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System biology mediated 
assessment of molecular 
mechanism for sinapic acid 
against breast cancer: via network 
pharmacology and molecular 
dynamic simulation
Prarambh S. R. Dwivedi  * & C. S. Shastry *

Sinapic acid is a hydroxycinnamic acid widespread in the plant kingdom, known to be a potent anti-
oxidant used for the treatment of cancer, infections, oxidative stress, and inflammation. However, 
the mode of action for its chemotherapeutic properties has yet not been unleashed. Hence, we aimed 
to identify potential targets to propose a possible molecular mechanism for sinapic acid against 
breast cancer. We utilized multiple system biology tools and databases like DisGeNET, DIGEP-Pred, 
Cytoscape, STRING, AutoDock 4.2, AutoDock vina, Schrodinger, and gromacs to predict a probable 
molecular mechanism for sinapic acid against breast cancer. Targets for the disease breast cancer, 
were identified via DisGeNET database which were further matched with proteins predicted to be 
modulated by sinapic acid. In addition, KEGG pathway analysis was used to identify pathways; a 
protein-pathway network was constructed via Cytoscape. Molecular docking was performed using 
three different algorithms followed by molecular dynamic simulations and MMPBSA analysis. 
Moreover, cluster analysis and gene ontology (GO) analysis were performed. A total of 6776 targets 
were identified for breast cancer; 95.38% of genes predicted to be modulated by sinapic acid were 
common with genes of breast cancer. The ‘Pathways in cancer’ was predicted to be modulated by most 
umber of proteins. Further, PRKCA, CASP8, and CTNNB1 were predicted to be the top 3 hub genes. 
In addition, molecular docking studies revealed CYP3A4, CYP1A1, and SIRT1 to be the lead proteins 
identified from AutoDock 4.2, AutoDock Vina, and Schrodinger suite Glide respectively. Molecular 
dynamic simulation and MMPBSA were performed for the complex of sinapic acid with above 
mentioned proteins which revealed a stable complex throughout simulation. The predictions revealed 
that the mechanism of sinapic acid in breast cancer may be due to regulation of multiple proteins like 
CTNNB1, PRKCA, CASP8, SIRT1, and cytochrome enzymes (CYP1A1 & CYP3A4); the majorly regulated 
pathway was predicted to be ‘Pathways in cancer’. This indicates the rationale for sinapic acid to 
be used in the treatment of breast cancer. However, these are predictions and need to be validated 
and looked upon in-depth to confirm the exact mechanism of sinapic acid in the treatment of breast 
cancer; this is future scope as well as a drawback of the current study.
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ER	� Estrogen receptor
FDR	� False discovery rate
GC	� Gene count
HRT	� Hormone replacement therapy
KEGG	� Kyoto encyclopedia of genes and genomes
MD	� Molecular dynamics
MF	� Molecular function
MMPBSA	� Molecular mechanics Poisson-boltzmann surface area
NAD	� Nicotinamide adenine dinucleotide
NBHA	� Number of hydrogen bond acceptor
NHBD	� Number of hydrogen bond donor
NOS	� Nitric oxide synthase
PDB	� Protein data bank
Rg	� Radius of gyration
RMSD	� Root mean square deviation
RMSF	� Roost mean square fluctuation
RCSB	� Research collaboratory for structural bioinformatics
SA	� Sinapic acid
SMILES	� Simplified molecular input line entry system
TNBC	� Triple negative breast cancer
XP	� Extra precision

Cancer is one of the dreaded diseases portrayed by uncontrolled proliferation of abnormal cells that occurs due 
to impairment of cell division and apoptotic process1. Breast cancer (BC) is the most common cause of death 
among women, and it is divided into categories based on the organs involved. Blood leakage from the nipple, 
changes in the shape or texture of the nipple or breast, and a lump in the breast are indications for breast cancer2. 
Female breast cancer (11.7%) has surpassed lung cancer (11.4%) as the most commonly diagnosed cancer, with an 
estimated 2.3 million new cases3. The current scenario of breast cancer in the world briefs approx. 46 incidences 
of breast cancer for every 100,000 females with a mortality of around 13 women in 100,0004. Breast cancer etiol-
ogy is majorly (> 90%) associated with environmental and lifestyle factors; the major risk factors include obesity, 
oral contraception, hormone replacement therapy (HRT), late menopause, early menarche, high calorie/fat diet, 
and alcohol consumption5,6.

The utilization of medicinal plants for the treatment of various diseases has a long history; contains multiple 
diverse metabolites which are pharmacologically active7,8. In the current scenario, the use of plants as a source 
of medicine has diminished; although prominent in the Asian subcontinent where traditional medicine systems 
like Traditional Chinese Medicine (TCM) and Ayurveda are still practiced9,10. A Widely used taxane-diterpene 
plant metabolite, Taxol (Paclitaxol) obtained from Taxus brevifolia bark is an integral bioactive for the current 
chemotherapy11. Similarly, Vincristine and Vinblastine are Catharanthus roseus isolates; used to treat clinical 
leukemia and Hodgkin’s disease12.

Sinapic acid is 1 of the 4 most common hydroxycinnamic acids which is widespread in the plant kingdom and 
is present in various fruits, vegetables, cereal grains, oil seed crops, some spices, and medicinal plants13. It has 
been proposed to be a potent anti-oxidant by researchers with its effectiveness to be greater than ferulic acid, 
a hydroxycinnamic acid already used as a natural antioxidant in foods, beverages, and cosmetics14. Balaji et al. 
reported sinapic acid to possess chemo-preventive potential against 1,2-dimethylhydrazine (DMH)-induced rat 
colon carcinogenesis15. Also, a study conducted by Eroğlu et al. reported the anti-cancer potential of sinapic acid 
against PC-3 and LNCaP human prostate cancer cell lines via overexpression of BAX, CASP3, CASP8, CYCS, 
FAS, TIMP-1, CDH1 and downregulation of MMP-9 in PC-3 cell lines16. In addition, multiple studies have been 
conducted to assess the cytotoxic potential of sinapic acid on various cell lines like human laryngeal carcinoma 
cell line (HEp-2)17, chinese hamster lung fibroblasts (V79), human cervical carcinoma (HeLa)18, and breast 
cancer cell lines MCF7, MDA-MB-23119, and T47D20 which displayed promising potential of sinapic acid as an 
anti-cancer agent. Hence, making sinapic acid a convincible bioactive against cancer; this additionally, kindled 
us to assess the potential targets sinapic acid modulates against breast cancer.

System biology tools own great importance in the current scenario of drug discovery as it provides precedence 
to identify a potent lead hit from multiple test agents21,22. Sinapic acid has been tested and reported against various 
pathological conditions such as infections, oxidative stress, inflammation, cancer, diabetes, neurodegeneration, 
and anxiety23. It has also been reported to possess protective properties against various chemotherapeutic drugs 
like doxorubicin, cisplatin, and methotrexate24–26. In this context, we have utilized system biology tools to predict 
the possible molecular mechanism for sinapic acid as an anti-cancer agent for the treatment of breast cancer via 
utilizing tools like molecular docking, gene set enrichment analysis, and gene ontology analysis.

Material and methods
Physiochemical properties and identification of targets
The physicochemical properties of sinapic acid were retrieved from the Molsoft LLC database (https://​molso​ft.​
com/​mprop/) and parameters like number of hydrogen bond donors (NHBD) & acceptors (NHBA), octanol/
water partition coefficient (MolLogP), and drug-likeness score were predicted. The reported targets of breast 
cancer were retrieved from DisGeNET database (https://​www.​disge​net.​org/) using the keyword “Breast Carci‑
noma” with disease id “C0678222”; 6776 genes were identified. The targets regulated by test agent “Sinapic acid” 
were retrieved from DIGEP-Pred27 (http://​www.​way2d​rug.​com/​ge/) database via previously retrieved SMILES 

https://molsoft.com/mprop/
https://molsoft.com/mprop/
https://www.disgenet.org/
http://www.way2drug.com/ge/
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from PubChem (https://​pubch​em.​ncbi.​nlm.​nih.​gov/​compo​und/​637775); targets possessing pharmacological 
activity greater than pharmacological inactivity were included.

Gene ontology (GO) analysis
The gene ontology (GO) of targets modulated by sinapic acid were retrieved from the STRING database; cellular 
components (CC), molecular function (MF), and biological process (BP) were retrieved for individual analysis. 
A chord diagram was constructed for the top 5 CC, MF, and BP using the software OriginPro 2021b. Further, 
GO analysis was performed where a correlation matrix was implemented with two-tailed test for confidence of 
95% to compute the Pearson correlation coefficient.

Network construction
The bioactive regulated targets identified from DIGEP-Pred were matched with the genes involved in the patho-
genesis of breast cancer (DisGeNET database code: C0678222) and a network of protein–protein interaction 
was constructed via STRING28 ver. 11.5 (https://​string-​db.​org/). Further, KEGG pathway analysis was utilized 
to identify sinapic acid-regulated pathways which were further integrated into pathway-protein interaction via 
Cytoscape29 ver. 3.9.0. The network was treated as directed and analyzed based on edge count by mapping node 
size and color. Additionally, network analysis was done based on “Node degree distribution” and “Betweenness 
by degree” where parameters like eccentricity, neighborhood connectivity, in-degree distribution, and outdegree 
distribution were analyzed.

Construction of cluster and its analysis
Cluster analysis was performed via ClueGo30 add-on tool (v.2.5.8) in Cytoscape 3.9.0; CC, MF, BP, and KEGG 
enriched proteins were analyzed by applying functional analysis (two-sided hypergeometric test) with ‘Network 
specificity’ to be ‘medium’, pV value to be less than 0.05, the ‘GO tree interval’ was kept in the range of ‘3–8 
pathway’, and ‘GO term selection of cluster’ was set to three genes minimum with a percentage of 4. Kappa score 
threshold was kept at 0.4 using the Bonferroni step-down correction method. The cluster was constructed on 
ClueGo layout with the above parameters.

In‑silico molecular docking
In the present study, sinapic acid was docked with 62 proteins using 3 different algorithms; AutoDock Vina, 
AutoDock 4.2, and Schrodinger suite Glide. Initially, the ligand was prepared by minimizing its energy, followed 
by target preparation and molecular docking. In addition, docking was performed on the top 5 targets with their 
respective standard ligands using the three algorithms.

Ligand preparation
The 3D conformation of sinapic acid was retrieved in .sdf format from the PubChem database and was converted 
into .pdb format using Discovery studio visualizer (BOVIA Discovery Studio Visualizer; https://​disco​ver.​3ds.​
com/​disco​very-​studio-​visua​lizer-​downl​oad) 2019. The energy of the ligand was minimized using MMFF97 
forcefield31 and was converted into .pdbqt format for docking.

Homology modeling and target preparation
The structures of targets were initially queried in UniProt (https://​www.​unipr​ot.​org/) database to identify avail-
able structures in Protein Data Bank (RCSB; https://​www.​rcsb.​org/). The targets not available were further mod-
eled using the known FASTA sequence deposited in UniProt database using SWISS-MODEL32 (https://​swiss​
model.​expasy.​org) (Supp. File 4 (Sheet 1)). All the hetero-atoms present in the protein were removed and saved 
in .pdb format utilizing Discovery studio visualizer.

Ligand–protein docking
AutoDock vina.  The ligand sinapic acid was docked against the identified proteins using AutoDock Vina at 
PyRx (https://​pyrx.​sourc​eforge.​io/) ver. 0.8 platform to obtain binding affinity of sinapic acid with multiple tar-
gets involved in the pathogenesis of breast cancer. Further, the targets with which sinapic acid possessed the 
least binding energy were visualized in Discovery Studio Visualizer and the poses of ligand pertaining to the 
least binding energy with maximum intermolecular interactions was selected to be foreseen in Discovery studio.

AutoDock 4.2.  The proteins were read in .pdb format, previously created via Discovery studio by removing 
hetero atoms and unwanted chains (if any). Polar hydrogens were added along with Kollman charges to build the 
protein into .pdbqt. The grid box was set at the center of the macromolecule and docking was performed using a 
genetic algorithm with 10 genetic algorithm runs with two-point crossover mode. The pose possessing the least 
binding energy was visualized for protein–ligand interaction.

Schrodinger suite glide
The LigPrep module of Schrodinger suite (https://​www.​schro​dinger.​com/) 2019 was used to prepare the ligand 
molecule, a low-energy conformation of the ligand was made prior to docking. Further, the protein preparation 
wizard module was utilized to prepare the protein by adding missing amino acids and the OPLS-3 forcefield was 
used to minimize the energy. Water molecules were removed and conceivable ionization states for the hetero 
atoms in the protein were produced; one with the highest stability was chosen.

https://pubchem.ncbi.nlm.nih.gov/compound/637775
https://string-db.org/
https://discover.3ds.com/discovery-studio-visualizer-download
https://discover.3ds.com/discovery-studio-visualizer-download
https://www.uniprot.org/
https://www.rcsb.org/
https://swissmodel.expasy.org
https://swissmodel.expasy.org
https://pyrx.sourceforge.io/
https://www.schrodinger.com/
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The site map module was used to identify the binding pocket of the proteins, and a grid box was set with 
dimensions (18 Å, 18 Å, 18 Å) using the Glide grid generation wizard (https://​nodep​it.​com/​node/​com.​schro​
dinger.​knime.​node.​gridg​en.​GridG​enNod​eFact​ory) at the center of the identified binding pocket. The Glide 
module of Schrodinger suite 2019 was used to perform protein–ligand docking using extra precision (XP) mode 
and OPLS-3 force field was implemented to dock in flexible docking mode; creating confirmations for the input 
ligand. Further, the Docking score was generated automatically after the completion and results were analyzed 
via the Glide modules XP visualizer.

Molecular dynamic simulation
Reason for selection of proteins
The complexes subjected to MD simulation were chosen based on the hub genes (based on edge count) identi-
fied from gene enrichment analysis (PRKCA (PDB ID: 3PFQ), CASP8 (PDB ID: 1QTN), and CTNNB1 (PDB 
ID: 2Z6H)) and the complexes possessing the least binding energy with respective algorithms i.e. AutoDock 
4.2 (CYP3A4 (PDB ID: 5A1R)), AutoDock Vina (CYP1A1 (PDB ID: 4I8V)), and Schrodinger (SIRT1 (PDB ID: 
4ZZI)).

Gromacs version 2022.1 (https://​www.​groma​cs.​org/) was used to perform the MD Simulations. The topology 
of the protein was generated by applying charmm36 forcefield33 using the pdb2gmx module of gromacs. The 
proteins were solvated using three-point water model in a dodecahedron box with dimensions of 1 nm in all 
directions. The model system was neutralized by adding sodium (Na+) and Chloride (Cl-) ions as counter ions. 
Energy minimization was performed using steepest descent integrator with verlet cutoff scheme for a maximum 
of 50,000 steps to achieve the least energy confirmation. The system was equilibrated using Canonical (NVT) 
and Isobaric (NPT) for 100 picoseconds. V-rescale, a modified Berendsen thermostat was applied to maintain 
constant volume and temperature at 300 K. Similarly, a C-rescale pressure coupling algorithm was applied to 
maintain constant pressure at 1 bar. Particle Mesh Ewald was applied for computing long-range electrostatics, 
coulomb, and vander waals with a cut-off of 1.2 nm. The LINCS algorithm was used to constrain bond length. 
Each complex was subjected to MD run for 200 ns; the coordinates and energies were saved at every 20 picosec-
onds. The trajectories generated were analyzed using in-built gromacs utilities34.

Molecular mechanics Poisson‑Boltzmann surface area (MMPBSA) analysis
The gmx_MMPBSA module35 was used to analyze the energy contribution parameters like Vander Waals & 
electrostatic molecular mechanics energy, polar contribution to the salvation energy, non-polar contribution of 
solute–solvent interactions to the solvation energy, non-polar contribution of attractive solute–solvent inter-
actions to the salvation energy, total gas phase molecular mechanics energy, total solvation energy, and total 
relative binding energy.

The MMPBSA run was performed for 82 frames from a total of ten thousand frames with an interval of 120. 
The Poisson Boltzmann calculations were performed using an internal PBSA solver in a sander. The MMPBSA_
ana module was used to visualize the results obtained from the gmx_MMPBSA run36.

Results
Physiochemical properties and Identification of targets
The physiochemical properties of sinapic acid revealed NHBD as 2, NHBA as 5, MolLogP as 1.09, and drug-
likeness score of − 1.07; sinapic acid has a molecular weight of 224 g/mol and obeys Lipinski’s rule of five (Fig. 1). 
6776 targets related to breast cancer were identified from which 45.3% of the overall targets belonged to the 
class of enzymes, 7.8% were identified as receptors, and 6.3% of targets were identified as a transcription factors 
(Fig. 2). Similarly, the proteins predicted to be modulated by sinapic acid were majorly classified as enzymes 
(43.5%), and receptors (8.1%) (Fig. 2).

Figure 1.   (a) 2D and (b) 3D structure of sinapic acid; PubChem CID: 637,775, Molecular formula: C11H12O5, 
Molecular weight: 224.21 g/mol, NHBD: 2, NHBA: 5, MolLogP: 1.09, and drug-likeness score: – 1.07.

https://nodepit.com/node/com.schrodinger.knime.node.gridgen.GridGenNodeFactory
https://nodepit.com/node/com.schrodinger.knime.node.gridgen.GridGenNodeFactory
https://www.gromacs.org/
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Gene enrichment and network analysis
The prediction of targets modulated by sinapic acid were retrieved from the DIGEP-Pred database where we 
identified 65 proteins possessing Pa > Pi from which 62 proteins were found to match with proteins identified for 
the pathogenesis of breast cancer (Fig. 3). The gene enrichment analysis predicted 95.38% of genes modulated 
by sinapic acid to be involved in breast cancer and the remaining 4.6% were predicted to be anti-targets (SELL, 
GCLM, and GSS) (Fig. 3). STRING was used to assess protein–protein interaction which was further integrated 
with KEGG pathway analysis where 50 pathways were identified (Supp. file 1 (sheet 1); Table 1). A network 
between pathways and proteins was constructed using Cytoscape based on edge count; “Pathways in cancer” was 
predicted to be the majorly modulated pathway. Further, PRKCA, CASP8, and CTNNB1 were predicted to be 
the top 3 hub genes to be regulated by sinapic acid (Fig. 4). Additionally, “cellular senescence” was identified to 
possess the maximum “edge betweenness” of 102 followed by “chemical carcinogenesis” with an edge betweenness 
of 101 (Supp. file 1 (sheet 2)). “Pathways in cancer” and PRKCA displayed the highest indegree and outdegree 
distribution of 17 and 16 respectively. Similarly, “Human cytomegalovirus infection” was predicted to possess the 
highest neighborhood connectivity of 13.2 (Supp. file 1 (sheet 3)).

Gene ontology
The data for GO terms i.e. cellular components (CC), molecular function (MF), and biological process (BP) were 
retrieved from the STRING database. GO analysis identified 23 CC in which extracellular space (GO:0005615) 
scored the lowest false discovery rate of 1.34E-08 via the modulation of 34 observed genes i.e. HMOX1, TIMP1, 
MMP2, PLAT, CCL2, CD38, IFNG, GAPDH, CAT, KRT1, MMP7, TIMP2, FLT1, CBR1, MMP3, HSPA4, CD14, 
MMP14, KLK3, TAC1, KRT7, CD86, PRDX6, CTNNB1, TFRC, KRT19, PLAU, NPPB, PRDX4, KRT18, CHEK1, 
CD36, PRKCA, and KRT8 against 3195 background genes at a strength of 0.53. Similarly, 32 MF were identified 
in which protein binding (GO:0005515) scored the lowest false discovery rate of 5.26E-06 via the modulation 
of 46 observed genes i.e. NGFR, SIRT1, HMOX1, TIMP1, PLAT, CCL2, CD38, IFNG, GAPDH, TP53I3, CAT, 
KRT1, MDM2, CCND2, TIMP2, EPAS1, FLT1, MMP14, NQO1, TAC1, NOS2, CYP3A4, PRDX6, CTNNB1, ATG7, 
CASP8, TFRC, GYPA, EGLN1, AR, ID1, NPPB, TP73, CYP1A1, SMN2, KRT18, NFE2L2, PPARA, CHEK1, STRAP, 
CD36, GPX1, PRKCA, RXRA, VDR, and KRT8 against 7026 background genes at a strength of 0.32. Moreover, 
550 BP were identified where, response to chemical (GO:0042221) scored the lowest false discovery rate of 
7.45E-16 via the modulation of 48 observed genes i.e. NGFR, SIRT1, HMOX1, TIMP1, MMP2, CCL2, CD38, 
IFNG, GAPDH, CAT, MDM2, TIMP2, EPAS1, FLT1, MMP3, HSPA4, CD14, MMP14, NQO1, TAC1, NOS2, 
CD86, CYP3A4, PRDX6, CTNNB1, ATG7, CASP8, TFRC, KRT19, EGLN1, ATG5, PLAU, AR, ID1, TP73, CD83, 
PRDX4, CYP1A1, KRT18, NFE2L2, PPARA, CD36, GPX1, PRKCA, RXRA, VDR, KRT8, and CYP3A7 against 
4333 background gene count with a strength of 0.54 (Supp. file 2). The GO of the top 5 CC, MF, and BP has been 
represented in the form of a chord diagram (Fig. 5). The integration of GO terms with KEGG modulated proteins 
predicted 79% of the genes to be involved in both the GO terms as well as KEGG modulated proteins (Fig. 3).

Additionally, GO analysis by Pearson correlation matrix for CC; predicted the confidence interval of Pear-
son’s r coefficient for Gene Count (GC) vs Strength & false discovery rate (FDR) to be − 0.9932 to − 0.7050 & 
− 0.6301 to 0.8392 with p values 0.0009 & 0.614 respectively, Strength vs GC & FDR to be − 0.9932 to − 0.7050 
& − 0.7589 to 0.7471 with p values 0.0009 & 0.977 respectively, and FDR vs GC & strength to be − 0.6301 to 
0.8392 & − 0.7589 to 0.7471 with p values 0.6137 & 0.9768 respectively with a sample size of 7. Similarly, for MF 
the confidence interval of r for GC vs Strength & FDR was predicted to be − 0.9427 to − 0.4793 & − 0.6063 to 
0.4903 with p values 0.0007 & 0.787 respectively, Strength vs GC & FDR to be − 0.9427 to − 0.4793 & − 0.5649 to 
0.5367 with p values 0.0007 & 0.948 respectively, and FDR vs GC & strength to be − 0.6063 to 0.4903 & − 0.5649 
to 0.5367 with p values 0.7871 & 0.9476 respectively with a sample size of 13. Moreover, for BP the confidence 
interval of r for GC vs Strength & FDR was predicted to be − 0.8401 to − 0.7228 & − 0.4338 to − 0.1554 with 
p values 3.08719507014992e-036 & 0.00009 respectively, Strength vs GC & FDR to be − 0.8401 to − 0.7228 & 
− 0.06039 to 0.2426 with p values 3.08719507014992e-036 & 0.2334 respectively, and FDR vs GC & strength to 
be − 0.4338 to − 0.1554 & − 0.06039 to 0.2426 with p values 0.00008 & 0.2334 respectively with a sample size 
of 165 (Fig. 6).

Figure 2.   (a) Classification of targets identified in the pathogenesis of breast cancer, (b) Classification of targets 
modulated by sinapic acid which are involved in the pathogenesis of breast cancer.
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Cluster analysis
Cluster analysis was performed via the ClueGo addon tool in Cytoscape ver. 3.9.0 with CC, MF, BP, and KEGG 
enriched genes. The analysis displayed 1 cluster with 38 groups and 60 (96.77%) identified genes were involved 
in the cluster (Supp. file 3 (sheet 1)); 201 GO terms were identified with 522 connections. Additionally, 115 GO 
edges possessed a kappa score of 2, 163 edges possessed a kappa value of 1, and 68 edges with a kappa score 
above 0.8 indicating majority of the data to be reliable and accurate (Supp. file 3 (sheet 2)). Cellular response 
to oxidative stress (group 37) possessed the highest percent of genes/group with 36 genes ((Supp. file 3 (sheet 
3)). The kappa score matrix generated by ClueGO has been depicted in (Supp. file 3 (sheet 4)). The Supp. file 5 
represents cluster embraced with GO terms and KEGG enriched proteins.

Molecular docking
Molecular docking via AutoDock 4.2 revealed proteins CYP3A4, CYP3A7, and SIRT1 to possess the least binding 
energy of − 7.6, − 7.5, and − 6.8 kcal/mol with 7 hydrogen bonds for each cytochrome enzymes and 4 hydrogen 
bonds for SIRT1. CYP3A4 possessed 7 hydrogen bonds with amino acids CYS442, ARG105, ARG440, ILE118, 
ARG130, and TRP126; CYS422 formed a hydrogen bond with the oxygen at position 2 and hydroxyl of position 
9, ARG105, ARG440, and ILE118 formed hydrogen bonds with hydroxyl group placed at 16th position. Similarly, 
TRP126 and ARG130 formed hydrogen bonds with the oxygen placed at position 15. In addition, there were 3 
π-bond interactions and 4 Vander Waal interactions with amino acids ALA305, ILE443, CYS442, and PHE302, 
PHE137, GLY444, SER119 respectively (Fig. 7; Supp. file 4 (sheet 2)).

Figure 3.   Venn diagram representation of (a) targets involved in breast cancer (C0678222) vs matched targets, 
(b) targets involved in breast cancer (C0678222) vs targets regulated by sinapic acid, (c) targets of sinapic acid 
vs targets involved in breast cancer (C0678222) vs anti-targets, (d) GO terms (cellular component, molecular 
function, and biological process) vs KEGG mediated genes.
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Molecular docking via AutoDock vina revealed CYP1A1, CAT​, and NOS2 to possess the least binding energy 
of − 7.6, − 7.4, and − 7.1 kcal/mol with 2 and 4 hydrogen bonds respectively for CYP1A1 and CAT​. NOS2 pos-
sessed zero hydrogen bonds with 10 π-bond interactions and 5 Vander Waal interactions. CYP1A1 formed 2 
hydrogen bonds with SER116 and ASN222, where SER116 formed hydrogen bond with the oxygen at the 2nd 
position and ASN222 formed a hydrogen bond with oxygen in hydroxyl group at the 16th position. Additionally, 
CYP1A1 formed 9 π-bond residues with residues ASP313, ALA317, PHE224, PHE123, ASN225, LEU312, and 
ILE115 and 7 Vander-Waal interactions with SER120, GLY316, TYR259, PHE258, ASP320, PHE319, and LEU254 
(Fig. 7). Similarly, CAT​ formed 4 hydrogen bonds with HIS75 and SER114 with oxygen at position 15, GLY147 
with hydroxyl group at position 16, and HIS362 at position 2 (Supp. file 4 (sheet 3)).

Docking in glide displayed SIRT1, NOS2, and VDR to possess the least docking score of -6.86, -6.57, and 
-6.51 kcal/mol with 6, 1, and 1 hydrogen bond respectively. SIRT1 formed hydrogen bonds with amino acids 

Table 1.   Top 15 KEGG pathways modulated by sinapic acid against breast cancer. OGC observed gene count, 
BGC background gene count, FDR false discovery rate.

Pathways (Gene ID) OGC BGC Strength FDR Genes

Pathways in cancer (hsa05200) 16 517 0.99 2.74E-09
HMOX1, MMP2, IFNG, MDM2, CCND2, EPAS1, KLK3, NQO1, NOS2, 

CTNNB1, CASP8, EGLN1, AR, NFE2L2, PRKCA, RXRA

HIF-1 signaling pathway (hsa04066) 9 106 1.43 2.1E-08 HMOX1, TIMP1, IFNG, GAPDH, FLT1, NOS2, TFRC, EGLN1, PRKCA

Transcriptional misregulation in cancer 

(hsa05202)
10 171 1.27 3.72E-08 NGFR, PLAT, MDM2, CCND2, FLT1, MMP3, CD14, CD86, PLAU, RXRA

Fluid shear stress and atherosclerosis 

(hsa05418)
8 130 1.29 1.36E-06 HMOX1, MMP2, PLAT, CCL2, IFNG, NQO1, CTNNB1, NFE2L2

Prostate cancer (hsa05215) 7 96 1.36 3.14E-06 PLAT, MDM2, MMP3, KLK3, CTNNB1, PLAU, AR

p53 signaling pathway (hsa04115) 6 72 1.42 1.26E-05 TP53I3, MDM2, CCND2, CASP8, TP73, CHEK1

Rheumatoid arthritis (hsa05323) 5 85 1.27 0.00062 CCL2, IFNG, FLT1, MMP3, CD86

Ferroptosis (hsa04216) 4 41 1.49 0.00069 HMOX1, ATG7, TFRC, ATG5

Hematopoietic cell lineage (hsa04640) 5 91 1.24 0.00069 CD38, CD14, TFRC, GYPA, CD36

MicroRNAs in cancer (hsa05206) 6 160 1.07 0.00069 SIRT1, HMOX1, MDM2, CCND2, PLAU, PRKCA

Malaria (hsa05144) 4 46 1.44 0.00077 CCL2, IFNG, GYPA, CD36

Chemical carcinogenesis (hsa05204) 4 75 1.23 0.0043 CBR1, CYP3A4, CYP1A1, CYP3A7

Hepatitis C (hsa05160) 5 156 1 0.0054 IFNG, CTNNB1, CASP8, PPARA, RXRA

Hepatocellular carcinoma (hsa05225) 5 160 0.99 0.0056 HMOX1, NQO1, CTNNB1, NFE2L2, PRKCA

Tuberculosis (hsa05152) 5 168 0.97 0.0066 IFNG, CD14, NOS2, CASP8, VDR

Where, OGC: Observed gene count; BGC: Background gene count; FDR: False discovery rate

Low                                                                                 High     

Figure 4.   Protein-pathway interaction of genes modulated by sinapic acid and pathways identified to be 
involved.
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LYS444, GLN345, and VAL445 with hydroxyl at position 16, SER442 and ARG274 formed hydrogen bond with 
oxygen at position 15, and ASN346 formed a bond with oxygen at position 10. In addition, SIRT1 possessed one 
salt bridge between ARG274 and hydroxyl at position 16 (Fig. 7). Similarly, NOS2 possessed 1 hydrogen bond 
with ASN370 and hydroxyl present at position 8. Moreover, 3 π-π stacking were visualized with the benzene 
ring and 2 amino acids (TRP194 and PHE369). Likewise, VDR possessed 1 hydrogen bond between SER237 and 
hydroxyl group at position 9 (Supp. file 4 (sheet 4)).

Molecular stability of docked complexes
Sinapic acid‑protein kinase C‑α complex
On completion of MD run the RMSD value was analyzed for the backbone as well as complex which was not 
stable at the beginning of the MD run up to 45 ns and possessed fluctuation between 1 Å to 2.8 Å. The RMSD 
value remained unstable till 75 ns and displayed a high peak in RMSD at 70 ns. Further, there was a drop in the 
RMSD after 75 ns which gradually increased up to 120 ns and became stable at 130 ns with a value of ~ 2 Å for 
complex and ~ 4 Å for backbone; there was a difference of ~ 2 Å observed between RMSD of the backbone and 
complex. The RMSF value did not display major fluctuations and was in the range of ~ 1 Å to ~ 6 Å. The radius 
of gyration (Rg) displayed uniformity throughout the simulation with minor fluctuations in the range of ~ 1 Å 
to ~ 3 Å. The number of hydrogen bonds being formed throughout the simulation was analyzed; a maximum of 
4 hydrogen bonds were formed. However, there was no constant bond formation between the ligand and protein. 
The solvent-accessible surface area helps to identify a free surface for the ligand to bind with protein; was found 
to be in the range of 35 to 45 nm3 throughout the simulation (Fig. 8).

Figure 5.   Chord diagram representation of top 5 GO terms belonging to cellular components (CC), molecular 
function (MF), and biological process (BP).
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Sinapic acid‑caspase 8 complex
The RMSD of protein–ligand complex was found to be stabilized at ~ 105 ns where a spike increase in the RMSD 
was observed for backbone and complex. The RMSD fluctuation between 105 to 135 ns was ~ 3 Å thereafter it 

Figure 6.   Correlation matrix analysis of GO terms (1) Cellular components, (2) Molecular function, (3) 
Biological process where (a) represents the correlation between Strength vs Gene count vs False discovery rate as 
bubble colour map, (b) represents the Pearson’s r coefficient of Gene count vs Strength vs False discovery rate as 
a heat map.
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displayed a stable RMSD possessing fluctuations in a range of ~ 2 Å with a slight drop at 175 ns and constant 
thereafter; there was a difference of ~ 2 Å observed between the RMSD of backbone and complex. The RMSF 
values ranged between ~ 5 Å to ~ 10 Å throughout the simulation. The radius of gyration (Rg) value ranged 
from ~ 11 Å to ~ 16 Å throughout the simulation and became stable after 170 ns for the rest of the MD run. 
The highest number of hydrogen bonds formed between the ligand and protein was 5. However, there were no 
constant hydrogen bonds seen throughout the MD run. Moreover, the solvent-accessible surface area displayed 

Figure 7.   (a) 3D and (b) 2D interaction of (1) sinapic acid with CYP1A1 when docked in AutoDock 4.2; 
(2) sinapic acid with CYP1A1 when docked in AutoDock Vina; (3) sinapic acid with SIRT1 when docked in 
Schrodinger suite Glide.
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a varied range of values till 100 ns simulation run; thereafter, a slight decrease in the SASA value from 40 nm2 
to 35 nm2 was observed (Fig. 8).

Sinapic acid‑β‑catenin 1 complex
The RMSD of β-catenin 1-sinapic acid complex ranged from ~ 1 Å to ~ 6 Å throughout the MD run; the RMSD 
became stable for the backbone and complex after 100 ns of MD run thereafter the difference between the RMSD 
of backbone and complex was ~ 1 Å to ~ 2.5 Å. The RMSF value of the complex ranged from ~ 1 Å to ~ 5 Å, there 
were slight spikes visible at atoms ~ 1450 which may be due to hydrogen bonds being formed by the amino acids 
with sinapic acid. The radius of gyration stabilized after 50 ns and was in the range of 13 Å to 14 Å; the Rg value 
was observed to possess a deviation of 0.5 Å after 150 ns of MD run indicating stable protein–ligand interaction. 
A maximum of 4 hydrogen bonds were formed by the protein and ligand. The number of continuous hydrogen 
bonds increased after 100 ns and an increase in number of hydrogen bonds was observed till 200 ns of MD run. 
The solvent-accessible surface area was found to be in the range of 62 nm2 to 70 nm2 and there were observed 
fluctuations in SASA ranging from 130 to 200 ns (Fig. 8).

Figure 8.   Parameters describing stability of sinapic acid complex with proteins (1) PRKCA; (2) CASP8; (3) 
CTNNB1; (4) CYP3A4; (5) CYP1A1; (6) SIRT1. Where, (a) RMSD of backbone (purple) and complex (green); 
(b) RMSF; (c); Radius of gyration; (d) Number of hydrogen bonds between protein and ligand; and (e) Solvent 
Assessable Surface Area (SASA).
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Sinapic cid‑cytochrome 3A4 complex
The RMSD of CYP3A4-sinapic acid complex became stable after 50 ns, after which the RMSD value ranged 
from ~ 7 Å to ~ 10 Å throughout the simulation. There was a fluctuation in RMSD at ~ 175 ns; the difference 
between the RMSD of backbone and complex was observed to be ~ 1.5 Å. The RMSF value ranged between ~ 2 
Å to ~ 10 Å throughout the simulation, there was increased spikes visible at atoms ~ 2100 to ~ 2400 which may 
be involved in the formation of bonds with the ligand. Additionally, the radius of gyration displayed fluctuation 
between the range ~ 19.0 Å to ~ 20.5 Å and was stable throughout the run. Moreover, a highest of 5 hydrogen 
bonds were formed between the protein and ligand; 3 constant hydrogen bonds were formed till 30 ns of MD 
run, thereafter the number of hydrogen bonds decreased to 1–2 bonds visible up to 80 ns. In addition, there 
was a fluctuation in the number of hydrogen bonds formed till 150 ns and no interaction was visible. Thereafter 
150 ns of MD run 2–3 hydrogen bonds were visible which became constant with 3 hydrogen bonds at 190 ns. 
Initially, there was a decrease in the solvent-accessible surface area till 30 ns of simulation which further increased 
from 140 nm2 to 150 nm2. Later, the SASA value decreased as a stable complex was formed; SASA values varied 
throughout the simulation depending upon the stability of the complex. The SASA value ranged between 135 to 
165 nm2 throughout the simulation (Fig. 8).

Sinapic acid‑cytochrome 1A1 complex
The RMSD of protein ligand complex remained stable throughout the simulation after 50 ns of stability time of 
the complex. The RMSD value ranged from ~ 2 Å to ~ 4.5 Å throughout the simulation with a difference of ~ 0.5 
Å was observed between backbone and complex. The RMSF value ranged from ~ 1 Å to ~ 7 Å throughout the 
simulation; high peaks of ~ 5Å to ~ 7Å were observed at atoms ~ 1250, ~ 2000, and ~ 3000 indicating that these 
residues may be responsible for the hydrogen bonds formed. The radius of gyration value ranged from ~ 18.7 Å 
to ~ 20 Å throughout the MD run; there was a slight decrease in the Rg value after 50 ns of stabilization period of 
the complex thereafter the Rg value was in the range of ~ 18.8 Å to ~ 19.4 Å indicating a difference of 0.6 Å. The 
Rg value remained unstable after 150 ns which may be due to the breakage of bonds formed between protein and 
ligand. A highest of 5 hydrogen bonds were formed 2 hydrogen bonds remained constant throughout the MD 
run till 110 ns thereafter there only 1 hydrogen bond was constant throughout the run. The solvent-accessible 
surface area remained constant throughout the MD run with a range of 73 Å to 85Å. There was an increase in 
the SASA value after 150 ns (Fig. 8).

Sinapic acid‑sirtuin 1 complex
The RMSD of sirtuin 1-sinapic acid complex was assessed to be in the range of ~ 5 Å to ~ 10 Å throughout the 
simulation after a stabilization period of 50 ns. There were fluctuations in the RMSD value throughout the 
whole MD run of 200 ns and a difference of ~ 2 Å to ~ 3 Å was observed between the backbone and complex. 
The RMSF value was found to be in the range of ~ 3 Å to ~ 7 Å; a high-rise peak (~ 3 Å to ~ 7 Å) was observed 
between atoms ~ 1000 to ~ 1300. The radius of gyration ranged between 14Å and 17Å after the stabilization of the 
complex at ~ 75 ns. A highest of 4 hydrogen bonds were observed during the MD run which were not constant 
throughout the simulation. The solvent assessable surface area ranged between ~ 70 nm2 to ~ 85 nm2; there was 
an observed increase in the SASA after 140 ns of MD run which may be due to unstable hydrogen bonds formed 
during the MD run (Fig. 8).

Molecular mechanics Poisson‑Boltzmann surface area (MMPBSA) analysis
MMPBSA analysis performed for 82 frames for all the six complexes revealed that the vander waals and elec-
trostatic molecular mechanics energy were found to be least for β-catenin complex (− 0.11 ± 0.13 kcal/mol 
& − 36.49 ± 0.24 kcal/mol respectively) whereas, cytochrome 1A1 and sirtuin 1 complexes possessed the 
highest i.e. 0.58 ± 0.14 kcal/mol and − 35.23 ± 0.19 kcal/mol respectively. Moreover, total gas phase and total 
salvation energy were found to be lowest by β-catenin-sinapic acid and PRKCA complex i.e. 50.57 ± 0.61 
and − 29.35 ± 0.11 kcal/mol respectively; whereas, the highest was found to be by CYP3A4 and β-catenin 
i.e. 54.47 ± 0.36 and − 25.74 ± 0.41 kcal/mol respectively. The total binding energy was found to be least for 
cytochrome 1A1 (23.92 ± 0.36 kcal/mol) indicating it to be the most stable complex (Table 2).

Discussion
The present study aimed to propose the possible molecular mechanism of sinapic acid in the treatment of 
breast cancer via integrating multiple system biology tools like gene set enrichment analysis, gene ontology, and 
molecular dynamic simulation. Sinapic acid has been reported to possess time and dose-dependent suppressive 
action on breast and colon cancer cell lines representing its potential to be a chemotherapeutic drug to be used 
for the treatment of breast cancer37. Also, it has been reported to possess an ameliorating effect on various organ 
toxicities if used in combination with chemotherapeutic drugs like cisplatin, doxorubicin, and methotrexate24–26. 
Sinapic acid being a plant metabolite is reported to possess ameliorating effect on various organ toxicities by 
chemotherapeutic agents via the regulation of Nrf2/HO-1 involved in the NF-κB signalling pathway25.

Initially, we acquired targets involved in breast cancer through DisGeNET database where we identified 6776 
genes to be involved in the pathogenesis of breast cancer, which were further matched with proteins predicted 
to be modulated by sinapic acid; identified from DIGEP-Pred database. These matched proteins (62 proteins) 
were used to construct a protein–protein interaction network via STRING. KEGG pathway analysis was used to 
identify various pathways being regulated by sinapic acid; 50 pathways were identified to be involved. Further, a 
protein-pathway network was constructed using Cytoscape ver. 3.9.0 from which three proteins were identified 
to be lead hits (CASP8, CTNNB1, and PRKCA). GO analysis was performed based on three GO terms CC, MF, 
and BP. In addition, Cluster analysis was also performed to identify various groups of proteins and how they 
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belong to a category biologically38. Molecular docking was performed with three different docking tools i.e. 
AutoDock 4.2, AutoDock Vina, and Schrodinger suite glide to attain better visibility of ligand–protein docking 
with matched 62 targets.

Gene ontology analysis revealed “extracellular space”, “protein binding”, and “response to chemical” to possess 
the least false discovery rate in GO analysis; CC, MF, and BP respectively. Also, we predicted that 79% of genes 
involved in GO and KEGG mediated proteins were in common which represents a good interaction between 
the GO terms and KEGG mediated proteins. Further, cluster analysis revealed the presence of “cellular response 
to oxidative stress” to be majorly modulated by the most number of genes (36 genes).

We performed docking on 62 targets with sinapic acid using different software’s; it was predicted that 
cytochrome enzymes (CYP1A1, CYP3A4, and CYP3A7), CAT​, SIRT1, VDR, and NOS2 possessed the lowest 
binding energy with the ligand sinapic acid. The molecular dynamic simulation revealed that all complexes 
became stable after the stabilization period (~ 50 ns to ~ 100 ns); a maximum of ~ 2.5 Å to ~ 3.0 Å difference was 
observed in the RMSD value of the backbone and complex. The complexes of sirtuin 1 & β-catenin with sinapic 
acid possessed a difference in RMSD values between backbone and complex ~ 2.5 Å which falls in an acceptable 
range. However, there was a fluctuation in the number of hydrogen bonds although the difference in RMSD values 
were within the range of ~ 3 Å, this may be due to other hydrophobic and Vander Waal interactions between 
the  ligand and proteins39. Similarly, we observed in the MMPBSA that the complexes possessed low Vander 
Waal molecular mechanics energy indicating Vander Waal forces to be acting and making the complex stable.

Network pharmacology analysis revealed classical protein kinase C α-type (PRKCA) to be involved in majority 
of pathways identified in breast cancer. Protein kinase C belongs to the class of serine/threonine protein kinase 
family of enzymes and plays a vital role in the progression of several diseases like cancer, diabetes, autoimmune 
diseases, heart failure, and Parkinsonism40. It has been reported that the expression of PRKCA is associated with 
endocrine resistance and poor prognosis in ER-positive (ER +) breast tumors. In addition, expression of PRKCA 
is elevated in triple negative breast cancer (TNBC) patients and shown to be responsible for chemotherapy resist-
ance and metastasis41. PKCα acts as an upstream regulator of FOXC2, which in turn represses the expression of 
p120-catenin, an important component of adherens junction that acts as the anchor for E-cadherin42. Hence, 
PRKCA could be a potent target to be suppressed for a better treatment strategy to control breast cancer. However, 
there is still scope to understand the role of PRKCA in breast cancer as much is still to be uncovered. Figure 9 
represents the predicted probable molecular mechanism of sinapic acid for the treatment of breast cancer.

In addition, CASP8 and CTNNB1 managed to be in the top 3 lead hits identified via network pharmacology; 
CASP8 is found to be down-regulated in breast cancer due to promoter methylation43. CASP8 is an important 
initiator of apoptosis. Absence or down-regulation of CASP8 could cause resistance to apoptosis and is correlated 
with unfavorable disease outcomes, such as childhood medulloblastoma and neuroblastoma. The absence or 
down-regulation of CASP8 may be due to epigenetic changes44. Hence, promoting CASP8 expression might help 
well in the treatment of breast cancer. Similarly, role of CTNNB1 after birth, WNT/CTNNB1 responsive stem cells 
are responsible for tissue homeostasis in various organs and hyperactive WNT/CTNNB1 signaling is observed in 
many different human cancers45. The first link between WNT signaling and breast cancer was established when 
WNT1 was identified as a proto-oncogene capable of driving mammary tumor formation in mice46. However, 
much debate and controversy persist regarding the importance of WNT signaling for the initiation, progression, 
or maintenance of different breast cancer subtypes47. The upregulation of β-catenin and its accumulation in the 
nucleus promotes the transcription of genes like c-Myc & cyclin D-148. Hence, CTNNB1 was predicted to be 
down-regulated which may be one of the mechanisms by which sinapic acid prevents the progression of cancer.

Cytochrome enzymes play a major role in the activation of drugs to activated carcinogens from which CYP1A1 
enzyme plays a major role as continuous exposure to inhalation chemicals and environmental carcinogens are 
thought to increase the level of CYP1A1 expression in extrahepatic tissues, through the aryl hydrocarbon receptor 
(AhR); may be due to the tendency of CYP1A1 to metabolize carcinogens. Reports suggest that upregulation of 
CYP3A4 is seen in 80% of breast tumors and can be used to identify tumor response in different treatments49.

Moreover, catalase (CAT​) is an antioxidant enzyme that catalyzes mainly the transformation of hydrogen 
peroxide into water and oxygen50. Although catalase is frequently down-regulated in tumors the underlying 
mechanism remains unclear. Further, silent information regulation factor 1 (sirtuin Type 1, SIRT1), as a kind 

Table 2.   MMPBSA analysis of hub genes & sinapic acid as a complex. All the data are presented in 
mean ± SEM (n = 82) and unit for each parameter is kcal/mol. ∆VDWAALS Vander Waals molecular mechanics 
energy, ∆EEL electrostatic molecular mechanics energy, ∆EPB polar contribution to the salvation energy, 
∆ENPOLAR non-polar contribution of solute–solvent interactions to the solvation energy, ∆EDISPER non-
polar contribution of attractive solute–solvent interactions to the salvation energy, ∆GGAS total gas phase 
molecular mechanics energy, ∆GSOLV total solvation energy, ∆GTotal total relative binding energy.

Protein ∆VDWAALS ∆EEL ∆EPB ∆ENPOLAR ∆EDISPER ∆GGAS ∆GSOLV ∆GTotal

PRKCA 0.16 ± 0.13  − 34.91 ± 0.20  − 30.97 ± 0.11 26.76 ± 0.02  − 25.14 ± 0.02 53.83 ± 0.35  − 29.35 ± 0.11 24.48 ± 0.35

CASP8 0.09 ± 0.12  − 34.91 ± 0.19  − 30.80 ± 0.19 26.76 ± 0.02  − 25.18 ± 0.02 53.95 ± 0.41  − 29.23 ± 0.12 24.72 ± 0.43

SIRT1 0.35 ± 0.14  − 34.82 ± 0.18  − 30.79 ± 0.09 26.74 ± 0.02  − 25.17 ± 0.02 53.9 ± 0.46  − 29.22 ± 0.09 24.67 ± 0.46

CYP1A1 0.58 ± 0.14  − 35.23 ± 0.19  − 30.82 ± 0.10 26.72 ± 0.01  − 25.22 ± 0.02 53.23 ± 0.37  − 29.31 ± 0.10 23.92 ± 0.36

CYP3A4  − 0.09 ± 0.14  − 35.38 ± 0.23  − 30.42 ± 0.17 26.75 ± 0.02  − 25.16 ± 0.02 54.47 ± 0.36  − 28.83 ± 0.17 25.65 ± 0.36

CTNNB1  − 0.11 ± 0.13  − 36.49 ± 0.24  − 27.32 ± 0.41 26.76 ± 0.02  − 25.18 ± 0.02 50.57 ± 0.61  − 25.74 ± 0.41 24.83 ± 0.40
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of NAD + dependent class III histone deacetylation enzyme, involved in tumor proliferation, invasion, and 
metastasis51. The roles of SIRT1 in breast cancer is multifaceted depending on its substrate from upstream or 
downstream signaling pathway. Results have displayed that SIRT1 is significantly up-regulated in breast cancer 
tissues and cells, which is correlated with histological grade, tumor size, and lymph node metastasis52. Studies 
report that vitamin D has been suggested to prevent and improve the prognosis of several cancers, including 
breast cancer53; high expression of VDR in invasive breast tumors is associated with favorable prognostic factors 
and a low risk of breast cancer death54. Hence, a high VDR expression is a positive prognostic factor which may be 
used to identify response of tumors in different treatments. Expression of inducible nitric oxide synthase (NOS2) 
has been associated with poor outcome in breast cancer55; the upregulation of NOS leads to tumor angiogenesis 
by upregulating VEGF56.

Figure 9.   Proposed possible molecular mechanism of sinapic acid in breast cancer.  
Indicates genes identified to be modulated by sinapic acid57.
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Conclusion
The present study aimed to identify a possible molecular mechanism of sinapic acid (SA) in the treatment of 
breast cancer via the utilization of multiple system biology tools like network pharmacology, Gene ontology 
enrichment, and molecular dynamic simulation. The predictions revealed that the mechanism of sinapic acid 
in breast cancer may be due to multiple pathways and proteins like β-catenin, PRKCA, CASP8, and cytochrome 
enzymes (CYP1A1 and CYP3A4); the majorly regulated pathway was predicted to be “Pathways in cancer”. This 
indicates that sinapic acid can be used in the treatment of breast cancer. However, these are predictions based 
on previous reports, which need to be validated and looked upon in-depth to confirm the exact molecular 
mechanism of sinapic acid in the treatment of breast cancer; this is future scope as well as a drawback of the 
current study.

Data availability
The datasets generated and/or analysed during the current study are available in the UniProt repository with 
accession links: https://​www.​unipr​ot.​org/​unipr​otkb/​O95352/​entry, https://​www.​unipr​ot.​org/​unipr​otkb/​P35222/​
entry, https://​www.​unipr​ot.​org/​unipr​otkb/​Q9GZT9/​entry, https://​www.​unipr​ot.​org/​unipr​otkb/​P02724/​entry, 
https://​www.​unipr​ot.​org/​unipr​otkb/​P34932/​entry, https://​www.​unipr​ot.​org/​unipr​otkb/​P41134/​entry, https://​
www.​unipr​ot.​org/​unipr​otkb/​P05783/​entry, https://​www.​unipr​ot.​org/​unipr​otkb/​P08727/​entry, https://​www.​unipr​
ot.​org/​unipr​otkb/​P08729/​entry, https://​www.​unipr​ot.​org/​unipr​otkb/​P05787/​entry, https://​www.​unipr​ot.​org/​
unipr​otkb/​P08138/​entry, https://​www.​unipr​ot.​org/​unipr​otkb/​P16860/​entry, https://​www.​unipr​ot.​org/​unipr​otkb/​
Q9NRD5/​entry, https://​www.​unipr​ot.​org/​unipr​otkb/​Q9Y3F4/​entry, https://​www.​unipr​ot.​org/​unipr​otkb/​P20366/​
entry, https://​www.​unipr​ot.​org/​unipr​otkb/​P01033/​entry, and https://​www.​unipr​ot.​org/​unipr​otkb/​O15350/​entry. 
The targets predicted to be modulated by sinapic acid were retrieved from the DIGEP-Pred database (http://​
www.​way2d​rug.​com/​ge/). Additionally, the targets involved in the pathogenesis of breast cancer were retrieved 
from the DisGeNET database (https://​www.​disge​net.​org/) with disease id C0678222.
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