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Muscle‑driven simulations 
and experimental data of cycling
Caitlin E. Clancy 1,6, Anthony A. Gatti 2,6*, Carmichael F. Ong 3, Monica R. Maly 4 & 
Scott L. Delp 1,3,5

Muscle‑driven simulations have provided valuable insights in studies of walking and running, but 
a set of freely available simulations and corresponding experimental data for cycling do not exist. 
The aim of this work was to develop a set of muscle‑driven simulations of cycling and to validate 
them by comparison with experimental data. We used direct collocation to generate simulations 
of 16 participants cycling over a range of powers (40–216 W) and cadences (75–99 RPM) using two 
optimization objectives: a baseline objective that minimized muscle effort and a second objective 
that additionally minimized tibiofemoral joint forces. We tested the accuracy of the simulations by 
comparing the timing of active muscle forces in our baseline simulation to timing in experimental 
electromyography data. Adding a term in the objective function to minimize tibiofemoral forces 
preserved cycling power and kinematics, improved similarity between active muscle force timing 
and experimental electromyography, and decreased tibiofemoral joint reaction forces, which better 
matched previously reported in vivo measurements. The musculoskeletal models, muscle‑driven 
simulations, simulation software, and experimental data are freely shared at https:// simtk. org/ proje 
cts/ cycli ng_ sim for others to reproduce these results and build upon this research.

More than 50 million Americans (12.4% of the population) cycle for sport, leisure, transportation, and 
 rehabilitation1. Previous research has characterized cycling  kinematics2–4, pedal  forces5–8, joint  moments7–10, and 
muscle activity with electromyography (EMG)7,11–17 by analyzing experimental data. Other work has focused on 
biomechanical consequences of altering  power3,5,  cadence3,5,10,18,19, and bike  fit2,20,21. Previous studies encompass 
a wide range of cadence (40–120 RPM), power output (98–350 W), and cycling experience (recreational to elite).

Musculoskeletal simulation allows researchers to gain deeper insights into the biomechanics of movement. 
Simulation has been used to estimate biomechanical quantities that are hard to measure, such as muscle 
 forces22–24, joint  loads25,26, and muscle–tendon lengths and  velocities22,27. Often, models are created and validated 
for specific applications, such as analyzing walking and  running28,29, high-flexion human  movements14, and 
knee contact  forces30. Static optimization has been used to predict muscle forces in  cycling31 and  walking32–34, 
and to identify how alternate muscle coordination strategies may reduce knee contact  forces32,34. Computed 
Muscle Control has been used to predict muscle excitations during  cycling14,35, but unlike static optimization, 
Computed Muscle Control accounts for muscle–tendon dynamics, improving estimates of muscle fiber lengths 
and velocities; these muscle parameters are necessary for accurately estimating quantities such as the metabolic 
energy expended by  muscles36,37. Computed Muscle Control, however, has limited flexibility in the optimization 
objective function, which only minimizes the sum of squared muscle activations.

Choosing an objective function when generating a simulation is important as the objective function represents 
the balance between many factors that affect movement. Adjusting the objective function enables simulations to 
be used to explore how a desired mechanical or physiologic outcome can be achieved or to test neuromuscular 
control  hypotheses38. For example, simulations suggested that tibiofemoral reaction forces during gait can be 
reduced by more than 1 body weight, a desirable outcome for knee osteoarthritis patients, via changes in muscle 
 coordination34,39. A follow-up experimental study showed that these changes in muscle coordination can be 
achieved using EMG  biofeedback32. Furthermore, it has been suggested via an animal  model40 and human 
experimental  studies41,42 that neuromuscular coordination may be regulated by joint stresses and pain. Therefore, 
an objective function that captures key features for how humans control movement may need to include a term 
that represents joint reaction forces.
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Recent advances and open-source tools in optimal control methods, and in particular direct collocation, 
allow researchers to efficiently solve trajectory optimization problems with many objectives and  constraints43. 
These tools enable optimization of multiple concurrent objectives, such as muscle excitations, metabolic cost, and 
joint forces, which allows simulations to identify ways to improve human performance, optimize rehabilitation, 
or mitigate  injury43–46. Important early work demonstrated that optimal control methods can successfully solve 
cycling-based trajectory optimization problems using planar models with torque  actuators47 and with up to 9 
muscles per  leg15,48. Development of three-dimensional (3D) models will enable assessment of frontal plane loads 
during cycling, a particular interest for knee osteoarthritis  rehabilitation49–54.

Freely available musculoskeletal models, software, and data provided by the Full-Body Gait  Model28 and Full 
Body Running  Model29 have enabled significant progress in biomechanics research for walking and running. 
Analogous freely available models, software, and data are not available for cycling that is representative of typical 
cadence and power. Thus, our primary aim was to develop a set of 3D muscle-driven simulations of cycling that 
capture the salient features of cycling biomechanics under a breadth of recreational conditions. The secondary 
aim was to explore how adjustments to the optimal control objective function could be used to identify muscle 
coordination patterns that reduce knee joint reaction forces during cycling. To enable other researchers to 
reproduce and build upon our work, we provide OpenSim models, marker trajectory data, pedal reaction forces, 
and code to run the direct collocation simulations at https:// simtk. org/ proje cts/ cycli ng_ sim.

Methods
OpenSim55 was used to create 3D muscle-driven cycling simulations of healthy participants (Fig. 1). Scaled 
OpenSim models and experimental marker  data31 served as inputs to the Inverse Kinematics (IK) Tool for 
computing joint kinematics. Errors in dynamic consistency between the kinematic and kinetic data were reduced 
using the Residual Reduction Algorithm (RRA) Tool. The OpenSim  Moco43 Tool was then used to generate 
muscle-driven simulations to estimate muscle forces and tibiofemoral joint reaction forces.

Experimental data were collected in a previous study for 16 healthy participants (18–45 years of age) with 
cycling experience ranging from recreational to  elite21,31. Participants provided informed consent, and this 
study was approved by the Hamilton Integrated Research Ethics Board and was carried out in accordance with 
all pertinent guidelines and regulations. Anthropometric data including height, inseam, and foot length were 
measured and used to prescribe a bike fit for each participant. All cycling was performed on a commercial bike 
(Fit Bike Pro, Purely Custom, Twin Falls, ID, USA) using flat, instrumented pedals with the foot tightly secured 
using Velcro straps. The participants cycled at a self-selected cadence and a power output (Table 1) that elicited a 
heart rate of 70–75% of age-predicted  maximum21,31. Data were collected for three minutes of seated cycling. To 
track kinematics, 40 retroreflective markers were sampled at 112.5 Hz with 12 infrared cameras (Motion Analysis 
Corporation, Santa Rosa, CA). Synchronous pedal reaction forces were collected at 450 Hz (Science To Practice, 
Ljubljana, Slovenia). Four markers were placed on each pedal to track the pedals’ location and orientation. Marker 
data were filtered with a second-order low-pass dual-pass Butterworth 6 Hz filter (Python Software Foundation, 
python. org; SciPy, Enthought, SciPy. org) and pedal reaction force data were filtered with a low-pass 10 Hz filter 
(MATLAB R2020b, The MathWorks, Inc., Natick, MA, USA).

Participant-specific, 3D, 16 degree of freedom (DOF) lower-body musculoskeletal models (6 pelvis DOF, 
3 hip DOF, 1 knee DOF, 1 ankle DOF) were developed for cycling based on a previous high flexion  model14 
(Supplementary Discussion S1). From the cycling trials, functional knee joint centers were created using the 
Score  method56, and hip joint centers were calculated using the Harrington  method57. Using joint centers and 
anatomic markers, the model was scaled for each participant using the OpenSim Scale  Tool21,31. After scaling, 
muscle moment arms were verified manually, with particular emphasis on the biceps femoris which has been 
reported to erroneously produce knee extension moments in deep knee  flexion14 (Supplementary Fig. 1).

Figure 1.  Motion capture and pedal force data were collected, and a musculoskeletal model was scaled for 
each participant. For each participant, the motion capture data and scaled model were used to perform inverse 
kinematics (IK). The pedal forces and resultant kinematics were input into the residual reduction algorithm 
(RRA) to produce dynamically consistent kinematics with a correspondingly adjusted model. These outputs, 
along with the pedal forces, were used in OpenSim Moco to generate muscle-driven simulations and calculate 
muscle forces and tibiofemoral joint reaction forces (JRF)s.

https://simtk.org/projects/cycling_sim
https://www.python.org/
https://www.SciPy.org/
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The model was adjusted for use with the direct collocation method as implemented by OpenSim  Moco43. 
Muscles were modeled using a continuous and differentiable muscle  model58. For each muscle–tendon unit whose 
tendon slack length was shorter than its optimal fiber length, the tendon was modeled as  rigid14,28. To model the 
pelvis-saddle interaction, actuators were applied to all 6 pelvis DOFs with sufficient capacity to support up to 
1 body weight. All rotational degrees of freedom had torque actuators to ensure the model could produce the 
prescribed motions. With the exception of the torque actuator supporting hip rotation, in which the model was 
deemed to have insufficient muscle  actuation59, all other torque actuators contributed joint moments that were 
within the acceptable range of 5% of the peak net moment for each respective degree of  freedom60.

The OpenSim IK, RRA, and Moco simulation pipeline (Fig. 1) was analyzed for one full crank cycle of the 
right leg, two minutes into the cycling bout. A revolution of the crank cycle began when the right foot was at 
top dead center (TDC) and concluded once the right foot was back at TDC. The IK Tool minimized the least 
squares difference between motion capture markers and model markers to produce model kinematics. The RRA 
Tool filtered the IK kinematics at 6 Hz, and then used the filtered kinematics and filtered pedal reaction forces 
and moments applied to the calcaneus to adjust the kinematics and model’s segment masses and mass center 
locations to improve dynamic  consistency61. Finally, OpenSim Moco was used to perform direct collocation to 
generate muscle-driven simulations and to compute the muscle forces and tibiofemoral forces that produced 
each cycling trial’s  kinematics43.

The MocoInverse Tool was used to solve for muscle excitations necessary for the RRA-adjusted model to 
match the prescribed RRA-adjusted kinematics and pedal reaction forces. To compute excitations, the optimizer 
minimized an objective function subject to kinematic  constraints43. MocoInverse enforces muscle excitations 
and muscle activations to be equal at the start of the simulation. Simulations were started before TDC, and then 
only the data from a single revolution (TDC to TDC) were analyzed. Two different optimization functions were 
implemented. The first objective function (J1) was used to generate baseline simulations that produced the desired 
cycling motion while minimizing muscle effort. The optimizer sought to minimize J1, which was composed of 
the weighted sum of a control effort term (w1 = 2) and an implicit auxiliary derivatives term (w2 = 1e−6). The 
control effort term included both the sum of squared muscle excitations (e(t)) and the sum of squared reserve 
and residual actuator controls at each of the DOFs (u(t)) from the start (t0) to the end (tf) of the simulation. In 
our model, muscle excitations (e(t)) are control inputs that range between 0 and 1, representing neural excitation 
(motor neuron recruitment and firing rate), and forces are calculated from excitations using a muscle  model62. 
Residual actuators account for unmeasured saddle-pelvis interactions. Reserve actuators supply additional torque 
for lower-body degrees of freedom, which can help improve  convergence60. The control effort weight (w1 = 2) was 
chosen by testing progressively smaller weights to reduce solver time while remaining sufficiently high enough 
that muscle activations were not sensitive to the exact weight  chosen43. The implicit auxiliary derivatives term 
was defined as the sum of squared derivatives of the auxiliary variables related to compliant tendons ( ̇z(t)), which 
improved convergence time. The auxiliary derivatives weight (w2 = 1e−6) was chosen such that it was sufficiently 
small to not substantially alter muscle excitations. The second objective function (J2) was used to study how 
muscle coordination can change in order to minimize knee forces. The second objective function augmented 
the first by adding a weighted (w3 = 1e−3) term to minimize the sum of squared tibiofemoral forces (Ftf) of both 
legs. The optimizer convergence tolerance and optimizer constraint tolerance for all simulations were set to 1e−3. 
For clarity, we report all results for the right leg only.

Table 1.  Descriptive statistics of the included participants and their cycling trials.

Participant
Height
(cm)

Weight
(kg) Sex

Cadence
(RPM)

Power
(W) Age (years)

P01 169.0 60.4 Female 77 60 29

P02 182.2 92.3 Male 80 107 22

P03 171.2 74.2 Male 83 120 21

P04 166.2 61.1 Female 92 81 23

P05 195.4 90.8 Male 84 136 28

P06 181.7 77.3 Male 90 216 27

P07 188.1 79.4 Male 92 161 41

P08 173.0 66.5 Male 90 117 42

P09 179.8 76.1 Male 75 156 26

P10 183.5 89.3 Male 85 160 19

P11 163.1 54.2 Female 78 94 32

P12 183.7 91.5 Male 80 116 31

P13 191.6 83.0 Male 90 199 44

P14 159.8 56.7 Female 86 40 42

P15 168.5 57.1 Female 85 144 31

P16 179.6 78.0 Male 89 208 35
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Results
We observed that ankle dorsiflexion and pelvic tilt angles had high inter-subject variability, while knee and hip 
flexion had less (Fig. 2, Supplementary Fig. 2). Hip flexion, knee flexion, and ankle dorsiflexion joint moments 
also had relatively large inter-subject variability (Fig. 3, Table 1). Individual curves for all 16 participants for 
joint angles and joint moments are provided in Supplementary Figs. 2, 3. The kinematics of the simulation and 
those produced by IK were nearly identical (Supplementary Fig. 4).

For our baseline simulations (J1) that minimized muscle effort, the active muscle forces required to actuate 
the model had relatively large inter-subject differences for the muscles producing large active forces such as the 
rectus femoris, biceps femoris long head, tibialis anterior, iliacus, and psoas muscles, and smaller inter-subject 
differences for muscles producing smaller active forces such as the biceps femoris short head, semitendinosus, 
semimembranosus, and soleus (Fig. 4). Within-subject, between pedal revolution, variations in muscle forces 
were relatively small (Supplementary Fig. 5), thus aggregated muscle force data across all subjects are reported 
using a single revolution per subject. Muscle activations are also included in Supplementary Fig. 6. Passive 
forces, based on model kinematics and muscle passive force–length curves, contributed considerably to the 
total forces in the vasti, semimembranosus, semitendinosus, soleus, and glutei. Calculated tibiofemoral forces 
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Figure 2.  Simulation results of the mean joint angle ± 2 SD of the right leg for each rotational DOF. TDC 
denotes top dead center and BDC denotes bottom dead center of the crank cycle. Positive angles denote hip 
flexion, hip adduction, hip internal rotation, knee flexion, and ankle dorsiflexion. Pelvis tilt, list, and rotation 
are defined as rotation about the medial–lateral, anterior–posterior, and superior-inferior axes of the pelvis, 
respectively, and the positive directions of the axes of rotation for tilt, list, and rotation, are right, anterior, and 
superior in the pelvis reference frame.
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produced the characteristic first and second peaks, which occur just after TDC and just before bottom dead 
center (BDC) (Fig. 5).

When tibiofemoral forces were also minimized in the objective function (J2), co-contraction of muscles that 
cross the knee was reduced (Fig. 6; Supplementary Fig. 6; Supplementary Fig. 7). For example, the gastrocnemii 
may be preferentially chosen over the soleus when the tibiofemoral force is not penalized (J1) because the model’s 
gastrocnemii have greater moment arms than the soleus moment arm over the course of a pedal revolution 
(Supplementary Fig. 8). The gastrocnemii are also active through BDC, when the knee has a net flexor moment 
and the ankle a plantarflexor moment; therefore, the gastrocnemii may serve dual purposes of generating 
plantarflexion and knee flexion moments. Active force was decreased in other major muscles that cross the 
knee, including the biceps femoris long head, biceps femoris short head, rectus femoris, and vastus lateralis; 
these changes in muscle forces decreased the mean tibiofemoral force for the entire crank cycle (Fig. 5). For 
simulations with and without the tibiofemoral force penalty, the primary tibiofemoral force peak occurred shortly 
after TDC. In simulations that were generated using the J2 objective function, a participant’s cycling power was 
a strong predictor of peak tibiofemoral forces (Fig. 7).

Discussion
We developed muscle-driven cycling simulations using direct collocation for 16 participants. The participants 
spanned large ranges of cadence (75–99 RPM) and power (40–216 W), representative of experimental literature. 
We showed an example of how these data and models could be used to inform rehabilitation strategies by 
altering the objective function to produce muscle coordination strategies that reduce knee forces. The simulations 
identified that tibiofemoral forces can be reduced by increasing soleus force and reducing gastrocnemii forces, 
something that previous research indicates is trainable in a single  session32.
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Figure 3.  The mean joint moment ± 2 SD of the right leg for each rotational DOF. TDC denotes top dead center 
and BDC denotes bottom dead center of the crank cycle. Positive angles denote hip flexion, hip adduction, hip 
internal rotation, knee flexion, and ankle dorsiflexion. Hip flexion, knee flexion, and ankle dorsiflexion had 
relatively large inter-subject variability, likely due to differences in cycling power.
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Our direct collocation-based 3D simulations of cycling build upon previous work. Zignoli and colleagues 
created a 2D, torque-driven model for one participant and demonstrated that their model and optimal control 
framework could predict experimental joint torques that qualitatively compared well with experimental data of 
 cycling47. Park et al.15 developed direct collocation-based cycling simulations with planar (2D) models driven by 
9 muscle–tendon units per leg representing the major muscle groups that drive sagittal plane motion. Their two-
legged model was first used to perform sensitivity analyses to investigate how different objective function weights, 
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Figure 5.  The mean compressive tibiofemoral forces ± 2 SD with an objective cost function, J1, minimizing 
muscle excitations only (solid line, light shading) and an objective cost function, J2, minimizing muscle 
excitations and tibiofemoral forces (dashed line, dark shading). Data for the right leg are presented. With the 
addition of a tibiofemoral force penalty (J2), tibiofemoral forces were reduced throughout the revolution.
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node densities, and initial conditions affect the results and time to solve the direct collocation problem. They then 
used a single-legged  model48 to study how muscle coordination changed before and after learning a new way 
to direct pedal force. Park and colleagues freely shared their model and  code15, a significant contribution to the 
field. However, the relatively low cadence and power (30 RPM and 30 W), even compared to older-adult clinical 
populations (40–90 RPM and 25–100 W)51,63–66, means these data have limited generalizability. Furthermore, 
the sagittal-plane nature of these models necessitates omission of frontal plane forces. Our work contributes 16, 
3D participant-specific bi-lateral simulations driven by 80 muscle–tendon units, allowing for investigation of 
muscle actions and analysis of frontal plane  biomechanics49,50,52–54.

With the tibiofemoral force penalty, tibiofemoral forces and muscle forces more closely matched experimental 
 results63. Specifically, the mean peak tibiofemoral force was reduced from ~ 2000 to ~ 1200 N. These reduced 
forces better agree with in vivo measurements from an instrumented joint replacement where peak forces were 
between 793 and 1520 N when cycling at 120  W63 (mean power of our study = 137 W). Furthermore, our model’s 
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estimated tibiofemoral forces were related to cycling power (Fig. 7; R2 = 0.66, p < 0.001), agreeing with results from 
the instrumented joint  replacements63. Muscle force changes included a decrease in biceps femoris long head 
muscle forces near TDC, and an increase in semimembranosus and semitendinosus muscle forces near BDC; both 
changes better agree with EMG data from the  literature7,11–17. Furthermore, peak soleus muscle forces increased 
substantially, while the gastrocnemii and tibialis anterior muscle forces decreased. The resulting plantarflexor 
muscle force patterns were more consistent with EMG data in the literature, particularly the increased soleus 
 activity7,12–17. Therefore, for cycling, tibiofemoral force penalization may create a more physiologic simulation 
due to improved force sharing between ankle  plantarflexors7,11–17. Future research should continue to explore 
whether inclusion of a tibiofemoral force penalty term in the objective function better represents human motor 
control  patterns41.

The model’s simulated muscle forces capture salient features present in previous EMG literature. However, 
there were a few discrepancies. In particular, the biceps femoris long head was not active at BDC, as seen in the 
literature, and there was delayed active force timing of the biceps femoris short  head7,11–16. Delayed timing may 
be explained by electromechanical delay between EMG data and force  production67. It is possible that excess 
vasti passive forces, which comprised a significant portion of their total force, could have affected timing and 
magnitudes of the active hamstring forces (Supplementary Fig. 9). Considerable passive forces, relative to total 
forces, also existed for the soleus, semimembranosus, and glutei (Supplementary Fig. 9). After adjusting the soleus 
optimal fiber lengths (Supplementary Fig. 10; Supplementary Discussion S1), mean passive forces in the model 
were less than 8% of their respective maximum isometric forces, and thus were deemed acceptable. Unfortunately, 
we did not have experimental EMG data for direct comparison with our trials.

We present a set of baseline cycling simulations and an example set of simulations generated by penalizing 
tibiofemoral forces that resulted in an alternative, potentially more physiologic, muscle coordination strategy. 
We encourage researchers to build upon this work by leveraging the accompanying data and the flexibility of the 
direct collocation method. For instance, alternate cost terms can be added to these simulations to identify optimal 
muscle control strategies for different clinical or human performance applications. Due to the adaptability of 
the bicycle, another avenue for future research includes using muscle-driven predictive simulations (e.g., those 
that allow joint kinematics to deviate from experimental data) to gain insight into optimizing joint kinematics, 
muscle coordination, and bike fit. These simulations could help identify bike fits that reduce injury risk through, 
for example, minimizing peak patellofemoral joint reaction forces for patellofemoral pain or Achilles forces for 
Achilles tendinopathy. The use of muscle-driven simulations applied to cycling has the potential to have a high 
impact for optimizing rehabilitation and human performance.

Data availability
All data and code to run the presented simulations are freely available at https:// simtk. org/ proje cts/ cycli ng_ sim.
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