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Research on nonlinear dynamic 
characteristics of high‑speed gear 
in two‑speed transmission system
Wuzhong Tan 1,2, Jiangming Wu 1*, Zhihui Liu 3*, Xueshen Wu 4 & Jiahao Zhang 3

The working performance and service life of the two-speed transmission system directly affects the 
performance and service life of helicopters and other equipment. One of the main tasks of the two-
speed transmission system research is to improve its dynamic characteristics. For the two-speed 
transmission system in high-speed gear, a purely torsional nonlinear dynamic differential equation 
set considering the number of planetary gears, backlash, and clutch dynamic load is established by 
using the lumped parameter method, and the equations are dimensionless. Then the dimensionless 
differential equation set is solved by using the variable step-size fourth-order Runge–Kutta method, 
and the phase diagram and Poincare diagram of high-speed gear are obtained. By changing the 
dynamic friction coefficient of the friction clutch and the backlash of the gear pair, the influence of 
parameter change on the nonlinear dynamic characteristics of the system is analyzed. The results 
show that, with the increase of excitation frequency, the system has experienced single cycle, quasi-
cycle, chaos, and double cycle, then changed from double cycle to chaotic motion, and then changed 
from chaotic motion to double cycle and single cycle motion in turn, and found the path to chaos. In 
the low-frequency band, reducing the friction coefficient of the friction clutch can reduce vibration 
amplitude; In the middle-frequency band, reducing the friction coefficient will make the system tend 
to unstable vibration. In the high-frequency band, it is a single-cycle movement, which is not affected 
by friction coefficient.

The two-speed transmission system is a variable speed system with two speed outputs, which is widely used in 
the fields of helicopter, tank, loader, automobile and so on. A two-speed transmission system is added in the 
main subtraction of the helicopter, which can realize helicopter cruise and hover (start and stop) and achieve 
the lowest fuel consumption. The typical structure of two-speed transmission system consists of friction clutch, 
overrunning clutch and planetary gear transmission system1–3. The performance and service life of the two-speed 
transmission system directly affect the performance and service life of the helicopter and other equipment. The 
study of nonlinear characteristics of two-speed transmission system can guide the optimal design and manu-
facture of transmission system.

At present, the friction clutch and the planetary gear transmission system have been widely used, and the 
research on the nonlinear characteristics of the coupling transmission system between the friction clutch and 
the planetary gear has been a hotspot. Han4 established a nonlinear dynamics model considering time-varying 
meshing stiffness, tooth side clearance and static transmission error, and solved it by using numerical integra-
tion method, and analyzed the dynamics characteristics of the system through global bifurcation diagram. Li5 
studied the meshing characteristics of planetary gear train when the position of the planetary frame changes 
under variable loads. Wang6 established a torsional dynamics model of planetary gear transmission system con-
sidering friction, time-varying meshing stiffness, meshing damping and clearance, solved the system vibration 
equation by Runge–Kutta method, and analyzed the bifurcation and chaos characteristics of the system through 
bifurcation diagrams and phase diagrams. Luo7 established a dynamic model including time-varying meshing 
stiffness, sliding friction and torque, and studied the influence of sliding friction on the dynamic characteris-
tics of planetary gear mechanisms. For the 3K-ii planetary gear system, Sang8 established a torsional vibration 
dynamic model of the system by using the lumped parameter method, and analyzed the influence of tooth root 
crack on the system. Ryali9 studied the load distribution and dynamic characteristics of planetary gear system 
under internal and external excitation. Xu10 established a new gear tooth modification model according to the 
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characteristics of tooth top modification and tooth profile modification of planetary gear train. Ling11 analyzed 
the motion and various nonlinear dynamics characteristics of planetary gear system by using global bifurcation 
diagram, FFT spectrum, Poincare diagram, phase diagram and maximum Lyapunov index. Li12 established the 
reliability prediction model of helicopter planetary gear train under partial load. Xiang13 identified the influence 
of system motion on the change of backlash by using global bifurcation diagram, maximum Lyapunov index 
(LLE), FFT spectrum, Poincare diagram, phase diagram and time series.

The research on nonlinear characteristics of planetary gear transmission system mainly focuses on modeling 
methods, solving methods, stability judgment and other aspects. The models mainly include pure torsional 
model and bending-torsional coupling model, and the time-varying meshing stiffness, tooth clearance and 
comprehensive meshing error are usually considered in the modeling. The nonlinear dynamics of planetary gear 
transmission system can be solved by analytical method and numerical method.

The dynamics of friction clutch is mainly studied by modeling and analyzing the clutch independently or 
simplifying other mechanical structures. The analysis and solution methods are mainly numerical iteration, con-
centrated parameters and finite element method. Li14 analyzed the self-excited vibration characteristics of clutch 
and discussed the influence of clutch related physical parameters on its performance based on the established 
4-DOF nonlinear multi-body dynamics model and Karnopp friction model. Bao15,16 established the transient 
thermal analysis model of friction clutch and the motion coupling model in the engagement process, and studied 
the influence of the groove shape of the friction disc on the transient temperature field in the clutch engagement 
process and the influence of relevant parameters on the speed and transmission torque of clutch engagement. 
Wang17 proposes an improved model for calculating the meshing stiffness of a helical gear system caused by 
a gear crack, which takes into account the transverse and axial effects of the gear tooth stiffness and the gear 
foundation stiffness. The results show that the meshing stiffness of the gear is greatly reduced by the existence of 
cracks. The time domain vibration response of cracked gear is sudden, and the frequency spectrum shows that 
the more serious the crack, the more abundant the side frequency component and the higher the amplitude. 
Wang18 proposed an improved meshing stiffness calculation model for helical gear pairs, which fully considered 
not only the tooth stiffness of axial gear and the foundation stiffness of axial gear, but also the transverse gear 
tooth stiffness and foundation stiffness affected by surface roughness under elastohydrodynamic lubrication. The 
results show that compared with the traditional method, the improved meshing stiffness calculation model can 
obtain the meshing stiffness under actual lubrication conditions, but the traditional method ignores the axial 
meshing force and the friction force acting on the gear teeth and gear base.

Compared with the single clutch or planetary gear, the dynamic characteristics of the coupling system com-
posed of friction clutch and planetary gear are more complex. Although this kind of system is widely used, the 
nonlinear characteristics of friction clutch-planetary gear system are rarely studied. Aleksandar19 established a 
simulation model of friction clutch and planetary gear train, and conducted a simulation analysis on the transi-
tion process of planetary gear train in the shift process. Michel Bauer20 established a friction clutch-planetary 
gear train model suitable for hybrid power and conducted a simulation study on its shifting characteristics. 
Wang21 established a planetary gear torsional vibration model considering clutch friction torque and other fac-
tors, and studied the influence of clutch friction torque and planetary gear meshing stiffness on system vibration. 
Chen22 established a nonlinear dynamics model of two-stage gear transmission system with overrunning clutch, 
numerically solved the model with Runge–Kutta method, and studied the influence of gear modulus and clutch 
torsional stiffness on dynamic characteristics of the system.

Through the above analysis, it can be seen that although there have been some studies on the nonlinear 
characteristics of planetary gear and friction clutch, there are still few studies on the coupling system combined 
with them, and the influence of the dynamic friction coefficient of friction clutch on the stability of the coupling 
system is not clear in the research process. Therefore, this paper intends to establish pure torsional nonlinear 
dynamic differential equations considering the number of planetary wheels, gear clearance and clutch dynamic 
load by using the lumped-parameter method, and then solve the dimensionless differential equations by using 
the four-order Runge–Kutta method with variable step size. The influence of dynamic friction coefficient of fric-
tion clutch on nonlinear dynamic characteristics of two-speed transmission system is analyzed qualitatively. The 
research results can provide reference for the optimization design and manufacturing of the subsequent system.

High‑gear in‑gear dynamics model of a two‑speed transmission system
The structure schematic diagram of the two-speed transmission system is shown in Fig. 1. When the friction 
clutch is released, the planetary frame is connected with the overrunning clutch in the locked state. The power 
goes through the sun wheel in turn, the middle two planetary wheels, and then the inner gear ring output. At 
this time, it corresponds to the low gear state. When the friction clutch is engaged, the overrunning clutch is in 
the overrunning state, and the planetary frame can rotate freely at this time. The power also goes through the 
sun wheel, the middle two planetary wheels, and the inner gear ring output, which corresponds to the high gear 
state at this time. In this paper, the nonlinear characteristics of two-speed transmission system are studied for 
high speed in gear. Its dynamic model is shown in Fig. 2.

In the Fig. 2, Rbs is the radius of the solar wheel base circle; Rbp1 is the radius of the base circle of the first stage 
planetary gear. Rbp2 is the radius of the base circle of the second planetary gear. Rbr1 is the radius of the base circle 
of the inner gear ring; TD is the driving torque; TL is the load moment; JC is the moment of inertia of the planetary 
frame; θc is the torsional deformation of the planetary frame; JC1is the moment of inertia of the friction clutch 
input end; θc1 is the torsional deformation of the input end of the friction clutch; JC2 is the rotational inertia of 
the output end of the friction clutch; θc2 is the torsional deformation of the output end of the friction clutch; Jo 
is the moment of inertia of the load of the two-speed transmission system; θo is the torsional deformation of the 
load shaft of the two-speed transmission system. Ksp1 is the time-varying meshing stiffness of the solar wheel and 
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the first stage planetary wheel; Csp1 is the meshing damping of the sun wheel and the first stage planetary wheel; 
Kp1p2 is the time-varying meshing stiffness of the second stage planetary gear and the first stage planetary gear. 
Cp1p2 is the meshing damping between the second stage planetary wheel and the first stage planetary wheel; Kp2r1 
is the time-varying meshing stiffness between the inner gear ring and the second stage planetary gear. Cp2r1 is 
the meshing damping of the inner gear ring and the second stage planetary gear.

A mathematical model of a two‑speed transmission system in high gear
As shown in Fig. 2, Ksp1(t)is the time-varying meshing stiffness of the solar wheel and the first stage planetary 
gear pair. Its value can be regarded as a rectangular wave, as shown in Eqs. (1)–(4):

(1)ksp1(t) = ksp1(t + 2π/ω) = ksp1 +

R
∑

r=1

ksp1r cos(rωet−ϕr),

(2)ksp1/ktp = ǫsp1,

(3)ksp1r/ktp =
√

2− 2 cos(2πr(ǫsp1 − 1))/(πr),

(4)ϕsp1r = a tan((1− cos(2πr(ǫsp1 − 1)))/(sin(2πr(ǫsp1 − 1)))),

(a)                                            (b)

Figure 1.   A two-speed drivetrain: (a) Schematic with (1) The sun wheel, (2) The first stage planetary wheel, (3) 
The planetary shelf, (4) Input axis, (5) Overrunning clutch, (6) The first Second planetary wheel, (7) Inner gear 
ring, (8) Friction clutch, and (9) Output shaft; (b) 3D model.

Figure 2.   High-speed gear dynamics model of two-speed transmission system.
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where, Ksp1 is the average value of time-varying meshing stiffness; Ksp1r is the amplitude of the RTH harmonic; 
ϕsp1r is the phase Angle of the RTH harmonic; εsp1 is the coincidence degree between the solar gear and the first 
planetary gear; The first five harmonics can be taken to get a more accurate accuracy, so R = 5.

Assuming that all the gears are unmodified involute spur gears, and ignoring the bending deformation of the 
input and output shafts, the pure torsional nonlinear mathematical model of the two-speed transmission system 
as shown in Eq. (5) can be derived by using the concentrated parameter method and Newton’s law.

Where θs, θp1i, θp2i and θr1 are respectively the torsional vibration displacements of the sun wheel, the i 
planetary wheel of the first stage, the i planetary wheel of the second stage and the inner gear ring (i = 1, 2, 
N). Differentiation concerning time; Input torque Ts(t) is the fluctuation value, which can be expressed as 
Ts(t) = Tsm + TsaT(t), where Tsm is the mean of the torque, TsaT(t) is the instantaneous fluctuation value, and can 
be expressed as TsaT(t) = TsaTsin(ωaTt + ϕaT); esp1i(t) is the static transmission error between the sun wheel and 
the first stage i planetary wheel, and is related to the manufacture and assembly of gears. It can be regarded as 
esp1i(t) = êsin(ωet + ϕe). Tc1 is the friction torque of the inner gear ring and the planetary frame, which is related 
to the pressure applied by the friction clutch, the number of friction plates and the friction coefficient of the 
friction plates, as shown in Eq. (6), where Ro is the radius of the outer circle of the friction plate, and Ri is the 
radius of the inner circle of the friction plate. TL(t) is the load torque applied on the output shaft of the driveline.

Suppose xs = Rbsθs, xp1i = Rbp1iθp1i , xp2i = Rbp2iθp2i , xr1 = Rbr1θr1 , xc1 = Rbcθc1 , xc2 = Rbcθc2 , xo = Roθo , 
xc = Rbcθc , where xs , xp1i , xp2i , xr1 , xc1 , xc2 , xo are the equivalent linear displacements of the solar wheel, the 
planetary wheel 1, the planetary wheel 2, the inner gear ring, the input end of the friction clutch, the output end of 
the friction clutch, and the output shaft, respectively. By defining new variables Xsp1i = xs − xp1i − xc − esp1i(t) , 
Xr1p2i = xr1 − xp2i − xc − er1p2i(t) ,  Xp1ip2i = xp1i + xp2i − ep1ip2i(t) ,  Xcc1 = xc − xc1 ,  Xcl = xc1 − xc2  , 
Xc2o = xc2 − xo , Xc1 = xc1 , Xc2 = xc2 , Xo = xo.

The dimensionless t ime scale τ = taan and the displacement scale bc  are def ined. 
aan =

√

Ksp1i(r
2
bs/Jbs + R2

p1i/Jp1i)  ,  Xsp1i(t)=bcq1iτ  ,  Xr1p2i(t)=bcq2iτ  ,  Xp1ip2i(t)=bcq3iτ  ,  Xcc1(t)=bcq4τ  , 
Xcl(t)=bcq5τ , Xc2o(t)=bcq6τ , Xc1(t)=bcq7τ , Xc2(t)=bcq8τ , Xo(t)=bcq9τ.

(5)
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JS θ̈S +
�N

i=1(Csp1i(Rbs θ̇s − Rbp1i θ̇p1i − Rbc θ̇c − ėsp1i(t))Rbs + Ksp1i(Rbsθs
−Rbp1iθp1i − Rbcθc − esp1i(t))Rbs) = Ts

Jp1i θ̈p1i +
Rbp1i
Rbc

Jp1i θ̈c − Csp1i(Rbs θ̇s − Rbp1i θ̇p1i − Rbc θ̇c − ėsp1i(t))Rp1i
−Ksp1i((Rbsθs − Rbp1iθp1i − Rbcθc − esp1i(t))Rp1i

+Kp1ip2i(Rbp1iθp1i + Rp2iθp2i − ep1ip2i(t))Rp1i + Cp1ip2i(Rp1i θ̇p1i
+Rbp2i θ̇p2i − ėp1ip2i(t))Rp1i = 0

Jp2i θ̈p2i +
rbp2i
rbc

Jp2i θ̈c − Cp1ip2i(Rbp1i θ̇p1i + Rbp2i θ̇p2i − ėp1ip2i(t))Rp2i

−Kp1ip2i((Rbp1iθp1i + Rbp2iθp2i − ep1ip2i(t))Rp2i + Cp2ir1(Rbr1θ̇r1
−Rbp2i θ̇p2i − Rbc θ̇c − ėp2ir1(t))Rp2i + Kp2ir1(Rbr1θr1 − Rbp2iθp2i

−Rbcθc − ep2ir1(t))Rp2i = 0

Jr1θ̈r1 +
�N

i=1

�

Cp2ir1(Rbr1θ̇r1 − Rbp2i θ̇p2i − Rbc θ̇c − ėp2ir1(t))Rr1
�

Rr1 + Kp2ir1(Rbr1θr1
−Rbp2iθp2i − Rbcθc − ep2ir1(t))Rr1) = Tr1

�

Jc + NJp1i + NJp2i
�

θ̈c +
�N

i=1(
rbc
rbp1i

Jp1i θ̈p1i +
rbc
rp2i

Jp2i θ̈p2i)

−
�N

i=1(Ksp1iθsp1i(Rbsθs − Rbp1iθp1i − Rbcθc − esp1i(t)Rbs
+Kp2ir1(Rbr1θr1 − Rbp2iθp2i − Rbcθc − ep2ir1(t))Rbs)

−
�N

i=1(Csp1i(Rbs θ̇s − Rbp1i θ̇p1i − Rbc θ̇c − ėsp1i(t))Rbs
+Cp2ir1(Rbr1θ̇r1 − Rbp2i θ̇p2i − Rbc θ̇c − ėp2ir1(t))Rbs)

+Cc1

�

θ̇c − θ̇c1
�

+ Kc1(θc − θc1) = 0

Jc1θ̈c1 − Cc1

�

θ̇c − θ̇c1
�

− Kc1(θc − θc1) = −Tcl

Jc2θ̈c2 + Cc2

�

θ̇c2 − θ̇O
�

+ Kc2(θc2 − θO) = Tcl

JO θ̈O − Cc2

�

θ̇c2 − θ̇O
�

− Kc2(θc2 − θO) = TL

,

(6)Tcl = n

∫ Ro

Ri

dT =
2

3
µnFn

(

R3
o − R3

i

R2
o − R2

i

)
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where:
ǫ11i =

∑N
i=1

Csp1i

mSωn
+

Csp1i

mp1iωn
 , ǫ13i = −

Cp1ip2i

mp1iωn
 , ǫ22i =

∑N
i=1

Cp2ir1

mr1ωn
−

Cp2ir1

mp2iωn
 , ǫ23i =

Cp1ip2i

mp2iωn
 , ǫ31i = −

Csp1i

mp1iωn
 , 

ǫ32i =
∑N

i=1
4Cp2ir1

mcωn
+

Cp2ir1

mp2iωn
  ,  ǫ33i =

Cp1ip2i

mp1iωn
−

Cp1ip2i

mp2iωn
  ,  ǫ34i = −

2Cc1

mcR
2
bcωn

  ,  ǫ42 = −
∑N

i=1
2Cp2ir1

mcωn
  , 

ǫ44 =
Cc1

R2bcmcωn
+

Cc1

R2bcmc1ωn
 , ǫ54 = −

Cc1

R2bcmc1ωn
 , ǫ58 = −

Cc2

R2bcmc2ωn
 , ǫ59 = Cc2

RbcROmc2ωn
 , ǫ68 = Cc2

R2bcmc2ωn
+

Cc2

R2bcmOωn
 , 

ǫ69 = −
Cc2

RbcROmc2ωn
−

Cc2
RbcROmOωn

 ,  ǫ88 = Cc2

R2bcmc2ωn
 ,  ǫ89 = −

Cc2
RbcROmc2ωn

 ,  ǫ98 = −
Cc2

R2bcmOωn
 ,  ǫ99 = Cc2

RbcROmOωn
 , 

k11i =
∑N

i=1
Ksp1i

mSωn
2 +

Ksp1i

mp1iωn
2  ,  k13i = −

Kp1ip2i

mp1iωn
2  ,  k22i =

∑N
i=1

Kp2ir1

mr1ωn
2 −

Kp2ir1

mp2iωn
2  ,  k23i =

Kp1ip2i

mp2iωn
2  , 

k31i = −K12i =
Ksp1i

mp1iωn
2  ,  k32i =

Kp2ir1

mp2iωn
2 +

∑N
i=1

4Kp2ir1

mcωn
2  ,  k33i =

Kp1ip2i

mp1iωn
2 −

Kp1ip2i

mp2iωn
2  ,  k34i = −

2Kc1

mcR
2
bcωn

2  , 

k42 = −
∑N

i=1
2Kp2ir1

mcωn
2  ,  k44 = Kc1

R2bcmcωn
2 +

Kc1

R2bcmc1ωn
2  ,  k54 = −

Kc1

R2bcmc1ωn
2  ,  k58 = −

Kc2

R2bcmc2ωn
2 ,k59 = Kc2

RbcROmc2ωn
2  , 

k68 =
Kc2

R2bcmc2ωn
2 +

Kc2

R2bcmOωn
2  ,  k69 = −

Kc2

RbcROmc2ωn
2 −

Kc2

RbcROmOωn
2  ,  k88 =

Kc2

R2bcmc2ωn
2  ,  k89 = −

Kc2

RbcROmc2ωn
2  , 

k98 =
Kc2

R2bcmOωn
2 , k99 = −

Kc2

RbcROmOωn
2 , PS = FS

mSbcω2
n
 , Pr1 = Fr1

mr1bcω2
n
 , P1 = Fcl

mc1bcω2
n
 , P2 = Fcl

mc2bcω2
n
 , P3 = FL

mObcω2
n
.

Including ms =
Js
rbs2

 , mp1i =
Jp1i
rbp1i2

 , mp2i =
Jp2i
rbp2i2

 , mr =
Jr
rbr 2

 , mc =
Jc
rbc2

.

Parameter study
The basic parameters of the two-speed transmission system are shown in Table 1. The Runge–Kutta method with 
fourth-order variable step size is used to solve the equation set 7. The initial values of all displacements are 0, 
and the initial values of all velocities are 0.01, and the solution interval is [0, 600t].

The influence of excitation frequency
Figure 3 shows the dimensionless torsional vibration bifurcation diagram of the inner gear ring drawn with 
the excitation frequency of ωh as the control variable in the high speed mode of the two-speed transmission 
system. It can be seen from the Fig. 3 that there is an obvious jump phenomenon at ωh = 0.65 and at ωh = 0.87 
of the inner gear ring. When 0.65 ≤   ωh ≤ 0.87, the inner gear ring moves in a single periodic motion, and the 
vibration increases with the increase of the excitation frequency. When the excitation frequency is in the low 
frequency band (ωh ≤ 0.65 and 0.87 ≤ ωh ≤ 1.02) and the high frequency band (ωh ≥ 2.0), the torsional vibration 
is a relatively stable single periodic motion, which is not affected by the excitation frequency. When the excita-
tion frequency is in the range of 1.04 ≤ ωh ≤ 1.25, 1.41 ≤ ωh ≤ 1.87, the inner gear ring enters the chaotic region. 
When the excitation frequency is within 1.27 ≤ ωh ≤ 1.4, the motion of the system is a double cycle motion. In 
the range of 1.88 ≤ ωh ≤ 1.98, the movement of the system changes from double period to single period. Figure 4 
shows the time domain diagram, phase diagram and Poincare cross section diagram of the system at the excita-
tion frequency point ωh = 0.7633, 1.6196, 1.9332 and 2.2588, which respectively correspond to quasi-periodic, 
chaotic, double cycle and haploid periodic motions.

Influence law of dynamic friction coefficient of friction clutch
Figure 5 shows the influence of dynamic friction coefficient of friction clutch on bifurcation characteristics of 
internal gear ring. As can be seen from the figure, with the increase of the dynamic friction coefficient, the oscil-
lation value of the system in the unstable region can be effectively suppressed. From Fig. 5a–c, it can be seen that 
the system experienced quasi-periodic motion and haploperiodic motion in the whole excitation frequency range. 
In the low frequency band ωh ≤ 0.5, the motion of the system fluctuates up and down in a small range, and enters 
a quasi-periodic motion in the range of 0.5 ≤ωh ≤ 0.6, and then appears an obvious jump phenomenon. When the 
excitation frequency ωh ≥ 1.0, the dynamic friction coefficient of the friction clutch has almost no effect on the 
bifurcation characteristics of the system. With the increase of the excitation frequency, the system keeps a single 
periodic motion. As can be seen from Fig. 5d–g, the bifurcation structure, motion form and chaotic response 
region of the system are significantly changed when the dynamic friction coefficient is small. In the range of low 
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frequency band (ωh ≤ 0.65), with the reduction of friction coefficient, the fluctuation caused by the system move-
ment is effectively alleviated. As the excitation frequency increases, it can be seen from the Fig. 5 that there is an 
obvious jump phenomenon, but the peak of the jump can be reduced by reducing the friction coefficient. When 
the excitation frequency ωh ≥ 0.9, the system experienced a single periodic motion, chaotic motion, and double 
periodic motion. When the excitation frequency is 0.9 ≤ ωh ≤ 1.5, the movement of the system enters into chaotic 
motion from single-fold periodic motion and then into double periodic motion. In this frequency range, with 
the decrease of friction coefficient, the area of chaotic response of the system gradually widens and the single-
fold periodic motion is reduced. This shows that the reduction of the dynamic friction coefficient of the friction 
clutch makes the motion response of the system more complex in the excitation frequency of 0.9 ≤ ωh ≤ 1.5. In the 
range of high frequency band (ωh ≥ 2.0), the dynamic friction coefficient of friction clutch has almost no effect on 
the bifurcation structure and motion form of the system, and the system keeps the single-fold periodic motion.

Table 1.   Two-speed transmission system parameters.

Name of parameter Parameters of the code Parameter values

Output shaft radius Ro 0.0260 m

Output shaft moment of inertia Jo 0.19738 kg m2

The moment of inertia of the solar wheel Js 0.0534 kg m2

The moment of inertia of planetary wheel I of the first stage Jp1i 0.000235 kg m2

The moment of inertia of the second stage I planet wheel Moment of inertia of inner ring gear Jp2i 0.000153 kg m2

The torsional stiffness of the sun wheel and the first stage I planet wheel Jr1 0.3793 kg m2

Torsional stiffness of second class I planetary gear and inner gear ring Ksp1i 6.8655 × 108  N m/rad

Torsional stiffness of planetary frame and friction clutch input end Kp1ip2i 2.2356 × 108 N m/rad

Torsional stiffness of output end and output shaft of friction clutch Kp2ir1 2.6551 × 108 N m/rad

The sun wheel is damped by meshing with the first stage I planet wheel Kc1 1.32 × 105 N m/rad

The first planetary wheel engages with the second planetary wheel for damping Kc2 1.32 × 105 N m/rad

The second stage planetary gear is damped by meshing with the inner gear ring Csp1i 2.4379  × 103

Planetary frame with torsional damping of friction clutch input end Cp1ip2i 939.31

Friction clutch output end with torsional damping output shaft Cp2ir1 1.3628  × 103

Torsional stiffness of second class I planetary gear and inner gear ring Cc1 50

Torsional stiffness of planetary frame and friction clutch input end Cc2 50

Number of solar gear Zs 54

Number of first planetary gear teeth Zp1i 21

Number of second planetary gear Zp2i 19

Number of inner ring teeth Zr1 108

Degree of contact between the sun wheel and the first planetary wheel ǫsp1i 1.6684

Degree of convergence between the first and second planetary wheels ǫp1ip2i 1.5564

Second planetary wheel and inner gear ring coincidence degree ǫp2ir1 1.8154

Solar wheel input force FS 3.6959 × 104 N

Internal gear ring input force Fr1 1.8480 × 104 N

load FL 54,881 N

Friction clutch output force Fcl 5936 N

Figure 3.   Global bifurcation diagram of torsional vibration of internal gear ring varying with excitation 
frequency ωh.
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Conclusion
The dynamic differential equation of pure torsional nonlinear dynamic load is established by lumped parameter 
method, and the parameters of planetary wheel number, backlash and clutch dynamic load are considered in 
the modeling process, and the equations are dimensionless. Then the fourth order Runge–Kutta method with 
variable step size is used to solve the dimensionless differential equation, and the phase diagram and Poincare 
diagram in the high-speed gear file are obtained. By changing the friction coefficient of the friction clutch, the 
influence of parameter change on the nonlinear dynamic characteristics of the system is analyzed, and the fol-
lowing conclusions are obtained:

(1)	 With the increase of excitation frequency, the system went through a single period, a quasi period, chaos, a 
double period, and then the second period turned into chaotic motion, and then the second period turned 
into a double period and a single period motion, and the path to the chaos was found out. To make the 
system have good dynamic characteristics, the excitation frequency of the system should be guaranteed to 
be small or large.

(2)	 In the low-frequency band (ωh ≤ 0.9), the friction coefficient of the friction clutch can be reduced to reduce 
the vibration amplitude; In the middle-frequency band (0.9 ≤ ωh ≤ 1.9), reducing the friction coefficient 
will make the system tend to be unstable vibration. In the high-frequency band (1.9 ≤ ωh ≤ 2.5), it is a 
single-times periodic motion, which is not affected by the friction coefficient. In order to make the system 
have good stability and reduce the vibration of the system during operation, when the system is in the 
low-frequency stage, it is more appropriate to select a smaller value for the friction coefficient of the fric-
tion clutch; When the system is in the intermediate frequency stage, it is more appropriate to take a larger 
value for the friction coefficient of the friction clutch; When the system is in the high-frequency phase, 
the friction coefficient can be optionally selected because the coefficient of friction has little effect on the 
stability of the system.

Figure 4.   Time domain diagram, phase diagram and Poincare cross section diagram corresponding to different 
excitation frequency points of inner gear ring: (a) ωh = 0.7633, (b) ωh = 1.6196, (c) ωh = 1.9332, (d) ωh = 2.2588.
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Limitations and deficiencies

(1)	 This paper adopts the lumped parameter method in modeling and the Runge–Kutta method in solving 
differential equations, which is a commonly used modeling and solving method for system dynamics. 
However, the lumped parameter method is a simplified modeling method, which usually regards the shaft 

(a)                           (b) 

(c)                           (d) 

(e)                                             (f)

(g)

Figure 5.   Influence of dynamic friction coefficient of friction clutch on bifurcation characteristics of internal 
gear ring. (a) μ = 0.17, (b) μ = 0.16, (c) μ = 0.15, (d) μ = 0.14, (e) μ = 0.13, (f) μ = 0.12, (g) μ = 0.11.
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as a point mass or a rigid connection, and has certain limitations in capturing the deflection and deforma-
tion of the shaft.

(2)	 In future studies, under the condition that the amount of calculation is appropriate, if the accuracy is 
required to be high, the potential energy method or Timoshenko theory can be considered for modeling, 
which will make the results more accurate.

Data availability
All data, models, and codes generated or used during the study are included within the article.
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