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Radix‑4 CORDIC algorithm based 
low‑latency and hardware efficient 
VLSI architecture for Nth root 
and Nth power computations
Ankur Changela 1, Yogesh Kumar 2*, Marcin Woźniak 3*, Jana Shafi 4 & 
Muhammad Fazal Ijaz 5*

In this article, a low‑complexity VLSI architecture based on a radix‑4 hyperbolic COordinate Rotion 
DIgital Computer (CORDIC) is proposed to compute the Nth root and Nth power of a fixed‑point 
number. The most recent techniques use the radix‑2 CORDIC algorithm to compute the root and 
power. The high computation latency of radix‑2 CORDIC is the primary concern for the designers. 
Nth root and Nth power computations are divided into three phases, and each phase is performed by 
a different class of the proposed modified radix‑4 CORDIC algorithms in the proposed architecture. 
Although radix‑4 CORDIC can converge faster with fewer recurrences, it demands more hardware 
resources and computational steps due to its intricate angle selection logic and variable scale factor. 
We have employed the modified radix‑4 hyperbolic vectoring (R4HV) CORDIC to compute logarithms, 
radix‑4 linear vectoring (R4LV) to perform division, and the modified scaling‑free radix‑4 hyperbolic 
rotation (R4HR) CORDIC to compute exponential. The criteria to select the amount of rotation in 
R4HV CORDIC is complicated and depends on the coordinates Xj and Yj of the rotating vector. In the 
proposed modified R4HV CORDIC, we have derived the simple selection criteria based on the fact that 
the inputs to R4HV CORDIC are related. The proposed criteria only depend on the coordinate Yj that 
reduces the hardware complexity of the R4HV CORDIC. The R4HR CORDIC shows the complex scale 
factor, and compensation of such scale factor necessitates the complex hardware. The complexity 
of R4HR CORDIC is reduced by pre‑computing the scale factor for initial iterations and by employing 
scaling‑free rotations for later iterations. Quantitative hardware analysis suggests better hardware 
utilization than the recent approaches. The proposed architecture is implemented on a Virtex‑6 FPGA, 
and FPGA implementation demonstrates 19% less hardware utilization with better error performance 
than the approach with the radix‑2 CORDIC algorithm.

The computation of Nth roots and powers is a part of various real-time applications across different fields. Real-
time applications in the fields of robotics, 3-D graphics rendering, image and video processing, real-time object 
recognition, and signal processing, to mention a few, require the computation of the root and  power1–5. The 
power-law (Gamma) transformation is a popular image enhancement technique, and part of real-time image 
and video processing applications. The power-law transform can be characterized using equation p = c × qγ , 
where q and p represent the input and output pixel value, c is constant and γ represents the enhancement  factor6. 
A Nth root and power are especially helpful in physics and engineering, where calculations involving growth, 
decay, and change rates are frequent. Nth roots are also used in computer science and cryptography, which helps 
to create safe algorithms and effective data processing methods. The basis for exponential growth and decay 
functions, polynomial expressions, and the idea of dimensions are provided by Nth power, which is crucial in 
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algebra, calculus, and geometry. In scientific modelling, Nth powers frequently represent processes ranging from 
population expansion to radioactive decay.

For real-time applications, the speed of processing incoming data is crucial. Achieving the necessary speed 
and power performance often requires dedicated hardware, as software alone may not be adequate to deliver the 
desired performance. Many researchers have proposed a variety of methods that perform multiple square roots 
and cube  roots7. The classical approach to computing these roots is the Newton-Raphson (NR)  method8–10. The 
Nth root of an integer may be calculated using the Newton-Raphson method, a potent numerical approach for 
approximating equation solutions. This approach iteratively improves a first guess until it converges to a more 
precise answer. The demerit of the NR method is that the precision relies on the initial guess, and it requires 
significant resources as it repeatedly performs multiplication. The trade-off between computational complexity 
and memory consumption for various NR methods is presented  in11.

A popular method for carrying out several mathematical operations, including the computation of Nth 
roots and Nth powers, is the CORDIC  algorithm12–15. CORDIC is a versatile method for numerical comput-
ing since it was first designed to do efficient trigonometric calculations and has since been modified to handle 
a variety of tasks. Various complex and scaling-free CORDIC approaches were also presented to overcome 
the various  drawbacks16–18. The CORDIC is used to carry out a wide variety of applications from eigenvalue 
 decomposition19–21 to many real-time DSP  applications22–24. In  research25, the CORDIC-based efficient way 
to calculate the Nth roots and Nth powers is demonstrated which is based on logarithm and exponential. 
Operations like logarithm and exponential can be efficiently carried out by the CORDIC algorithm. Iterative 
computations are used by the CORDIC method to estimate the intended outcome. The algorithm may need 
more iterations, which would increase the computing time, depending on the degree of accuracy required. The 
CORDIC algorithm is best suited for computations within a specific range, and may not be suitable for many 
real-time applications.

High-radix CORDIC allows for executing multiple repetitions in parallel, resulting in the reduced number of 
repetitions directed to achieve the desired accuracy. With each iteration, multiple computations can be carried 
out simultaneously, leading to faster convergence. By executing multiple iterations in parallel, the algorithm can 
achieve higher throughput and more efficient resource utilization. This can result in fewer computation times 
and hardware complexity, making it suitable for hardware acceleration. In this article, we have demonstrated a 
radix-4 CORDIC-based hardware efficient approach to achieve root and power calculations.

Related work
This section covers the typical CORDIC method-based architecture and the various radix-2 CORDIC algorithm 
classes used to calculate the root and power. The standard CORDIC’s input range is its restriction. For various 
operating modes, the real input range of the typical CORDIC algorithm is addressed. This section also discusses 
the two strategies for handling a narrow convergence range.

Radix‑2 CORDIC algorithm
The CORDIC is well known for the calculation of complex mathematical functions using very simple hardware. 
The various classes of the CORDIC algorithm can be created by choosing an appropriate operating mode (vector-
ing or rotation) and coordinate system (circular, hyperbolic, or linear). The generalized form is illustrated below.

where parameter q, β j , and αj indicate the coordinate system, rotation angle, and direction of the micro-rotation, 
respectively. By choosing the appropriate value of q and αj , six different classes of the CORDIC algorithm can 
be generated. For the root and power calculations, circular CORDIC is not required and they are not discussed 
here. The output of the other classes of the CORDIC algorithm after convergence and the initial values used to 
achieve the output are listed in Table 1. The coordinate equations for HV-CORDIC and HR-CORDIC can be 
derived from Eq. (1) by taking q = −1 . For hyperbolic CORDIC to achieve convergence, iterations with indexes 
j = (3n+ 1) = 4, 13, 40, . . . need to be repeated. The convergence criteria of HV-CORDIC are illustrated as 
follows:

Similarly, the convergence criterion of HR-CORDIC is |Z0| ≤ 1.1182 . Among all six classes of the CORDIC 
algorithm, LV and LR have the simplest convergence, and they are very similar to the shift and accumulate 
architecture of a conventional multiplier. The aforementioned hyperbolic computation augments the coordinates 
by Kh =

∏n
j=1

√

(

1− 2−2j
)

 . However, this scale factor can be ignored for HV-CORDIC, as only the value of the 
Z coordinate is required after the convergence. For HR-CORDIC, the scale factor can be compensated by choos-

ing the initial value of the X coordinate as X0 =
1

Kh
 . The implementation of root and power computations using 

these classes of the CORDIC algorithm is discussed next.

(1)

[

Xj+1

Yj+1

]

=

[

1 − qαj2−j

αj2−j 1

] [

Xj

Yj

]

Zj+1 = Zj − αjβ j

(2)tanh−1

(

Y0

X0

)

≤ θmax =

n
∑

j=1

= 1.1182
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Conventional architecture to compute Nth root and Nth power
The conventional way to determine root and power is based on the following illustrations:

A specific CORDIC method may be used to implement the logarithm and exponential operations needed for 
the computation of the aforementioned illustrations. In the classical approach, the entire computation is sepa-
rated into three phases. The ln P is computed using HV-CORDIC. Multiplication is performed to compute the 
Nth power using linear rotation mode CORDIC (LR-CORDIC), and division is performed to compute the Nth 
root using linear vectoring mode CORDIC (LV-CORDIC). In the last, the exponential is performed using the 
hyperbolic rotation mode CORDIC (HR-CORDIC). Figure 1 demonstrates this approach. If the HV-CORDIC 
is initialized with the inputs Y0 = P − 1 and X0 = P + 1 then the logarithm can be calculated as follows.

From this discussion, it is clear that the outputs XN and YN of the HV-CORDIC are not required for further 
calculation, and hence, the scale factor compensation is not required for HV-CORDIC. As shown in Fig. 1, the 
multiplication and division are performed for power and root computing using LR-CORDIC and LV CORDIC, 
respectively. HR-CORDIC computes the final exponential.

The problem with this architecture is that the values of P and N are limited by the convergence criteria of 
various classes of CORDIC algorithms. The range of P can be derived using the convergence criteria of HV-
CORDIC, i.e. 

∣

∣

∣
tanh−1 Y0

X0

∣

∣

∣
≤ 1.1182 and input X0 has to be positive. Based on the inputs ( Y0 = P − 1 and 

X0 = P + 1 ) of HV-CORDIC, the range of P can be derived using the following constraints.

From the aforementioned constraints, the range of P can be worked out as follows:

Such a small range of P limits the real-time applications of this standard architecture. From Eq. (5), it is clear 
that the input range of the HV class has to be increased to extend the range of P. For example, if HV-CORDIC 

can converge in the range, 
∣

∣

∣
tanh−1 Y0

X0

∣

∣

∣
≤ 1.1182 , then the range of P can be extended to P ∈

[

1

403.43
, 403.43

]

 . 

Two recent approaches have been proposed to expand the range of P. In the first approach, negative-indexed 
iterations were proposed for the HV and HR CORDICs. However, additional negative-indexed iterations increase 
the iterative stages, which require additional computational resources.

In the  research25, authors have proposed to increase the convergence range by performing the negative-
indexed iterations. The basic rotation angle of negative index iteration is 

(

1− 22
−j+1

)

 as compared to 2−j of 

(3)P

1

N = e

ln P

N

PN = eN ln P

(4)tanh−1

(

P − 1

P + 1

)

=
1

2
ln P

(5)
∣

∣

∣

∣

P − 1

P + 1

∣

∣

∣

∣

≤ tanh(1.1182) = 0.807 and P + 1 > 0

(6)P ∈

[

1

9.36
, 9.36

]

Table 1.  Various classes of CORDIC algorithm and their output. HR: Hyperbolic rotation, LR: Linear rotation, 
LV: Linear vectoring, and HV: Hyperbolic vectoring

Class Output Convergence criteria Function to be evaluated

HR
XN = Kh (X

0 cosh Z0 − Y0 sinhZ0)

YN = Kh(X
0sinhZ0 + Y0coshZ0)

ZN ≈ 0
|Z0| ≤ 1.1182

Initial Value: X0 =
1

Kh
, Y0 = 0, and Z0 = θ

Exponential: eθ =
XN + YN

2
=

cosh θ + sinh θ

2

LR
XN = X0

YN = Y0 + X0Z0

ZN ≈ 0

– Initial Value: X0 = α,Y0 = 0, and Z0 = β

Multiplication: YN = αβ

LV

XN = X0

YN ≈ 0

ZN = Z0 +
Y0

X0

|
Y0

X0
| ≤ 2

Initial Value: X0 = α, Y0 = β , and Z0 = 0

Division: ZN =
β

α

HV

XN = Kh

√

(X0)2 − (Y0)2

YN ≈ 0

ZN = Z0 + tanh−1

(

Y0

X0

)

| tanh−1

(

Y0

X0

)

|

≤ 1.1182

Intial Value: X0 = α,Y0 = β , and Z0 = 0

Inverse Hyperbolic: ZN = tanh−1

(

β

α

)
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standard CORDIC algorithm. The maximum rotation angle achieved by adding additional iterations is illustrated 
as follows:

The relation between m and the range of P is summarised in Table 2.
In the another  research26, binary logarithms (log2(·)) and binary exponentials (2(·)) are used to compute the 

Nth root and Nth power, as illustrated in Eq. 8.

(7)θmax =

0
∑

j=−m

tanh−1
(

1− 22
−j+1

)

+

n
∑

j=1

tanh−1
(

2−j
)

(8)P

1

N = 2

log2 P

N

PN = 2N log2 P

Figure 1.  Standard approach to compute root and power.

Table 2.  Impact of m on range of P.

m θmax Range of P

0 2.099
[

1

66.67
, 66.67

]

1 3.816
[

1

2067
, 2067

]

2 6.935
[

1

1.056× 106
, 1.056× 106

]

3 12.827
[

1

1.384× 1011
, 1.384× 1011

]
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The first step of this approach is to bring the range of P to the range that can be processed by BHV-CORDIC 
by means of the normalization of P. The normalization factor is always an integer power of two. As a result, this 
approach does not require performing additional negative index iterations. The value of P can be normalized 
as follows:

Later, the binary logarithm is calculated using a simple adder as follows:

In the architecture presented  in26, authors have used binary HV-CORDIC to compute log2 p . Similarly, the binary 
exponential 2(·) of the real number V is computed by decomposing the real number (V) into integer (VI ) and 
fraction ( VF ) parts as follows:

In the above illustration, VI is the integer, and 2VI can be computed using left shift by VI-bits. The 2VF is computed 
with a BHR-CORDIC. This method requires a small convergence range (i.e., |Z0| ≤ 1 ) of BHR-CORDIC as 
VF ∈ [0, 1] . As a result, this approach does not require performing the negative index iteration. However, both 
architectures suffer from very high hardware utilization, as radix-2 CORDIC generates one bit of precision in its 
one iteration. The selection criteria of R4HV-CORDIC to choose the amount of rotation is complicated. Also, the 
scale factor of R4HR-CORDIC is variable, and compensation necessitates the specific hardware. In this article, we 
have modified the architectures of R4HV and R4HR CORDICs to simplify the selection criteria and re-scaling of 
scale-factor for root and power computations. A proposed methodology brings down the complexity of radix-4 
CORDIC below that of the standard algorithm.

Proposed methodology
The high computation latency and hardware utilization of the existing design are the primary concerns, as radix-2 
CORDIC produces 1-bit precision in each iteration. In the pipelined architecture, the insertion of parallelism 
between two iterations costs a lot of pipeline resources. The total computational latency of the architectures pre-
sented  in25  and26 is 81 and 73, respectively. In the proposed design, we have attempted to reduce the latency and 
hardware utilization by introducing modified R4HV-CORDIC to compute the logarithm and R4HR-CORDIC to 
compute the exponential. The computational complexity of the high-radix CORDIC algorithm other than radix-4 
is very high as all the selection functions are not the integer power of two. For example, the radix-8 CORDIC 
algorithm has a selection function ranging from -4 to +4, and the multiplication of the selection function with 
the coordinates requires four extra adders in each iteration. As a result, we have used the radix-4 CORDIC 
algorithm in the proposed design.

In the proposed methodology, the computation of P
1
N  and PN is based on the base-4 logarithm and the 

exponential, as given in the equations below.

We have used modified R4HV-CORDIC to compute log4 (·) and R4HR-CORDIC to compute 4(·) . The proper-
ties of natural hyperbolic rotation can also be proved for hyperbolic rotation in base-4 as given  in26. For base-4 
hyperbolic rotation, tanh4(a) can be defined as follows:

From the above illustration, the relation between the inverse hyperbolic function and the logarithm for base-4 
can be computed as follows:

Figure 2a,b demonstrate the proposed root and power computation methodology, respectively. The range of 
variables at different stages is also shown in Fig. 2. The input range of the P is considered as P ∈

[

10−6, 106
]

 and 
P ∈

[

10−2, 102
]

 for root and power computation, respectively. The input range of R4HV-CORDIC is only 
[

1

4.19
, 4.19

]

 , and it is discussed in the next section. Hence, the normalization is used to bring down the range of 

P to p ∈ [1, 4] . The normalization is performed using relation P = 4q × p ; hence, the q is [−9, 9] and [−3, 3] after 
normalization for root and power computation, respectively. We have used the modified R4HV-CORDIC to 
compute the log4 p , and log4 P can be computed by adding log4 p to q using the simple adder in both computa-
tions. In the next phase, R4LV-CORDIC is used to divide log4 P by N for root computation and a simple multiplier 
is used to multiply log4 P by N for power computation. Finally, the exponential required to compute 

P

1

N
 and PN 

(9)P = 2q × p; where, p ∈ [1, 2]

(10)log2 P = q+ log2 p

(11)2V = 2VI × 2VF

(12)P

1

N = 4

(

log4 P
N

)

PN = 4(log4 P∗N)

(13)tanh4(a) =
4a − 4−a

4a + 4−a

(14)tanh−1
4 (b) = 0.5 ∗ log4

1+ b

1− b
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are calculated by R4HR CORDIC. The normalization is used to lower the input range of R4HR-CORDIC within 
the convergence range. The exponential 4(·) of the real number V is computed by decomposing the real number 
(V) into integer (VI ) and fraction ( VF ) parts as follows:

In the proposed methodology, 4VI is computed using left shift by 2 ∗ VI bits. The 4VF is computed with the R4HR-
CORDIC. In the following section, the modified R4HV and R4HR CORDICs are discussed.

Modified radix‑4 CORDIC
The various classes of the radix-4 CORDIC algorithm that have been utilized in the proposed methodology are 
discussed here.

Modified radix‑4 HV‑CORDIC
The R4HV-CORDIC can be defined as follows for base-4 logarithm computation.

where j is the integer starting with 1, and selection function σj ∈ {−2,−1, 0, 1, 2} . The radix-4 CORDIC does 
not require repeating any iteration for convergence. The aforementioned rotation introduces the scale factor 

which is given as K =
∏

n
2
j=1

√

(

1− σ−2
j 4−2j

)

 . The problem with the R4HV-CORDIC is the selection criteria 

to choose σj and the complex scale factor K. Since we only use the value of the Z variable at the end of conver-
gence, the re-scaling of the rotated vector is not required. However, in the R4HV-CORDIC algorithm, the selec-
tion criteria to choose the σj are complex and depend on both coordinate values Xj and Yj . The convergence of 
the R4HV-CORDIC can be derived using the SRT-division method as given  in27,28. According to the SRT division, 
the variable Yj is converted into a new variable as Wj = 4jY j . After the conversion, the equation given in Eq. (16) 
will look as follows:

(15)4V = 4VI × 4VF

(16)

[

Xj+1

Yj+1

]

=

[

1 − σj4
−j

−σj4
−j 1

][

Xj

Yj

]

Zj+1 = Zj + tanh−1
4

(

σj4
−j
)

Figure 2.  Proposed methodology to compute (a) Nth root (b) Nth power.
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To guarantee the convergence of the algorithm, the variable Wj must be bounded between the lower(L) and 
upper(U) limits which are defined as L =

(

a−
p

r−1

)

Xj and U =

(

a+
p

r−1

)

Xj for radix-r SRT division. Accord-
ing to the SRT divison method, to achieve maximum overlap between the intervals used for selecting different 
values of σj and for minimal redundancy we have chosen p =

r

2
27. These limits for radix-4 SRT division can be 

defined as L =
(

a− 2
3

)

Xj and U =
(

a+ 2
3

)

Xj . We choose σj = a according to the criteria given in equation Eq. 
(18) to guarantee convergence.

The intervals to select the σj can be derived using the criteria given in equation Eq. (18). The value of the variable 
Wj should be bound within this interval in each iteration to ensure convergence. For example, to select σj = 2 , 
Wj must fall within the interval I2 :

[

4
3X

j , 83X
j
]

 . Similarly, to select σj = 1 , Wj must fall within the interval 
I1 :

[

1
3X

j , 53X
j
]

 . The overlapping between these two intervals is 
[

4
3X

j , 53X
j
]

 . Letter, we can select any value from 
this overlapping between two intervals. The criteria and overlapping intervals for a particular selection function 
are mentioned in Table 3.

The convergence criteria for R4HV-CORDIC can be defined as follows:

The inputs to R4HV-CORDIC are Y0 = p− 1 and X0 = p+ 1 . The range of p is limited by the convergence range 
discussed in Eq. (5), and it can be derived using the constraints given below.

From the above constraints, the range of p can be derived as p ∈
[

1
4.19 , 4.19

]

 . As discussed earlier, this small 
convergence range is enough as the output of the normalizer is between 1 and 4 for the proposed architecture.

The problem with the R4HV-CORDIC is that the σj depends on both the coordinates Xj and Wj . The compu-
tation of the selection function is very complex, as in each iteration Wj needs to be compared with the complex 
selection criteria given in Table 3. The computation of 0.5 ∗ Xj can be achieved with a simple binary shift, and 
additional hardware is not required. However, to compute 1.5 ∗ Xj , an additional adder may be required. In this 
section, we have discussed the methodology to simplify the selection criteria for the application of the root and 
power computations.

Since the inputs to radix-4 HV CORDIC are fixed ( Y0 = p− 1 and X0 = p+ 1 ), we can derive the selection 
criteria to choose σj , which only depends on the variable Yj for any iteration index j. Because of the fixed inputs 
to R4HV-CORDIC, the variables Yj and Xj can also be represented in terms of Y0 for any iteration index, j. For 
example, Y1 and X1 can be represented in terms of Y0 using the identities X0 = Y0 + 2 and Eq. (16) as follows:

From the identities given in Eq. (21), the relation between Y1 and X1 can be derived as follows:

(17)
[

Xj+1

Wj+1

]

=

[

1 − σj4
−2j

−4σ j 4

][

Xj

Wj

]

(18)aXj −
2

3
Xj ≤ Wj ≤ aXj +

2

3
Xj

(19)θmax =

n
2

∑

j=1

tanh−1
4

(

σj,max4
−j
)

= 0.5169

(20)
∣

∣

∣

∣

p− 1

p+ 1

∣

∣

∣

∣

≤ tanh4 (0.5169) = 0.6148 and p+ 1 > 0

(21)
Y1 = Y0

(

1−
σ0

4

)

−
σ0

2

X1 = Y0

(

1−
σ0

4

)

+ 2

(22)X1 = Y1 + 2+
σ0

2

Table 3.  Overlapping intervals and criteria.

Selection function ( σj) Criteria Overlapping intervals

2 Wj ≥ 1.5 ∗ Xj
[

4
3X

j , 53X
j
]

1 1.5 ∗ Xj ≥ Wj ≥ 0.5 ∗ Xj
[

1
3X

j , 23X
j
]

0 0.5 ∗ Xj ≥ W
j
≥ −0.5 ∗ Xj

[

− 2
3X

j ,− 1
3X

j
]

-1 −0.5 ∗ Xj ≥ W
j
≥ −1.5 ∗ Xj

[

− 5
3X

j ,− 4
3X

j
]

-2 −1.5 ∗ Xj ≥ W
j [

− 8
3X

j ,− 7
3X

j
]
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Now criteria to select σ0 and σ1 can be derived using the overlapping intervals given in Table 3 and the identities 
given in Eq. (22) as folloes:

Where [aX1, bX1] is the overlapping interval shown in Table 3 and a ∈ {4/3, 1/3,−2/3,−5/3,−8/3} , and 
b ∈ {5/3, 2/3,−1/3,−4/3,−7/3} . Using the identity X1 = Y1 + 2+ σ0

2  and generalized criteria given in Eq. 
(23), we can derive an interval to select a particular selection function as follows:

Now, using Eq. (21), Y1 can be represented in terms of Y0 and the selection criteria given in 24 can be rewritten 
as follows:

The range of Y0 mentioned in the Eq. (25) can be used to select σ0 and σ1 . By choosing the appropriate value of 
σ0 , a, and b, we can derive the selection criteria to select σ1 . For example, if we choose σ0 = 2 , a = 4

3 , and b = 5
3 

then the range of Y0 to select σ0 = 2 and σ1 = 2 is found out as 2.54 ≤ Y0 ≤ 2.69.
Similarly, the range of Y0 can be found for all possible combinations of σ0 and σ1 by iterating the equation Eq. 

(25). The range of Y0 to select various values of σ0 and σ1 is summarized in Table 4, and from this range, criteria 
to select the selection function is shown in the adjutant column in Table 4. All the values of the criteria can be 
represented using 10-bit, and as a result, a 10-bit comparator is required for the comparison. The problem with 
this method is that the number of comparison points increases exponentially to the iteration index. For example, 
the variable Y0 has to be compared with 125 selection criteria to select σ0 , σ1 , and σ2 . In the proposed architecture, 
values for σ0 and σ1 are selected by comparing the value of Y0 with the criteria given in Table 4. The proposed 
method to select the σj for the iteration index j ≥ 2 is discussed next.

As given  in29, the criteria to select σ2 can be used to select σj for all the iterations with iteration index j ≥ 2 . In 
the proposed architecture, criteria to select σ2 are stored on a look-up table, and they are used to decide the value 
of σj for the rest of the iterations. As discussed earlier, the relation between variables X2 and Y2 can be derived 
using the identity X1 = Y1 + 2+ σ0

2  and iteration equation for j = 2 as follows:

Now, the range of Y2 needed to select σ2 can be derived using the identity aX2 ≤ 64Y2 ≤ bX2 as follows:

Now the above equation can be iterated with various values of σ0 and σ1 to find out the five criteria points Ai for 
σj = i . The range of Y2 to select σj for various values of σ0 and σ1 is summarised in Table 5. The last five columns 
of Table 5 show the criteria to select σj for various values of σ0 and σ1 . All the values of the comparison points 
can be represented using 8-bit, which results in only an 8-bit comparator. Since each comparison point can be 
represented using 8-bit, a look-up table with a size of 125× 8 bits is required to store all the criteria. Once the 
values of σ0 and σ1 are known, the comparison points from the look-up table can be loaded into registers. Later, 
these comparison points will be used to select the value of σj for the rest of the iterations.

The computation flow of the proposed modified R4HV-CORDIC is presented in Table 6. Table 6 states the 
computation performed by the X, Y, and Z data paths in each iteration. In the first step, a normalization procedure 
is performed by evaluating the values of q and p using the identity 4q ≤ P ≤ 4q+1 where q is an integer number. 
By performing a normalization process, P is converted to the convergence range of R4HV-CORDIC as p ∈ [1, 4] , 
and the logarithm of P is computed as log4 P = q+ log4 p . Later, the X0 and Y0 are initialised as X0 = p+ 1 and 
Y0 = p− 1 . The Z-datapath computes σ0 and σ1 by comparing Y0 with the selection criteria given in Table 4. 
Since σ0 and σ1 are already known, the next two stages compute the R4HV-CORDIC iterations with indexes j 
= 1, 2. Stage 2 also loads the values of comparison points from the look-up table based on the values of σ0 and 

(23)aX1 ≤ 16Y1 ≤ bX1

(24)
4a

16− a
≤ Y1 ≤

4b

16− b

(25)
4a

16−a + σ0
2

1− σ0
4

≤ Y0 ≤

4b
16−b + σ0

2

1− σ0
4

(26)X2 = Y2 + 2
(

1+
σ0

4

)(

1+
σ1

16

)

(27)
(

2a

64− a

)

(

1+
σ0

4

)(

1+
σ1

16

)

≤ Y2 ≤

(

2b

64− b

)

(

1+
σ0

4

)(

1+
σ1

16

)

Table 4.  Selection criteria.

σ1

σ0 = 2 σ0 = 1 σ0 = 0 σ0 = −1 σ0 = −2

Y0,min Y0,max
Selection
criteria Y0,min Y0,max

Selection
criteria Y0,min Y0,max

Selection
criteria Y0,min Y0,max

Selection
criteria Y0,min Y0,max

Selection
criteria

2 2.546 2.698 2.625 0.970 1.054 1.012 0.182 0.233 0.207 − 0.291 − 0.261 − 0.275 − 0.606 − 0.589 − 0.59766

1 2.128 2.261 2.195313 0.738 0.812 0.773 0.043 0.087 0.063 − 0.375 − 0.348 − 0.359 − 0.653 − 0.638 − 0.64453

0 1.760 1.878 1.820313 0.533 0.599 0.566 − 0.080 − 0.041 − 0.063 − 0.448 − 0.425 − 0.438 − 0.693 − 0.680 − 0.6875

− 1 1.434 1.539 1.484375 0.352 0.410 0.383 − 0.189 − 0.154 − 0.172 − 0.513 − 0.492 − 0.500 − 0.730 − 0.718 − 0.72266

− 2 1.143 1.236 1.1875 0.191 0.242 0.219 − 0.286 − 0.255 − 0.270 − 0.571 − 0.553 − 0.563 − 0.762 − 0.752 − 0.75781
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σ1 . These comparison points will be used to decide the value of σj for the following iterations. In the third stage 
of the proposed algorithm, first, Z-datapath evaluates the value of σj by comparing the Y2 with the comparison 
points retrieved from the look-up table in the previous stage. The rest of the stages follow this process to get 
convergence. The architecture of the proposed algorithm is discussed next.

The modified R4HV‑CORDIC architecture to compute log4 P
The process of calculating log4 P is divided into three stages. The initial stage is pre-processing, where the range 
of P is transformed to the input range of R4HV-CORDIC. The second stage employs the proposed modified 
R4HV-CORDIC to calculate log4 p . Finally, the post-processing stage computes log4 P by adding q to log p+ q . 
The following section discusses each step in detail.

The input range of the R4HV-CORDIC is p ∈
[

1
4.19 , 4.19

]

 . In the pre-processing stage, the value of P is normal-
ized with factor q in such a way that normalized p is in the range p ∈ [1, 4] . The normalization can be achieved by 
right-shifting P by 2q-bits for 4q ≤ P ≤ 4q+1 , and q can be found out using the simple combinational logic. The 
relation between the actual value of P and normalized p can be expressed as P = p× 4q . In addition to normal-
izing p, the pre-processing stage calculates the value of X0 and Y0 by adding and subtracting normalized p with 
1. The pre-processing stage also involves comparing the normalized p with the conditions specified in Table 4 
to determine the values of σ0 and σ1 . This comparison necessitates a 10-bit comparator, as discussed earlier. The 

Table 5.  Selection criteria to select σ2.

σ0 σ1

Range of 64Y2 to select σ2 Comparison points

σ2 = 2 σ2 = 1 σ2 = 0 σ2 = −1 σ2 = −2 A2 A1 A0 A
−1 A

−2

2 2 9.19 11.55 2.27 4.54 − 4.45 − 2.24 − 10.97 − 8.82 − 17.28 − 15.19 10.5 3.5 − 3.5 − 10 −16

2 1 8.68 10.91 2.14 4.30 − 4.21 −2.11 − 10.36 −8.33 − 16.32 −14.35 9.75 3.25 − 3.25 −9.5 − 15.25

2 0 8.17 10.27 2.01 4.04 −3.96 − 1.98 −9.74 − 7.83 −15.36 − 13.50 9.25 3 −3 − 8.75 −14.5

2 − 1 7.65 9.63 1.88 3.79 −3.71 − 1.87 −9.14 − 7.35 −14.40 − 12.66 8.75 2.75 −2.75 − 8.25 −15.5

2 − 2 7.16 8.99 1.75 3.53 −3.47 − 1.74 −8.52 − 6.86 −13.44 − 11.81 8 2.5 −2.5 − 7.75 −12.75

1 2 7.65 9.63 1.88 3.79 − 3.71 −1.87 − 9.14 −7.35 − 14.40 −12.66 8.625 2.875 − 2.75 −8.25 − 13.5

1 1 7.23 9.09 1.78 3.58 −3.51 − 1.77 −8.63 − 6.94 −13.59 − 11.96 8.125 2.625 −2.625 − 7.75 −12.75

1 0 6.81 8.55 1.68 3.37 − 3.30 −1.66 − 8.13 −6.53 − 12.80 − 11.25 7.625 2.5 − 2.5 − 7.375 − − 12

1 − 1 6.39 8.03 1.57 3.16 − 3.10 − 1.55 − 7.62 − 6.12 − 11.99 − 10.55 7.25 2.375 − 2.375 − 6.875 − 11.25

1 − 2 5.95 7.49 1.47 2.94 − 2.89 − 1.45 − 7.10 − 5.71 − 11.20 − 9.84 6.75 2.25 − 2.125 − 6.375 − 10.5

0 2 6.13 7.71 1.51 3.03 − 2.97 − 1.50 − 7.31 − 5.88 − 11.52 − 10.12 7 2.75 − 2.25 − 6.5 − 10.875

0 1 5.79 7.27 1.42 2.87 − 2.80 − 1.41 − 6.90 − 5.56 − 10.88 − 9.56 6.5 2.125 − 2.125 − 6.25 − 10.25

0 0 5.45 6.85 1.34 2.70 − 2.64 − 1.33 − 6.50 − 5.22 − 10.24 − 9.01 6.125 2 − 2 − 5.875 − 9.625

0 − 1 5.11 6.41 1.25 2.52 − 2.47 − 1.24 − 6.09 − 4.90 − 9.60 − 8.45 5.75 1.875 − 1.875 − 5.5 − 9

0 − 2 4.76 5.99 1.18 2.36 − 2.30 − 1.16 − 5.68 − 4.57 − 8.96 − 7.88 5.375 1.75 − 1.75 − 5.125 − 8.375

− 1 2 4.60 5.77 1.13 2.28 − 2.23 − 1.11 − 5.48 − 4.40 − 8.64 − 7.60 5.125 1.75 − 1.75 − 5 − 8.125

− 1 1 4.34 5.45 1.06 2.15 − 2.10 − 1.06 − 5.18 − 4.16 − 8.15 − 7.18 4.875 1.625 − 1.625 − 4.625 − 7.625

− 1 0 4.08 5.13 1.01 2.02 − 1.98 − 1.00 − 4.88 − 3.92 − 7.68 − 6.76 4.625 1.5 − 1.5 − 4.375 − 7.25

− 1 − 1 3.83 4.81 0.95 1.89 − 1.86 − 0.93 − 4.57 − 3.67 − 7.19 − 6.34 4.375 1.5 − 1.375 − 4.125 − 6.75

− 1 − 2 3.57 4.49 0.88 1.77 − 1.73 − 0.87 − 4.26 − 3.43 − 6.72 − 5.91 4 1.375 − 1.25 − 3.875 − 6.375

− 2 2 3.06 3.85 0.76 1.51 − 1.48 − 0.74 − 3.66 − 2.94 − 5.76 − 5.07 3.5 1.125 − 1.125 − 3.375 − 5.375

− 2 1 2.89 3.64 0.72 1.43 − 1.41 − 0.70 − 3.46 − 2.78 − 5.44 − 4.79 3.25 1 − 1 − 3.125 − 5.125

− 2 0 2.73 3.42 0.67 1.34 − 1.32 − 0.67 − 1.24 − 0.63 − 1.15 − 0.58 3 1 − 1 − 2.875 − 4.875

− 2 − 1 2.55 3.21 0.63 1.27 − 1.24 − 0.63 − 3.05 − 2.44 − 4.80 − 4.22 2.875 1 − 1 − 2.75 − 4.5

− 2 − 2 2.38 3.00 0.59 1.18 − 1.15 − 0.58 − 2.84 − 2.29 − 4.48 − 3.94 2.625 0.875 − 0.875 − 2.5 − 4.25

Table 6.  Computational flow of the modified R4HV-CORDIC.

Iteration index (j) / Stage

Datapath Operations to be performed

X Y Z

j = 0 , Pre-processing X0 = p+ 1 Y0 = p− 1 Evaluate: σ0 , σ1
Compute X0 and Y0 . Evaluate σ0 and σ1 by comparing p with the criteria 
given in Table 4.

j = 1 X1 = X0 −
σ0Y0
4 Y1 = Y0 −

σ0X0
4 Z1 = Z0 + tanh−1

4

(

σ0
4

)

Compute X1 , Y1 , and Z1.

j = 2 X2 = X1 −
σ1Y1
16 Y2 = Y1 −

σ1X1
16 Z2 = Z1 + tanh−1

4

(

σ1
16

) Compute X2 , Y2 , and Z2 . Load comparison points Ai from the look-up 
table.

j = 3 to n2 Xj = Xj−1 −
σj−1Yj−1

4j−1 Yj = Yj−1 −
σj−1Xj−1

4j−1 Zj = Zj−1 + tanh−1
4

(

σj−1

4j−1

) Evaluate σj by comparing Yj with the comparison points loaded from the 
look-up table in the second iteration, compute Xj , Yj , and Zj.
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normalization can be achieved by binary shift using a fixed number of bits in fixed-point representation and its 
delay can be ignored. The radix-4 HV CORDIC receives X0 , Y0 , σ0 , and σ1 from the pre-processing stage and 
computes the log4

(

p
)

 . The generalized architecture of X-Y datapaths of the R4HV-CORDIC is shown in Fig. 3. 
The adder/subtractor and shifter are the basic components of the X and Y datapaths, and the architecture of the 
X and Y data paths is the same for all stages except for the shift value. The shifter can be implemented using a 
simple 3-to-1 multiplexer and it multiplies the σj with Xj (in Y-datapath) and Yj (in X-datapath). The multiplica-
tion can be achieved using binary shift as the value of σj is always an integer power of two. The Z-datapath of the 
first stage first access the tanh−1

4

(

σ0
4

)

 from the ROM table and add or subtract it to Z0 to generate the Z1 . Since 
there are three values of sigmaj and negative values of rotation angle can be added by performing subtraction, 
only three values of tanh−1

4

(

σ0
4

)

 need to be pre-computed. The Z-datapath of the second stage pre-loads the 
comparison points to pipelined registers from the ROM table based on the value of σ0 and σ1 . The Z-datapath of 
the third stage compares the comparison points ( Ai ) received from the previous computation with the 64Y2 to 
derive σ2 . Since the X and Y datapaths can only compute after the computation of σ2 , the critical path delay of the 
X-Y datapath has an additional delay of a comparator, as compared to the first and second stages. In the proposed 
architecture, we have proposed pipelined structure where each stage is separated with pipeline registers so that 
they can compute in parallel. Table 7 summarizes the critical path delay of the X-Y and Z rotators of each stage.

The critical path delays of all rotators are approximately the same as they use an adder/subtractor and com-
parator, as shown in Table 7. Radix-4 CORDIC rotation requires half the iterations of radix-2 for the same N-bit 
 precision29. The proposed modified R4-HV CORDIC algorithm introduces only a minimal overhead of three 
3-to-1 multiplexers in each stage. Therefore, implementing the modified R4-HV CORDIC algorithm requires 
3N

2
 adders and 

3N

2
 3-to-1 multiplexers, which is significantly less than the 3N adders required by the radix-2 

CORDIC algorithm. The proposed R4-HV CORDIC algorithm has better hardware utilization than the radix-2 
CORDIC algorithm since the complexity of an adder is approximately twice that of a 3-to-2  multiplexer30. In the 
post-processing stage, the output of the Z-datapath of the last stage of the radix-4 HVCORDIC is shifted right 
by 1-bit to generate log4 p . Later, the adder adds log4 p with the normalized shift value q in the post-processing 
stage to generate log4 P , which has a delay of one adder.

Radix‑4 LV‑CORDIC
The radix-4 LV-CORDIC has the most straightforward architecture among all the versions of CORDIC. The 
computational equations of R4LV-CORDIC are given in Eq. (28).

Figure 3.  Architecture of R4HV-CORDIC stage.

Table 7.  Critical path delay of R4HV-CORDIC. TNORM : Delay of Normalizer; Tadd : Delay of adder subtractor; 
Tcomp : Delay of comparator; TROM : Delay time to access ROM table

Stage X-Y Datapath Z Datapath

Pre-processing Tadd Tadd + Tcomp

First and Second stages of radix-4 HVCORDIC Tmux + Tadd TROM + Tadd

Rest of the stages of radix-4 HVCORDIC Tcomp + Tadd + Tmux Tcomp + Tadd + TROM

Post-processing Tadd
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For R4LV-CORDIC, iteration index j starts from 0. The extension of the input range of the R4LV-CORDIC can be 
increased by performing the non-positive index iteration with the same architecture, and additional hardware is 
not required. The implementation of R4LV-CORDIC necessitates the two multiplexers and adders, each for Y and 
Z datapaths, as depicted in Fig. 4. The critical path delay of Y and Z rotators includes the delay of one adder and 
multiplexer. As compared to the radix-2 CORDIC algorithm that uses two adders, one stage of R4-LV CORDIC 
uses two adders and two 3-to-1 multiplexers. However, the R4-LV CORDIC algorithm achieves convergence in 
half the iteration. The total hardware complexity of R4-LV CORDIC is N adders and N multiplexers, which is 
less than the 2N adders used by the radix-2 algorithm. Also, LV mode of the CORDIC does not generate scaling 
and compensation of the scale factor is not required in LV class of the CORDIC.

Modified radix‑4 HR‑CORDIC
In this section, the radix-4 hyperbolic rotation CORDIC is discussed. The R4HR-CORDIC is used to determine 
the exponential (4(·)) in the proposed method. The R4HR-CORDIC iteration can be illustrated as follows:

where σ j ∈ {−2,−1, 0, 1, 2} , and j = 1, 2, ..., n2 . The ( Xj , Yj ) is the input vector, and ( Xj+1 , Yi+1 ) represents the 
output vector after jth rotation. After the convergence, the final coordinates Xn and Yn of the rotated vector are 
as follows:

Where Kh is the scale factor. From above equation 30, exponential 4Z1 can be computed as follows:

However, the computation of the final exponential requires the scale-factor compensation. The scale factor is 
given by Kh =

∏

n
2
j=1

(√

1− σ 2
j 4

−2j
)

 . The variable scale factor is the disadvantage of the R4HR-CORDIC. 

Another problem with R4HR-CORDIC is the convergence range. According to the illustration given in eq1, the 
minimum convergence range required is |Z1| ≤ 1 . However, the convergence range of radix-4 HR CORDIC is 
only |Z1| ≤ 0.501 . In the proposed architecture, an attempt is made to address these issues. In the next section, 
the convergence of the proposed CORDIC algorithm, its range of convergence, and scale factor compensation 
are discussed.

(28)

[

Xj+1

Yj+1

]

=

[

1 − σj4
−j

0 1

][

Xj

Yj

]

Zj+1 = Zj + σj4
−j

(29)

[

Xj+1

Yj+1

]

=

[

1 σ j4−j

σ j4−j 1

] [

Xj

Yj

]

Zj+1 = Zj − tanh−1
4

(

σ j4−j
)

(30)
Xn = Kh cosh4 (Z1)

Yn = Kh sinh4 (Z1)

(31)4Z1 = Kh(cosh4 (Z1)+ sinh4 (Z1))

Figure 4.  Architecture of R4LV-CORDIC.
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Proposed modified Radix‑4 HR CORDIC
The high-radix CORDIC algorithm helps achieve convergence faster than the standard CORDIC algorithm. 
However, the scale factor of the high-radix CORDIC algorithm is complex, and its compensation may require 
significant hardware. In the proposed architecture, we have used the Taylor series approximation of hyperbolic 
sine and cosine for the high-radix CORDIC algorithm to achieve the scaling-free rotation. The Taylor series 
approximation of sinh(θ) and cosh(θ) with angle θ = σj4

−j can be defined as follows:

The computation of a high-order Taylor approximation requires substantial hardware, and it is advisable to 
use a low-complexity Taylor approximation. The Taylor estimation is therefore constrained to two terms in the 
proposed design. The effect of iteration on accuracy in terms of binary bits (n) has to be studied for the potential 

error in the representation of the rotation vector. From Eq. (32), the term 
σ 5
j 4

−5j

5!  of the Taylor approximation of 

sinh can be ignored if 
σ 5
j 4

−5j

5! ≤ 2−n . From this relation, we can conclude that the term 
σ 5
j 4

−5j

5! ≤ 2−n can be ignored 

for iteration index j ≥ n−2
10  . Similarly, term 

σ 4
j 4

−4j

4!  can be ignored for the iteration index j ≥ n−1
8  . For example, if 

32-bit precision is targeted, then the terms 
σ 5
j 4

−5j

5!  and 
σ 4
j 4

−4j

4!  can be ignored for iteration index j ≥ 3 and j ≥ 4 , 
respectively, without introducing any quantization error. The effective word length ( WLE ) is another measure 
to check the error performance in the two-dimensional rotation. As given  in31 32, the WLE for two-dimensional 
rotation can be defined as follows:

where, ǫ =

√

ǫ2C + ǫ2S  , and ǫC and ǫS es are the absolute errors generated by the Taylor approximation in the 
cosine and sine components, respectively.

The WLE of the hyperbolic rotation for the proposed Taylor approximation for iteration index j = 4 is 38 bits. 
It indicates that this rotation may generate an error in the 38th bit. The Taylor approximation is more accurate 
for the smaller values of the rotation angle, and as a result, the WLE will be improved for higher iteration indices. 
The two terms of the Taylor approximation of hyperbolic sine and cosine are used for iteration index j ≥ 4 . The 

terms 
σ 3
j 4

−3j

3!  from a sine approximation and 
σ 2
j 4

−2j

2!  from a cosine approximation can be ignored without any error 
for iteration index j ≥ 6 and j ≥ 12 , respectively. This way, the hardware required to compute the scaling-free 
rotation is reduced for higher values of j. However, the scale factor generated by the first three iterations needs to 
be compensated. The scale factor of the high-radix CORDIC algorithm depends on σj . In the proposed algorithm, 
the σj of the first three iterations is pre-computed by comparing the rotation angle (Z0) with the selection criteria. 
Once the value of σj is known, the scale factor can be pre-computed and stored on a ROM table. Initializing the 
coordinate values with the pre-computed scale factor can result in compensation of the scale factor. This method 
is discussed in more detail in the next section.

Convergence of the proposed CORDIC algorithm
The minimum convergence range required for exponential computation is 0 ≤ Z0 ≤ 1 . Tthe small convergence 
range of R4HR-CORDIC can be defined as |Z1| ≤

∑∞
j=1 tanh

−1
4 (2× 4( − j)) = 0.502 . To increase the con-

vergence range to the required value, we propose to rotate the vector through one additional rotation angle, 
tanh−1

4 (0.625) , as follows:

where, σ0 = 1 and 0 indicate the rotation of the vector through tanh−1
4 (0.625) and no rotation, respectively. This 

additional rotation has the scale factor K0 =
√

(1− (σ00.6252)2) , which depends on σ0 . As discussed earlier, in 
the proposed CORDIC algorithm, the selection function σ0 for the first three iterations needs to be pre-computed 
for scale factor compensation. The parameter σ0 of the additional rotation also needs to be pre-computed as it has 
a variable scale factor. Once the selection functions are known, the scale factor can be pre-computed and stored 
on a ROM table. Later, X0 is initialized with 1Kh

 , and the scale factor can be compensated without any additional 
hardware. The concept of high-radix SRT division is used to derive the convergence and selection criteria. The 
lower (L) and upper (U) limits to select σ0 , σ1 , σ2 , and σ3 can be defined as follows:

(32)
sinh

(

σj4
−j
)

= σj4
−j +

σ 3
j 4

−3j

3!
+

σ 5
j 4

−5j

5!
+ . . .

cosh
(

σj4
−j
)

= 1+
σ 2
j 4

−2j

2!
+

σ 4
j 4

−4j

4!
+ . . .

(33)WLE = − log2 ǫ + 1.5

(34)

[

X1

Y1

]

=

[

1 0.625σ0
0.625σ0 1

] [

X0

Y0

]

Z1 = Z0 − tanh−1
4 (0.625σ0)

(35)
L = tanh−1

4 (0.625σ0)+ tanh−1
4

(

σ14
−1

)

+ tanh−1
4

(

σ24
−2

)

+ tanh−1
4

(

σ34
−3

)

−
2

3
tanh−1

4

(

4−3
)

U = tanh−1
4 (0.625σ0)+ tanh−1

4

(

σ14
−1

)

+ tanh−1
4

(

σ24
−2

)

+ tanh−1
4

(

σ34
−3
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+
2

3
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4
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The above limits are pre-computed for all possible combinations of σ0 , σ1 , σ2 , and σ3 to find the intervals (L, U). 
Later, the overlapping area between two intervals is found to choose selection criteria. For example, the intervals 
are [0.4906, 0.5057] and [0.4794, 0.4944] for ( σ0 , σ1 , σ2 , and σ3)=(0,2,2,1) and (0,2,2,0), respectively. The overlap-
ping between these two intervals is [0.4906, 0.4944]. As a result, any value from this interval can be chosen to 
select σ0 = 0 , σ1 = 2 , σ2 = 2 , and σ3 = 1 . In order to indicate the selection criteria, nine bits must be used for 
each value of the selection criterion in the proposed method. The criteria to choose σ0 , σ1 , σ2 , and σ3 along with 
the scale factors are listed in the Table 8.

The selection criteria to choose σj for iterations j ≥ 4 can be made independent of the iteration index. Accord-
ing to the  method30,33, we define the new variable Wj as Wj = 4jZj . The new variable Wj has to be bounded by 
upper and lower limits. The upper and lower limits of the new variable Wj can be defined as follows:

Since Lj[q] and Uj[q] are monotonous functions, i.e. Lj[q] ≤ Lj[q+ 1] and Uj[q] ≤ Uj[q+ 1] , the selection criteria 
can be made independent of iteration index. As a result, the largest value of the lower limit (i.e. L∞[q] ) and the 
smallest value of the upper limit (i.e. U4[q] ) are chosen to make selection criteria independent of the iteration 
index. The selection criteria to choose σj for iteration index j ≥ 4 is given below.

(36)
Lj[q] = 4j

[

tanh−1
4 (4−jσj)−

2

3
tanh−1

4 (4−j)

]

Uj[q] = 4j
[

tanh−1
4 (4−jσj)+

2

3
tanh−1

4 (4−j)

]

(37)σj =



















2 : if Wj ≥ 1.125
1 : if 1.125 > Wj ≥ 0.375
0 : if 0.375 > Wj ≥ −0.375
−1 : if − 0.375 > Wj ≥ −1.125
−2 : if − 1.125 > Wj

Table 8.  ROM table.

256Y0 σ0 σ1 σ2 σ3 Kh 256Y0 σ0 σ1 σ2 σ3 Kh 256Y0 σ0 σ1 σ2 σ3 Kh

253 1 2 1 2 0.674 167 1 1 − 1 − 1 0.754 83 0 2 − 2 2 0.859

250 1 2 1 1 0.675 164 1 1 − 2 2 0.750 80 0 2 − 2 1 0.859

247 1 2 1 0 0.675 161 1 1 − 2 1 0.750 77 0 2 − 2 0 0.859

244 1 2 1 − 1 0.675 158 1 1 − 2 0 0.750 75 0 1 2 2 0.960

241 1 2 0 2 0.676 155 1 1 − 2 − 1 0.750 72 0 1 2 1 0.961

238 1 2 0 1 0.676 152 1 1 − 2 − 2 0.750 69 0 1 2 0 0.961

235 1 2 0 0 0.676 151 1 0 1 2 0.779 66 0 1 2 − 1 0.961

232 1 2 0 − 1 0.676 148 1 0 1 1 0.779 63 0 1 1 2 0.966

230 1 2 − 1 2 0.674 145 1 0 1 0 0.779 60 0 1 1 1 0.966

227 1 2 − 1 1 0.675 143 1 0 1 − 1 0.779 57 0 1 1 0 0.966

224 1 2 − 1 0 0.675 140 1 0 0 2 0.780 54 0 1 1 − 1 0.966

221 1 2 − 1 − 1 0.675 137 1 0 0 1 0.781 51 0 1 0 2 0.968

218 1 2 − 2 2 0.670 134 1 0 0 0 0.781 49 0 1 0 1 0.968

215 1 2 − 2 1 0.671 131 1 0 0 − 1 0.781 46 0 1 0 0 0.968

212 1 2 − 2 0 0.671 129 0 2 2 2 0.859 43 0 1 0 − 1 0.968

210 1 1 2 2 0.750 126 0 2 2 1 0.859 40 0 1 − 1 2 0.966

207 1 1 2 1 0.750 123 0 2 2 0 0.859 37 0 1 − 1 1 0.966

204 1 1 2 0 0.750 120 0 2 2 − 1 0.859 34 0 1 − 1 0 0.966

201 1 1 2 − 1 0.750 117 0 2 1 2 0.864 31 0 1 − 1 − 1 0.966

198 1 1 1 2 0.754 114 0 2 1 1 0.864 28 0 1 − 2 2 0.960

196 1 1 1 1 0.754 112 0 2 1 0 0.864 25 0 1 − 2 1 0.961

193 1 1 1 0 0.754 109 0 2 1 − 1 0.864 23 0 1 − 2 0 0.961

190 1 1 1 − 1 0.754 106 0 2 0 2 0.866 22 0 0 2 0 0.992

187 1 1 0 2 0.756 103 0 2 0 1 0.866 19 0 0 2 − 1 0.992

184 1 1 0 1 0.756 100 0 2 0 0 0.866 16 0 0 1 2 0.998

181 1 1 0 0 0.756 97 0 2 0 − 1 0.866 13 0 0 1 1 0.998

178 1 1 0 − 1 0.756 94 0 2 − 1 2 0.864 10 0 0 1 0 0.998

175 1 1 − 1 2 0.754 91 0 2 − 1 1 0.864 7 0 0 1 − 1 0.998

172 1 1 − 1 1 0.754 88 0 2 − 1 0 0.864 4 0 0 0 2 0.999

170 1 1 − 1 0 0.754 85 0 2 − 1 − 1 0.864 1 0 0 0 1 1.000
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In the proposed algorithm, criteria, given in Eq. (37), are used to decide the selection function for any iteration 
index j ≥ 4 . The selection functions for the first four iterations are pre-computed and stored on a ROM table. The 
scale factor related to these rotations is defined as Kh =

√

(

1− (0.625σ0)2
)(

1− σ 2
1
4−2j

)(

1− σ 2
2
4−4j

)(

1− σ 2
3
4−6j

)

 

This scale factor can be compensated by taking the initial value of the X-coordinate of the rotating vector as 
X0 =

1
Kh

 . The pre-computed scale factor is stored on a ROM table along with a selection function. When j ≥ 4 , 
the algorithm executes the scaling-free computation. The scale factor compensation for these iterations is not 
required. The pre-computed scale factors and selection function are accessed from the ROM table by comparing 
the initial angle Z0 with the selection criteria listed in Table 8. The proposed CORDIC algorithm is summarized 
in Table 9.

Table 9 provides the operations carried out by the various rotators in each stage. In the pre-processing stage, 
the integer and fraction parts of the input angle are derived. In this stage, pre-computed scale factor, and selection 
functions are retrieved from the ROM table. In the next stage, X1 is initialized with a pre-computed scale factor, 
and Y1 is computed using the relation given in Table 9. The Z rotator of this stage rotates the two-dimensional 
vector by an angle tanh−1

4 (0.625) if σ0 = 1 . It does not perform the rotation otherwise. The next three stages 
compute the standard radix-4 HR CORDIC iterations based on the σj received from the previous stage. The 
next three stages compute scaling-free iterations wherein hyperbolic sine and cosine are approximated using 
two terms. In Taylor’s approximation of hyperbolic sine, 3! is replaced with 8(23) so that computation can be 
achieved using binary shift only. The absolute error introduced by this approximation is 1.4× 10−17 for j = 4 
and σ4 = 2 . The second term in the Taylor approximation of hyperbolic sine and cosine can be ignored for the 
iterations 7 ≤ j ≤ 12 and 13 ≤ j ≤ n

2 . As a result, the remaining stages compute the standard radix-4 HR CORDIC 
for j ≥ 13 . The architecture and hardware required to compute these iterations are discussed in the next section.

The architecture of the proposed CORDIC algorithm
The architecture, timing analysis, and hardware complexity of the proposed CORDIC algorithm are discussed 
in this section. The first stage of the proposed algorithm is the normalizer that separates the integer ( VI ) and 
fractional ( VZ ) parts of the input angle. At the end of the computation, the result is shifted by 2VI-bits to achieve 
the actual results. This stage accesses the scale factor and selection functions from the ROM table based on the 
value of the input angle after the normalization. The X rotator of this stage is simple, and it only initializes the X1 
using 1Kh

 . The Y-rotator computes the 0.625Kh
 by adding two partial products 0.5Kh

 and 0.125Kh
 using adder. If the selection 

function σ0 is zero, Y1 will be initialized with a zero to indicate that no rotation has occurred. If σ0 is one, Y1 is set 
to 0.625Kh

 . Similarly, the Z rotator computes Z1 based on the value of σ0 . The critical path delay of Y and Z rotators 
are equal, and it is given as T0 = TROM + TMUX21 + TADD where,TROM is a delay of read-only memory (ROM), 
TMUX21 is the delay of 2-to-1 multiplexer, and TADD indicates the delay of the adder.

Since fixed-point representation is used, the normalizer computes the normalized value by shifting the input 
angle using fixed bits and it does not add delay. The VLSI implementation of this stage requires two adders and 
two 2-to-1 multiplexers each for Y and Z rotators. As discussed in the section on word length analysis, the scale 
factor is represented using 30-bit, and selection functions σ0 and σ1 to σ3 can be represented using one and 
three bits, respectively. As a result, the ROM table size of this stage is 90x40 bits. The next three stages compute 
the standard radix-4 HR CORDIC iterations based on the pre-computed selection function received from the 
previous stage. The architecture of the X and Y rotators of these stages is similar to the architecture of the R4HV-
CORDIC. The VLSI implementation of this stage requires three 3-to-1 multiplexers and three adders. The critical 

Table 9.  Computational flow of the R4HR-CORDIC.

Iteration index

Datapath

OperationX Y Z

Prescaler – – – Pre-scale the input angle add selection 
function

j = 0 X1 =
1
Kh

Y1 =
σ0
Kh

(

2−1 + 2−3
)

Z1 = Z0 − tanh−4 1(0.625σ0) Compute X1 , Y1 , and Z1 based on σ0.

1 ≤ j ≤ 3 Xj+1 = Xj + σj4
−jYj Yj+1 = Yj + σj4

−jXj Zj+1 = Zj − tanh−1
4 (σj4

−j)
Compute conventional radix-4 hyper-
bolic rotation

4 ≤ j ≤ 6

Xj+1 = Xj

(

1+
σ 2
j 4

−2j

2

)

 

+Yj

(

σj4
−j +

σ 3
j 4

−3j

8

)

Yj+1 = Yj

(

1+
σ 2
j 4

−2j

2

)

 

+Xj

(

σj4
−j +

σ 3
j 4

−3j

8

) Zj+1 = Zj − tanh−1
4

(

σj4
−j+

σ3j 4
−3j

8

1+
σ2j 4

−2j

2

)

Compute scaling-free hyperbolic rota-
tion with two terms of hyperbolic sine 
and cosine.

7 ≤ j ≤ 12 Xj+1 = Xj

(

1+
σ 2
j 4

−2j

2

)

 Yj

(

σj4
−j
)

Yj+1 = Yj

(

1+
σ 2
j 4

−2j

2

)

 Xj

(

σj4
−j
)

Zj+1 = Zj − tanh−1
4

(

σj4
−j

1+
σ2j 4

−2j

2

)

Compute scaling-free hyperbolic 
rotation with two terms of hyperbolic 
cosine and one term of hyperbolic sine.

13 ≤ j ≤ n
2 Xj+1 = Xj + Yj

(

σj4
−j
)

Yj+1 = Xj + Xj

(

σj4
−j
)

Zj+1 = Zj − tanh−1
4

(

σj4
−j
)

Compute scaling-free hyperbolic rota-
tion with one term of hyperbolic sine 
and cosine.
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path delay of this stage includes the delay of the adder ( TADD ) and 3-to-1 multiplexer ( TMUX31 ), and it is given as 
T0 = TMUX31 + TADD . The total hardware complexity of this state is three 3-to-1 multiplexers and three adders.

The next three stages compute the scaling-free iterations. These stages use two terms of the Taylor approxima-
tion of hyperbolic sine and cosine to make computation scaling-free. The architecture of the X and Y rotators is 
similar and only the architecture of the X rotator is shown in Fig. 5. All the terms of the Taylor approximation can 
be multiplied with Xj and Yj using binary shift only and it can be implemented using only a 3-to-1 multiplexer. 

For example, for iteration index j=4, the term 
σ 2
j 4

−2j

2  in cosine approximation can be simplified to 2−15 , 2−17 , and 

0 for σ4 = 2 , 1, and 0, respectively which can be implemented using a 3-to-1 multiplexer. The X and Y datapath 
of these stages requires three 3-to-1 multiplexers to generate three partial products and a 4-to-2 carry-save adder 
(CSA) to add four partial products as shown in Fig. 5. The VLSI implementation of a 4-to-2 CSA requires two 
full adders and one adder. The Z rotator of this stage compares Zj with the criteria given in Table 8 to derive 

Figure 5.  Architecture of R4HR-CORDIC stage with 4 ≤ j ≤ 6.

Figure 6.  Architecture of R4HR-CORDIC stage with 7 ≤ j ≤ 12.
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the σj . Later, Zj+1 is computed based on the value of σj by adding or subtracting the tanh4
(

σj4
−j
)

 from Zj . The 
critical path delay of the X and Y rotators of this stage is dominant compared to the Z rotator and it is given 
as T2 = TCOMP + TADD + 2TFA + TMUX31 , where, TCOMP indicates the delay of the comparator, and TFA is the 
delay of full adder. The timing and hardware complexity of these stages is the highest compared to other stages. 
The VLSI implementation of this stage requires seven 3-to-1 multiplexers, four full adders, and three adders.

The stages with iteration index 7 ≤ j ≤ 12 , perform the scaling-free rotation with one term and two terms 
of the Taylor approximation of sine and cosine, respectively. As shown in Fig. 6, the VLSI implementation of 
this stage uses five 3-to-1 multiplexers, two full adders, and three adders. The delay of this computation is equal 
to T3 = TCOMP + TADD + TFA + TMUX31 . The scale factor can be assumed one for the remaining stages. For 
example, for j=13, the absolute error is 4.44× 10−15 if the scale factor is assumed one. The VLSI implementation 
of the rest of the stages requires three adders and three 3-to-1 multiplexers. The modified R4-HR CORDIC has 
a total hardware complexity of 84 adders and 62 3-to-1 multiplexers for 40-bit precision, which is a reasonable 
improvement from the 126 adders of the radix-2 CORDIC algorithm.

Experimental results and discussion
We give the experimental data from our research study in this section and provide an in-depth evaluation of 
the outcomes.

Datawidth analysis
The data width of the X, Y, and Z rotators is a crucial factor to consider before implementing the hardware of the 
proposed methodology. The data width determines the number of bits used to represent the input and output 
variables of the various stages of the proposed method. The fixed-point representation is used to represent the 
variables. The format FXP(a,b) indicates a-1 integer bits, b fraction bits, and one sign bit are used to represent 
the number using fixed-point. As per the methodology presented  in25,26, the input range of P is assumed to be 
P ∈

[

10−6, 106
]

 and N ∈ [2, 1002] . For comparison purposes, 27 bits are used to represent the fractional part of 
the input number P. The maximum value of P is 106 , which can be represented using 20 integer bits. As a result, 
the total number of binary bits required to represent the P is 48 (FXP(21, 27)).

The first step in the logarithm computation is the normalizer. The convergence range of the proposed radix-4 
HV CORDIC algorithm is p =

[

1
4.19 , 4.19

]

 . The normalization process in the proposed method rearranges the 
fixed-point representation of the input number P as FXP(4, 44) to bring down the P into the convergence range 
of the proposed R4HV-CORDIC. As a result, FXP(4, 44) precision is used to represent the X and Y coordinates of 
the R4HV-CORDIC algorithm. The integer data width required to represent the Z rotator of the R4HV-CORDIC 
algorithm depends on the value of log4(Pmax) . Since the maximum value of P is 106 , four integer bits are required 
to represent the logarithm of the maximum of P. Also, the normalization factor (q) is 9 for the Pmax . Hence, 
FXP(5,27) precision is considered to represent q, and log4(Pmax).

The number of bits required to represent the integer part of the input of R4LV-CORDIC depends on the 
maximum value of N. Since Nmax = 1002 , ten bits are required to represent the integer part of N. As a result, the 
FXP(11,27) precision is used to represent the N, and log4 Pmax is extended to the same precision. The maximum 

input to R4HR-CORDIC is Z0 =
log4(2

20)

2 = 5 . Three bits are required to represent the integer part of the Z0 of 
R4HR-CORDIC. As a result, FXP(4,27) precision is taken to represent the Z0 . After the normalization process, 
the R4HR-CORDIC only rotates the vector through the fractional part of the log4(P)2 ≈ 1 and since cosh4(1) = 
2.125, the integer part of the X and Y inputs of the R4HR-CORDIC are represented using two bits. The final 
output is shifted by ZI bits to get an actual exponential value. Additional 9 bits are considered to represent the 
factional part of the X and Y inputs. Hence, FXP(3, 36) precision is considered to represent the X and Y inputs.

Next, we analyze the data width required for the computation of PN . As given  in26, we assume the range of P 
and N to be limited to the interval 

[

10−2, 102
]

 and [1, 5] , respectively. The maximum input to R4HV-CORDIC is 
100. Hence, 7-bit is considered to define the integer part of the input P. For an average precision of 10−7 , 27-bit 
is used for the fraction part of the input P. As a result, in the proposed methodology, input P is represented 
using the precision FXP(8,27). The first step in the logarithm computation is pre-log normalization. After the 

Table 10.  Datawidth analysis.

Task

PN P

1

N

Operation Variable Data format Word length Operation Variable Data format Word length

Logarithm

Normalizer P FXP(8,27) 35 Normalizer P FXP(21,27) 48

R4HV p FXP(4,31) 35 R4HV p FXP(4,44) 48

Adder q, log2 4p FXP(4,27) 31 Adder q, log4 p FXP(5,27) 32

Division / Multipli-
cation

Multiplier log4(P) , N FXP(5,27) 32 R4LV log4(P) , N FXP(11,27) 38

Normalizer log4(P)N FXP(3,27) 30 Normalizer log4(P)

N
FXP(4,27) 31

Exponential
R4HR q, log4(P)N FXP(3,27) 30 R4HR q, 

log4(P)

N
FXP(3,27) 30

Adder cosh(.) , sinh(.) FXP(3,27) 30 Adder cosh(.) , sinh(.) FXP(3,27) 30
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normalization process, normalized P (p) can be defined with the precision FXP(4,31). The maximum output of 
the logarithm computation is log4(100) = 3.32 , and hence, 2-bit is considered to represent the integer part of 
log4(100) . Hence, Z-datapath and log4(p) are defined using precision FXP (3,27).

The input to the multiplier is log4(p) and N. The integer part of the output of the multiplier can be represented 
using 5 bits as log4(p)× Nmax = 16.61 . Hence the output of the multiplier is defined using precision FXP (6,27). 
The next step is to calculate the exponential. The first step in an exponential calculation is normalization. In the 
normalization process, the integer and fractional parts of the input angle of radix-4 HR CORDIC are separated. 
The fractional part of the input angle can be represented using FXP(3,27). As discussed earlier, the integer part 
of the X and Y data paths is represented using 2 bits. Hence, the X and Y inputs of the R4HR-CORDIC are 
represented using FXP (3,27). The data width required to represent the various variables at different stages is 
summarized in Table 10.

Accuracy and number of iterations
To verify the proposed methodology, RMSE, and maximum absolute error (max(AE)) is measured using the 
Eq. (38).

where Ai and Bi indicate the actual and calculated values. The desired accuracy or the number of iterations may 
be changed to modify the precision of the output coordinates in the conventional CORDIC algorithm. The 
accuracy of the coordinates increases with the number of executed iterations. However, adding the iterations 
increases the cost of the computation. Also, the high-radix CORDIC algorithm achieves the desired accuracy 
faster than the conventional CORDIC algorithm. The study should be carried out to see the impact of iterations 
on accuracy for various approaches. Figure 7 demonstrates the plot between the iterations performed and the 
accuracy for different approaches. The accuracy is measured by locating RMSE in output coordinates using 
equation − log2 (RMSE) . Figure 7a–c demonstrate the iteration versus accuracy graphs for hyperbolic rotation, 

(38)
RMSE =

√

∑S
i=1 (Ai − Bi)

2

S

max(AE) = max

(∣

∣

∣

∣

A− B

A

∣

∣

∣

∣

)

Figure 7.  Error analysis.
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base-2 rotation, and proposed rotation. From this Fig. 7, it can be concluded that the proposed method achieves 
high accuracy compared to other approaches for the same number of iterations. However, the hardware required 
to carry out the radix-4 CORDIC rotation is slightly higher than the standard radix-2 CORDIC. The hardware 
required to implement the proposed approach is analyzed in the next section.

To measure the error performance, a total of 105 samples of input P are generated in the range from 10−6 to 106 
using the logarithm step to cover the entire range with the minimum samples. The error is measured for the Nth 
root computation with N=5. Table 11 compares the RMSE and max(AE) for the proposed method and approaches 
presented  in25 and 26. The number of stages used to measure the error is also mentioned in Table 11. Hyperbolic 
and binary logarithmic CORDIC repeats the iteration with indexes j=4, 13, 40, ... and repeated iteration is con-
sidered as a stage in Table 11. For example,  approach26 goes through the iterations with indexes j=1 to 14, and 
iterations 4 and 13 are repeated, resulting in a total of 16 iterations (stages). However, the proposed method 
uses radix-4 computations where iterations are not required to be repeated. Hence, the proposed approach goes 
through the iterations j=1 to 8 resulting in 8 iterations (stages). From Table 11, it is apparent that the proposed 
algorithm uses half the stages compared to  approaches25  and26 and has better error performance. Next, the hard-
ware complexity of the proposed approach is compared with  approaches25,26, and it is discussed next.

Hardware complexity analysis
Hardware analysis is carried out quantitatively by computing the transistors required to implement the proposed 
architecture for two configurations. In the first configuration, the number of iterations of each CORDIC con-
figuration is considered as given  in25,26. As discussed earlier, the standard CORDIC produces 1-bit precision in 
each iteration, whereas the radix-4 CORDIC generates 2-bit precision. Hence, in the second configuration, we 
chose the number of iterations based on the data width of the different variables of three CORDIC configurations.

Adder/subtractor, multiplexer, ROM, and comparator are the basic building block of the proposed algorithm. 
In the proposed design R4HV, R4LV, and R4HR CORDICs compute logarithm (log4(P)) , divison 

(

log4(P)/N
)

 
and exponential 4(log4(P)/N) , respectively. For b-bit datapath, 24b and 48b transistors are required to implement 
the simple adder and adder/subtractor,  respectively25,26. Similarly, 6b, 10b, and 24b transistors are required to 
implement b-bit ROM, multiplexer, and  comparator34. Each stage of the proposed R4HV CORDIC uses one 
adder/ subtractor and multiplexer for each X, Y, and Z datapath resulting in 174b transistors. Along with that, 

Table 11.  Error performance.

Stages

25 26

Stages

Proposed

RMSE Max(AE) RMSE Max(AE) RMSE Max(AE)

16 9.73E-04 7.98E-03 7.06E-04 3.80E-03 8 4.66E-04 2.76E-03

20 1.00E-04 8.70E-04 4.40E-05 2.27E-04 10 2.92E-05 1.70E-04

24 6.25E-06 4.97E-05 2.76E-06 1.49E-05 12 1.82E-06 1.03E-05

28 3.89E-07 3.21E-06 1.72E-07 9.02E-07 14 1.14E-07 6.69E-07

32 2.43E-08 2.14E-07 1.08E-08 5.68E-08 16 7.12E-09 4.13E-08

36 1.52E-09 1.33E-08 6.72E-10 3.54E-09 18 4.45E-10 2.59E-09

Table 12.  Hardware complexity comparison to compute P1/N.

Computation

25 26 Proposed

Stages TC RMSE Stages TC RMSE Stages TC RMSE

Log 25 182016 1.10E-06 22 155160 1.59E-06 10 102156 4.01E-07

Division 23 83904 1.12E-06 23 83904 1.15E-06 11 68288 1.11E-06

Exponentials 25 146952 1.67E-05 22 95760 1.29E-05 11 89340 1.21E-05

% Improvement 37.07 22.41

Table 13.  Hardware complexity comparison to compute PN.

Computation

25 26 Proposed

Stages TC RMSE Stages TC RMSE Stages TC RMSE

Log 24 126000 2.44E-06 22 113552 1.15E-06 10 78600 3.07E-07

Multiplier 1 31482 3.66E-06 1 31482 1.72E-06 1 31482 4.61E-07

Exponentials 27 257424 6.17E-05 22 95760 2.72E-05 11 89340 1.17E-05

% Improvement 51.94 17.18
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R4HV uses 1250 bits of memory to store pre-computed selection functions and criteria. Except for the first two 
stages, all the stages of R4HV use 8-bit comparators. Hence, the transistors required to implement R4HV are 
summed up in the below equation.

where n indicates the number of stages. Similarly, each stage of the R4LV CORDIC requires an adder/subtrac-
tor and multiplexer each for the Y and Z datapaths resulting in 116bn transistors. However, the calculation of 
transistors needed to implement R4HR CORDIC depends on the target precision, and based on the precision, 
we consider the order of the Taylor series approximation. The first two stages of the R4HR CORDIC require two 
simple adders. The following three stages use the precomputed selection function, and hardware complexity is 
the same as the R4HV CORDIC. The rest of the stages perform the scaling-free computation that requires seven 
adders and five multiplexers. R4HV stores precomputed scale-factor and selection functions on a memory of 
49x90 bits. A total of 2096b+ 26460 transistors are needed to implement R4HR CORDIC. Using these illustra-
tions, transistors needed to implement log, division/multiplication, and exponentials are listed in Tables 12 
and 13 for the first configuration to compute the Nth root and power. Similarly, Tables 14 and 15 summarize 
the transistors for the second configuration. The RMSE achieved by each computation is also mentioned in the 
Tables. From Table 12, it is apparent that the proposed Nth root implementation has 37% and 22% less hardware 
utilization than  approaches25  and26, respectively. Table 13 shows that the suggested Nth power computation uses 
hardware 51% and 17% less than  approaches25  and26.

The proposed design is implemented on FPGA Virtex-6 to check the actual hardware utilization. Table 16 
summarizes the resource utilization in terms of slice LUTs for  approaches25  and26 and the proposed design for 
root and power computations. It is apparent from Table 16 that the proposed implementation has used 47% and 
36% less FPGA resources  than25  and26 for root computation. Further, the proposed implementation has 52% 
and 34% less FPGA resources  than25  and26 for power computation. Multiplexers and ROM are the additional 
resources required to implement the proposed design. The FPGA implements these components more efficiently. 
For example, LUT6 can work as a 32-bit distributed ROM and adder/subtractor, and a simple adder consumes 
similar hardware.

(39)TCR4HV = 174nb+ 960(n− 2)+ 10956

Table 14.  Hardware complexity comparison to compute P1/N.

Computation

25 26 Proposed

Stages TC Accuracy Stages TC Accuracy Stages TC Accuracy

Log 48 340992 2.63E-13 45 313344 3.78E-13 20 195276 3.82E-13

Division 38 138624 3.36E-11 38 138624 3.36E-11 19 117952 1.67E-11

Exponentials 39 225576 6.37E-10 38 208848 3.32E-10 19 170100 3.11E-10

% Improvement 31.46 26.86

Table 15.  Hardware complexity comparison to compute PN.

Computation

25 26 Proposed

Stages TC Accuracy Stages TC Accuracy Stages TC Accuracy

Log 37 193200 3.23E-10 35 178920 1.53E-10 15 158028 3.06E-10

Multiplication 1 31482 4.85E-10 1 31482 2.29E-10 1 31482 4.59E-10

Exponentials 36 196128 1.63E-08 32 166752 2.78E-08 15 137484 1.48E-08

% Improvement 22.29 13.29

Table 16.  FPGA implementation.

Implementation

R

1

N RN

Slice LUTs %Improvement Slice LUTs %Improvement
25 17684 47.27 17303 52.64
26 14706 36.60 12416 34.00

Proposed 9324 8195
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Conclusion
The computation of Nth root and Nth power plays a crucial role in many real-time applications. These func-
tions help provide valuable solutions to complex equations. The real-time hardware implementation of such 
functions demands a high clock rate with less hardware utilization. The Newton-Raphson-based method is a 
traditional way to compute such functions. However, a real-time realization of these methods consumes a lot of 
hardware resulting in a slow clock rate. Another way to implement these functions is to use various CORDIC 
configurations to compute mathematical operations. However, the standard CORDIC algorithm suffers from 
the iterative process. In the proposed method, we have used the various radix-4-based CORDIC configuration 
to compute log, division/multiplication, and exponentials to implement Nth root and power computations. The 
main objective of the proposed work is to carry out the FPGA implementation. Therefore, we have conducted 
a qualitative analysis and FPGA implementation of the proposed approach. The quantitative analysis suggests 
that the proposed Nth root implementation has 37% and 22% less hardware utilization than  approaches25  and26, 
respectively. The FPGA implementation indicates that the proposed method has 36% and 34% less hardware 
utilization than the recent  approach26 for root and power computations, respectively. We decided to begin with 
FPGA implementation due to its quick implementation and validation capabilities. This approach allows us to 
validate our design and make necessary improvements before the ASIC implementation. However, we will carry 
out the ASIC implementation of the proposed methodology using commercial CMOS libraries in the future.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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