snow droughts. In validation, SnoDRI successfully cap-
tured the reported snow drought events and their signals in the Upper Tuolumne Basin in the Sierra Nevada 
region. The framework demonstrated the potential to eliminate redundant information in the dataset. The novelty 
of our framework is that it can be applied to ungauged basins since it does not use any ground measurements. 
The framework can be adapted to other types of droughts and to different regions around the world.

Data availability
The datasets used and/or analyzed in the study are available from the corresponding author on reasonable request.
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