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EMT‑related gene risk model 
establishment for prognosis 
and drug treatment efficiency 
prediction in hepatocellular 
carcinoma
Xiaqing Gao 1,5, Chunting Yang 1,2,3,5, Hailong Li 1,2,3,4*, Lihua Shao 1,2,4, Meng Wang 1,2,3 & 
Rong Su 1

This study was designed to evaluate the prognosis and pharmacological therapy sensitivity of 
epithelial mesenchymal transition‑related genes (EMTRGs) that obtained from the EMTome database 
in hepatocellular carcinoma (HCC) using bioinformatical method. The expression status of EMTRGs 
were also investigated using the clinical information of HCC patients supported by TCGA database 
and the ICGC database to establish the TCGA cohort as the training set and the ICGC cohort as 
the validation set. Analyze the EMTRGs between HCC tissue and liver tissue in the TCGA cohort in 
the order of univariate COX regression, LASSO regression, and multivariate COX regression, and 
construct a risk model for EMTRGs. In addition, enrichment pathways, gene mutation status, immune 
infiltration, and response to drugs were also analyzed in the high‑risk and low‑risk groups of the TCGA 
cohort, and the protein expression status of EMTRGs was verified. The results showed a total of 286 
differentially expressed EMTRGs in the TCGA cohort, and EZH2, S100A9, TNFRSF11B, SPINK5, and 
CCL21 were used for modeling. The TCGA cohort was found to have a worse outcome in the high‑risk 
group of HCC patients, and the ICGC cohort confirmed this finding. In addition, EMTRGs risk score 
was shown to be an independent prognostic factor in both cohorts by univariate and multivariate COX 
regression. The results of GSEA analysis showed that most of the enriched pathways in the high‑risk 
group were associated with tumor, and the pathways enriched in the low‑risk group were mainly 
associated with metabolism. Patients in various risk groups had varying immunological conditions, 
and the high‑risk group might benefit more from targeted treatments. To sum up, the EMTRGs risk 
model was developed to forecast the prognosis for HCC patients, and the model might be useful in 
assisting in the choice of treatment drugs for HCC patients.

Liver cancer is one of the malignant tumors with the highest incidence worldwide. Epidemiological data in 
2022 showed that there were about 430,000 liver cancer cases and 300,000 liver cancer deaths in China, and its 
incidence and mortality rate were in the fourth and second place of malignant tumors,  respectively1. The most 
effective therapies for liver cancer are surgical resection, ablation, liver transplantation, radiation, and medication, 
but these procedures are only useful for people with early-stage who have not yet developed into metastasis, and 
they also have adverse  effects2. Due to the insidious onset of liver cancer and the lack of specific and sensitive 
molecular markers for diagnosis, most patients are already in an advanced stage when they are diagnosed and 
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have distant metastasis, resulting in a very low 5-year survival  rate3–5. An in-depth exploration of biomarkers in 
the development and metastasis of liver cancer will help establish new diagnostic and therapeutic approaches.

Metastasis is the cause of death in 90% of cancer patients, and tumors can acquire characteristics such as 
migration and invasion, anti-apoptosis, and immune tolerance during  EMT6. The concept of epithelial mesen-
chymal transition (EMT) was first introduced in the field of embryology in 1982, when researchers discovered 
that lens epithelial cells could form pseudopods in collagen gels and transform into mesenchymal cell-like  forms7. 
The process of EMT refers to the dynamic change of cellular tissue from epithelial to mesenchymal phenotypes, 
which in turn leads to changes in cell migration and invasive  capacity8. According to previously published studies, 
EMT closely correlates with tumor invasion and metastasis, primarily through downregulating epithelial markers 
and upregulating mesenchymal markers, which results in reduced cell adhesion and increased cell mobility and 
encourages tumor invasion and  metastasis9. EMT is regarded to be a fundamental regulator of treatment resist-
ance, assisting tumor cells to avoid being destroyed by the immune system, in addition to promoting growth and 
 metastasis10,11. The study of EMT in enhancing cancer metastasis, drug resistance, and leading to poor patient 
prognosis has been widely confirmed. It was discovered that HCC could generate more exosomes in hypoxic 
conditions, and that these exosomes contained the miRNA-273f. that may cause EMT in HCC cells by triggering 
the Wnt/-catenin pathway, dramatically increasing cell invasion and  metastasis12. Using tissue samples from HCC 
patients, researchers discovered that the cancer gene PRMT9 might cause EMT via the phosphate PI3K/AKT/
GSK-3/Snail signal pathway, boosting snail expression and quickening the remote transmission of  HCC13. In 
addition, inhibition of EMT can increase the sensitivity of HCC to chemotherapy, as in epidermal growth factor 
receptor targeted therapy, epithelial cells are more sensitive than stromal  cells14. It has also been confirmed that 
using siRNA interference to reduce the expression of Long non coding RNA H19 can reverse the EMT process 
of HCC and improve the sensitivity of patients to sorafenib using immunofluorescence  experiments14. Qi et al. 
found that EMT can induce the release of circulating tumor cells in HCC patients, which are important mark-
ers of recurrence and poor prognosis. Patients with higher levels of EMT have lower five-year survival  rates15. 
Studies of EMTRGs predictor markers based on open-access databases like TCGA, ICGC, and GEO have been 
thoroughly studied in recent years in a variety of malignant tumors, including pancreatic  cancer16,17, prostate 
 cancer18, colon  cancer19,20, gastric  cancer21,22 and endometrial  cancer23,24. Therefore, searching for biomarkers 
targeting EMT and intervening in the EMT process can help suppress tumor metastasis and increase the sensitiv-
ity of tumor cells to anticancer drugs, thereby improving the survival rate and quality of life of cancer patients.

Based on the TCGA database, we screened differentially expressed EMTRGs and constructed a risk score 
model, which in turn came to mine the prognostic characteristics of new EMTRGs for HCC. The purpose of 
this study is to investigate new prognostic indicators for the diagnosis and treatment of HCC patients as well 
as to reveal prospective therapeutic targets and new insights into the mechanism and function of EMT in the 
development of HCC.

Material and methods
Data collection
UCSC Xena (http:// xena. ucsc. edu/) is a derivative website for secondary development of TCGA data, supporting 
data analysis functions and  visualization25. RNAseq gene expression profiles and clinical follow-up information 
of TCGA-LIHC patients were obtained from UCSC Xena as a training dataset. In addition, International Cancer 
Genome Consortium (ICGC) (https:// dcc. icgc. org/) is a non-profit international organization aimed at providing 
data and resource support for global cancer genomics research, with samples from different countries and regions. 
RNAseq gene expression profiles and clinical follow-up information of LIRI-JP patients were obtained from 
ICGC database as the validation dataset, and ICGC samples were mainly derived from Japanese people infected 
with the hepatitis virus. The samples without clinical information and expression profiles in the two cohorts 
were deleted, and the clinical pathological parameters such as age, gender, TNM stage, grade, etc. were obtained. 
In this study, we screened differentially expressed genes based on the data from the TCGA cohort. The mRNA 
expression data and exact clinical characteristics, including survival time and tumor characteristics, were then 
analyzed for all patients in both cohorts. EMTRGs were obtained from EMTome (http:// www. emtome. org/)26.

Screening of differentially expressed genes in EMT
The mRNA expression profiles of 50 liver tissues and 373 HCC tissues from the TCGA cohort were screened 
for differential genes using the Limma software  package27. Differential genes were intersected with EMTRGs by 
jvenn (https:// jvenn. toulo use. inrae. fr/ app/ index. html ) to obtain EMT differentially expressed  genes28.

Construction and validation of EMTRGs risk model
A total of 365 mRNA expression data with overall survival information were retrieved after normal samples and 
samples with unknown survival information were eliminated from the TCGA cohort’s mRNA expression data. 
TCGA cohorts were analyzed in the order of univariate COX regression, LASSO regression and multivariate 
COX regression through the survival software package and glmnet software package. The expression values and 
coefficients of genes were then used to build risk models. According to the modeling equations, the risk scores of 
each patient in the TCGA cohort and the ICGC cohort were determined, and high-risk and low-risk groups were 
determined based on the median risk score. The survival software package examined the prognostic differences 
between the high-risk and low-risk groups. The pROC software package were then used to execute ROC curve 
analysis to generate AUC values and test the efficacy of the risk model in predicting prognosis. Simultaneous 
univariate and multivariate COX regression methods were used to assess the role of risk score in overall survival 
in two cohorts. Based on risk scores from the TCGA cohort, a nomogram was created using the rms software 
package, and a calibration curve was used to predict survival at 365, 1095, and 1825 days for patients with HCC. 

http://xena.ucsc.edu/
https://dcc.icgc.org/
http://www.emtome.org/
https://jvenn.toulouse.inrae.fr/app/index.html
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Finally, the relationship between high-risk and low-risk groups HCC patients’ prognoses and various clinical 
and pathological characteristics were examined.

GSEA and gene mutation analysis
To explore its biosignal pathways, GSEA software (v3.0) was obtained from the GSEA website (https:// www. 
gsea- msigdb. org/ gsea/ index. jsp)29, the samples were divided into high-risk and low-risk groups based on risk 
scores, and the c2.cp.kegg.v7.4.symbols.gmt subset were downloaded from the Molecular Signatures Database to 
evaluate the pathways and molecular mechanisms. Based on gene expression spectrum and grouping, the geneset 
ranges from the minimum set of genes of 5 to the maximum set of genes of 5000 was established to resample 
for a thousand times, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway were 
performed and selected based on P value < 0.05 and FDR value < 0.25. Additionally, the online database Sanger-
Box 3.0 (http:// vip. sange rbox. com/ home. html) was used to assess the mutation landscapes of the top 15 genes 
with the greatest mutation frequency in the TCGA cohort in the high-risk and low-risk  groups30.

Immune cell infiltration degree and immune subtype analysis
To explore the relationship between risk score and prognosis of HCC, risk score and tumor microenvironment 
were analyzed. The ESTIMATE (https:// bioin forma tics. mdand erson. org/ estim ate/) website could provide and 
analyze the data about Stromal Scores, Immune Scores, and ESTIMATE Scores of HCC patients based on expres-
sion data, and make them visualized. The infiltration of different types of immune cells in the HCC microen-
vironment was assessed using the CIBERSORT algorithm in the immunedeconv software package. Finally, the 
immune subtypes of patients with HCC in TCGA Pan-Cancer were obtained from UCSC Xena.

Drug sensitivity prediction
To understand the therapeutic response to different chemotherapeutic agents in the high-risk and low-risk 
groups, the chemotherapeutic response of each sample was predicted based on Genomics of Cancer Drug Sen-
sitivity (GDSC), a process that consists of the pRRophetic software package were then used to compare the half 
maximal inhibitory concentration (IC50) of commonly used chemotherapeutic agents between the two groups.

Protein expression analysis and statistical analysis
UALCAN (https:// ualcan. path. uab. edu/ index. html) is a comprehensive, user-friendly, and interactive web 
resource for analyzing cancer OMICS  data31. Protein expression in the EMTRGs model was examined using the 
CPTAC cohort from the UALCAN database. Additionally, the Human Protein Atlas database (https:// www. prote 
inatl as. org/) utilizes transcriptomics and proteomics techniques to study protein expression in different tissues 
and organs at the RNA and protein  levels32. The Human Protein Atlas database compared the levels of protein 
expression in HCC and liver tissue. The independent t-test was used for continuous variables, such as Immune 
score and matrix score. The wilcoxon test was used for Cibesort immunity score, IC50, Mann–Whitney U test was 
used for Non parametric hypothesis testing methods, and a log-rank test was used for K–M curves to calculate 
survival differences. A p-value of 0.05 indicates that the differences are statistically significant.

Results
Variance analysis of EMTRGs
Detailed features of the TCGA cohort are summarized in Table 1. A total of 1153 EMTRGs were obtained from 
the EMTome database. Based on the criteria of | log2 (fold change) |> 2 and FDR < 0.05, differential expression 
analysis was performed on the TCGA cohort, resulting in 3685 differentially expressed genes. Among them, 
1621 genes were up-regulated and 2061 genes were down-regulated compared to normal liver tissue. The above 
mentioned differentially expressed genes were then intersected with EMTRGs taken to get 286 EMT differentially 
expressed genes (Fig. 1c).

EMTRGs risk models can predict the prognosis for HCC patients
A total of 78 genes out of the 286 EMT differentially expressed genes were connected to analysis the overall 
survival of HCC patients (Supplementary Fig. 1). LASSO regression analysis was used to screen 17 of these 78 
genes (Fig. 2a,b). Finally, multivariate COX regression was utilized to identify five EMTRGs (EZH2, S100A9, 
TNFRSF11B, SPINK5, CCL21) as independent risk variables among these 17 genes. These EMTRGs were 
then used to build an EMTRGs risk model (Fig. 2c). EMTRGs risk score formula was as follows : R isk Sco r 
e  =  0.3 208 890 5 045571 9  *  EZH 2 +  0. 1 44247872 4 039 08  * S 100 A 9  +  0.0 7 9 363 749 195 301  *   TNF RSF 11B  −  0.0 968 6 
23157103071 * SPINK5-0.0819194509885345 * CCL21. Patients with HCC  in  th e two cohorts had risk scores 
were calculated, and based on the median risk score value for each cohort, patients were split into high-risk 
and low-risk groups. The prognostic heat map and K-M curves showed that patients in the high-risk group had 
poorer outcomes in both of these 2 cohorts, the TCGA cohort and the ICGC cohort, and the ROC curve results 
for the 2 cohorts showed that the risk score model had AUC values greater than 0.7 at 365, 1095, and 1825 days, 
indicating that the risk score model had good predictive performance for HCC patients (Fig. 2d–i).

In these 2 cohorts, EMTRGs risk score was demonstrated to be an independent predictive factor for patients 
with HCC (Table 2). In order to predict the overall survival of HCC patients, a nomogram (Fig. 3a) and calibra-
tion curve (Fig. 3b) incorporating the patient’s gender, age, stage, and risk score of EMTRGs were also built.

In the analysis of different risk groups with clinicopathological characteristics, it was found that the prog-
nosis was worse in the high-risk group compared with the low-risk group (Fig. 4a–i), and the survival of Stage 

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
http://vip.sangerbox.com/home.html
https://bioinformatics.mdanderson.org/estimate/
https://ualcan.path.uab.edu/index.html
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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III + Stage IV was not statistically significant (Fig. 4j). The risk score increased significantly with increasing T 
stage, grade, and stage, except for Stage IV (Fig. 4k–m).

GSEA and gene mutation analysis
This study examined GSEA for both high-risk and low-risk groups, taking into account the fact that risk 
scores of HCC patients are negatively correlated with prognosis. The results showed that the main enrichment 
pathways in the high-risk group included "KEGG_CELL_CYCLE", "KEGG_DNA_REPLICATION","KEGG_
P53_SIGNALING_PATHWAY","KEGG_BLADDER_CANCER", and "KEGG_MISMATCH_REPAIR" and 
" KEGG_HOMOLOGOUS_RECOMBINATION" (Fig. 5a). The main enrichment pathways in the low-risk 
group including "KEGG_FATTY_ACID_METABOLISM", "KEGG_PRIMARY_BILE_ACID_BIOSYNTHESIS", 
"KEGG_HISTIDINE_METABOLISM","KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION" 
and "KEGG_VALINE_LEUCINE_DEGRADATION" (Fig. 5b). Most of the enriched pathways in the high-risk 
group were tumor-related, and the enriched pathways in the low-risk group were mainly metabolism-related, 
which demonstrated the accuracy of predicting a poorer prognosis in the high-risk group in the model were 
constructed.

Table 1.  Detailed characteristics of the TCGA cohort.

Characteristics Alive (N = 245) Dead (N = 132) Total (N = 377)

Gender

 Female 71 (18.83%) 51 (13.53%) 122 (32.36%)

 Male 174 (46.15%) 81 (21.49%) 255 (67.64%)

Age

 Mean ± SD 58.21 ± 13.25 61.76 ± 13.73 59.45 ± 13.51

 Median [min–max] 60.00 [16.00,84.00] 64.00 [18.00,90.00] 61.00 [16.00,90.00]

Weight

 Mean ± SD 73.43 ± 20.32 71.88 ± 17.62 72.89 ± 19.41

 Median[min–max] 69.00 [40.00,172.00] 69.00 [40.00,139.00] 69.00 [40.00,172.00]

Histological type

 Fibrolamellar Carcinoma 3 (0.80%) 0 (0%) 3 (0.80%)

 Hepatocellular Carcinoma 236 (62.60%) 131 (34.75%) 367 (97.35%)

 Hepatocholangiocarcinoma (Mixed) 6 (1.59%) 1 (0.27%) 7 (1.86%)

Grade

 G1 37 (9.95%) 18 (4.84%) 55 (14.78%)

 G2 118 (31.72%) 62 (16.67%) 180 (48.39%)

 G3 81 (21.77%) 43 (11.56%) 124 (33.33%)

 G4 8 (2.15%) 5 (1.34%) 13 (3.49%)

Stage

 Stage I 131 (37.11%) 44 (12.46%) 175 (49.58%)

 Stage II 61 (17.28%) 26 (7.37%) 87 (24.65%)

 Stage III 41 (11.61%) 45 (12.75%) 86 (24.36%)

 Stage IV 2 (0.57%) 3 (0.85%) 5 (1.42%)

Figure 1.  EMTRGs analysis of HCC patients. (a) Volcano plot: Red represents up-regulated genes, green 
represents down-regulated genes, and black represents non-significant genes. (b) Heat map of differentially 
expressed genes. (c) Venn diagram: Intersection of differential expression genes with EMTRGs.
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The TCGA cohort’s high-risk and low-risk groups underwent gene mutation analysis. A series of TP53, TTN, 
CTNNB1, MUC16, PCLO, ALB, APOB, ABCA13, and MUC4 were discovered to have mutation frequencies 
greater than 10% in both groups when the top 15 genes with the greatest mutation frequencies were examined. 
In comparison to the low-risk group, the frequency of TP53 mutations was noticeably higher in the high-risk 
group (Fig. 5c,d).

Patients in different risk groups exhibit different immune status
The ESTIMATE algorithm showed that while there was no discernible difference in ESTIMATE score between 
the two groups, stromal score was lower and immune score was greater in the high-risk group compared to the 
low-risk group (Fig. 6a). There were 12 clusters of immune cell levels that differed between the high-risk and 
low-risk groups. The infiltration levels of B cell plasma, T cell  CD4+ memory activated, T cell follicular helper, T 

Figure 2.  The predictive characteristics of EMTRGs was established to predict the specific survival of HCC 
patients. (a) Penalty maps for EMTRGs LASSO models in HCC. (b) LASSO coefficient mapping of EMTRGs. 
(c) Multivariate COX regression gets 5 EMTRGs. (d) The heat map of the TCGA cohort. (e) The heat map of 
the ICGC cohort. (f) Survival curve chart of the TCGA cohort. (g) Survival curve chart of the ICGC cohort. (h) 
ROC curve chart of the TCGA cohort. (i) ROC curve chart of the ICGC cohort.
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cell regulatory (Tregs), Macrophage M0, Myeloid dendritic cell resting, and neutrophil were found to be higher 
in the high-risk group than in the low-risk group by the CIBERSORT algorithm (Fig. 6c).

The TCGA database classifies tumors into six subtypes based on immune status: Wound Healing (Immune 
C1), IFN-gamma Dominant (Immune C2), Inflammatory (Immune C3), Lymphocyte Depleted (Immune C4), 
Immunologically Quiet (Immune C5), and TGF-beta Dominant (Immune C6). Higher risk scores were strongly 
related with C1 subtypes, while lower risk scores were significantly associated with C3 subtypes, according to 
immunosubtyping research (Fig. 6b).

EMTRGs risk model can be used for treatment strategy selection
Axitinib (Fig. 7a), Cabozantinib (Fig. 7b), Gefitinib (Fig. 7c), Sorafanib (Fig. 7d), and Sunitinib (Fig. 7e) all 
had greater IC50 values in the low-risk group than in the high-risk group, but Erlotinib’s IC50 was lower in the 
low-risk group (Fig. 7f).

Table 2.  Univariate and Multivariate COX regressions for the TCGA cohort and the ICGC cohort.

Variables

Univariate COX regression Multivariate COX regression

HR(95%CI) p-value HR(95%CI) p-value

TCGA cohort

 Gender 0.26

  Male Reference

  Female 1.225 (0.860–1.746) 0.26

 Age 1.012 (0.999–1.026) 0.078 1.008 (0.994–1.023) 0.269

 Stage < 0.001

  Stage I Reference

  Stage II 1.423 (0.872–2.323) 0.158 1.185 (0.722–1.944) 0.502

  Stage III 2.676 (1.754–4.083) < 0.001 1.902 (1.221–2.963) 0.004

  Stage IV 5.496 (1.695–17.821) 0.005 4.066 (1.250–13.226) 0.02

 Risk Score 2.986 (2.254–3.956) < 0.001 2.653 (1.940–3.629) < 0.001

ICGC cohort

 Age 1.004 (0.974–1.036) 0.792

 Gender 0.034

  Male Reference

  Female 1.974 (1.054–3.696) 0.034 2.707 (1.394–5.257) 0.003

 Stage < 0.001

  Stage II Reference

  Stage I 0.169 (0.022–1.268) 0.084 0.160 (0.021–1.201) 0.075

  Stage III 1.502 (0.749–3.013) 0.252 1.732 (0.838–3.580) 0.138

  Stage IV 4.396 (1.947–9.927) < 0.001 2.958 (1.169–7.487) 0.022

 Risk Score 3.446 (1.853–6.409) < 0.001 2.507 (1.277–4.920) 0.008

Figure 3.  Construction of the nomogram and calibration curve for the TCGA cohort. (a) Construction of 
the nomogram based on gender, age, stage, and risk score of HCC patients. (b) The accuracy of nomogram in 
predicting the survival of patients at 365, 1095, and 1825 days was assessed with a calibration curve.
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RNA and protein expression status of EMTRGs
The expressions of S100A9, TNFRSF11B, and CCL21 was down-regulated in the five EMTRGs that the TCGA 
cohort was utilized to build the risk model, but EZH2 and SPINK5 expression was up-regulated (Fig. 8a). The 
expressions of S100A9 and CCL21 were downregulated while the expression of EZH2 were elevated at the protein 
level in the UALCAN database CPTAC cohort, with the exception of the absence of TNFRSF11B and SPINK5 
data (Fig. 8b–d). Next, the expressions of S100A9, TNFRSF11B, CCL21, EZH2, and SPINK5 were further inves-
tigated using the Human Protein Atlas database with immunohistochemistry methods. The protein expression 
levels of EZH2 and SPINK5 were higher in HCC tissues compared with paracarcinoma tissues, and there was 

Figure 4.  Relationship between high-risk and low-risk groups with different clinicopathological characteristics 
and prognostic performance. (a) Prognostic analysis of HCC patients with Age < 60. (b) Prognostic analysis of 
HCC patients with Age ≥ 60. (c) Prognostic analysis of HCC patients with T1 + T2 stages. (d) Prognostic analysis 
of HCC patients with T3 + T4 stages. (e) Prognostic analysis of HCC patients with N0 stage. (f) Prognostic 
analysis of HCC patients with M0 stage. (g) Prognostic analysis of HCC patients with G1 + G2 stages. (h) 
Prognostic analysis of HCC patients with G3 + G4 stages. (i) Prognostic analysis of HCC patients with Stages 
I + II. (j) Prognostic analysis of HCC patients with Stages III + IV. k Relationship between T Stage and risk 
score. (l) Relationship between Grade and risk score. (m) Relationship between Stage and risk score. (*P < 0.05, 
**P < 0.01, ***P < 0.001, ns represents no statistical significance).
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no significant difference in the protein expression levels of S100A9, TNFRSF11B and CCL21 in paracarcinoma 
and HCC tissues (Fig. 8e). Although the precise changes in EMTRGs between HCC and paracarcinoma tissues 
cannot yet be determined, the primary results indicate that S100A9 and CCL21 are down-regulated in HCC 
whereas EZH2 and SPINK5 are both up-regulated at the RNA and protein levels. Experimental confirmation of 
TNFRSF11B expression level is required.

Disscussion
Liver cancer is currently a difficult diagnostic and therapeutic problem in the medical field, and has been the 
focus of research, such as high incidence and recurrence rates, poor prognosis, how to treat early and moni-
tor recurrence. While liver transplants can cure liver cancer to some extent, resources are limited, and the vast 
majority of cases do not meet the conditions for liver transfers. In addition, due to the rapid proliferation and 
growth of tumor cells, different cell types and structural characteristics may appear within HCC lesions, such as 
different degrees of differentiation, glandular duct structure, cystic changes, and inflammatory cell infiltration. 
These morphological heterogeneities make the diagnosis and treatment of HCC more challenging. Therefore, it 
is essential to investigate ways to increase liver cancer early detection and forecast the therapeutic effectiveness 
and survival rates of patients. In recent years, an increasing number of studies have reported prognostic models 
for tumors. In this study, we had developed five EMTRGs predictive models based on the TCGA cohort, and 
ICGC cohort validation produced similar outcomes. Patients with high-risk HCC had a worse prognosis and 
a greater mortality rate than those with low-risk group. With increases in Phase T, Grade, clinical stage, and 
immunity scores, risk scores also increased significantly. Our results demonstrate that the risk scores of the five 
EMTRGs can be used as a reliable independent predictor for patients with HCC.

In fact, five EMTRGs in the risk score model have been shown to be related to EMT processes in multiple 
malignant tumors and play different roles in tumors. EZH2, as a group protein methyltransferase, could influence 
the chromosome structure through epigenetic modification of the group protein-methylation, inhibit down-
stream target gene  expression33, regulate liver metabolism and liver fibrosis, and regulate the development of 

Figure 5.  Analysis of GSEA and gene mutation results. (a) Major pathway of enrichment in the high-risk 
group. (b) Major pathways of enrichment in the low-risk group. (c) Significantly mutated genes in the high-risk 
group in the TCGA cohort. (d) Significantly mutated genes in the low-risk group in the TCGA cohort.
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Figure 6.  Different risk groups associated with the tumor immune microenvironment. (a) ESTIMATE 
algorithm to calculate Stromal score, Immune score, and ESTIMATE between high-risk and low-risk groups. 
(b) Comparison of different immune subtypes with risk scores. (c) CIBERSORT algorithm to calculate cell 
infiltration level between high-risk and low-risk groups. (*P < 0.05, **P < 0.01, ***P < 0.001, ns represents no 
statistical significance).

Figure 7.  Therapeutic response of HCC patients to targeted drugs. (a) Axitinib. (b) Cabozantinib. (c) Gefitinib. 
(d) Sorafanib. (e) Sunitinib. (f) Erlotinib. (**P < 0.01, ***P < 0.001).
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liver cell  cancer34. A previously report showed that EZH2 expression was upregulated in HCC and that silenc-
ing EZH2 inhibited HCC viability, migration, and invasion, increased E-cadherin expression, and decreased 
N-cadherin and waveform protein  expression35. High expression of EZH2 in prostate cancer has been shown to be 
a biomarker indicating poor  prognosis36,37. This suggests that EZH2 may contribute to EMT, which also supports 
the accuracy of the predictive characteristics of 5 EMTRGs in HCC. S100A9 is a member of the S100 protein 
family of calcium-binding  proteins38, which binds  Ca2+,  Zn2+, RAGE, TLR4, and MMPs highly selectively, plays 
a regulatory role both intracellularly and  extracellularly39, and is able to participate in the processes of cellular 
differentiation, signal transduction, migration, and  adhesion40,41. Previous studies have shown that S100A9 can 
be used as a biomarker for diagnosing tumors such as hepatocellular  carcinoma42, colorectal  cancer43,44, gastric 
 cancer45,46, oral squamous cell  cancer47, and  neuropathycoma48. It was found that the expression of S100A9 was 
higher in HBV-positive HCC tissues than in HBV-negative tissues, and silencing S100A9 expression blocked 
HBx (HBV encoded X protein)-induced growth and metastasis of HepG2 cells in vitro and in vivo. Meanwhile, 
the expression level of serum S100A9 was correlated with the TNM stage, extrahepatic metastasis status, and 
HBV DNA load of HBV-related HCC, which has good diagnostic value for identifying extrahepatic  metastasis49. 

Figure 8.  RNA and protein expression levels of EMTRGs. (a) RNA expression levels of EMTRGs in the TCGA 
cohort. (b) EZH2 protein expression levels in the CPTAC cohort. (c) S100A9 protein expression levels in the 
CPTAC cohort. (d) CCL21 protein expression levels in the CPTAC cohort. (e) Human protein atlas database 
(**P < 0.01, ***P < 0.001).
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S100A9 also promotes HCC growth and metastasis through RACE-mediated ERK1/2 and P58 MAPK  pathways50. 
Elevated levels of S100A9 expression in serum imply a poor prognosis for patients after radical resection for 
 HCC51. TNFRSF11B (a member of the tumor necrosis factor receptor superfamily), also known as osteopro-
tegerin (OPG), is able to bind to nuclear factor-κB receptor-activating factor ligand (RANKL), which plays a 
key role in bone remodeling, but new studies have demonstrated that TNFRSF11B’s role in tumors extends far 
beyond the role of a bone-specific  regulator52. Real-time PCR examination of tumor tissues and paracancer-
ous tissues from 40 patients with liver cancer revealed that TNFRSF11B was highly expressed in liver cancer 
 tissues53. A report found that HCC patients with high TNFRSF11B expression had a lower survival rate and that 
TNFRSF11B was an independent risk factor for  HCC54. Patients with increased TNFRSF11B expression in malig-
nancies such as oral squamous cell carcinoma and prostate cancer have a worse  prognosis52. SPINK5 contains 15 
potentially functionally repressive regions, and its encoded proteins play important roles in the morphogenesis 
of skin and hair and in the anti-inflammatory and anti-microbial invasion of mucosal  epithelium55,56. On the 
other hand, SPINK5 acted as a tumor suppressor in esophageal cancer, and which could inhibit the prolifera-
tion, migration, and invasion of esophageal cancer cells by inhibiting the Wnt/β-catenin signaling pathway and 
may serve as a therapeutic target for esophageal  cancer57. Suwei et al. found that the downregulation of SPINK5 
expression in melanoma could decrease E-cadherin expression, increase mesenchymal markers, and promote 
the EMT  process58. One of the ligands of the CCR7 receptor, CCL21 is a significant member of the CCL family 
of  chemokines59. CCL21-CCR7 could promote lymph node metastasis in esophageal squamous cell carcinoma 
through upregulation of  MUC160, and also increases the expression of MMP-2 and MMP-9 to promote prolifera-
tion, migration, and invasion of bladder cancer  cells61. In breast cancer, TGF-β1 could induce the expression of 
CCL21 in lymphatic vessel endothelial cells and promote the EMT process in a paracrine  manner62. However, 
the specific mechanisms of SPINK5 and CCL21 involvement in the EMT process in HCC are still to be further 
studied in vivo and in vitro. The above studies suggest that five EMTRGs in the prediction model have potential 
as prognostic biomarkers for HCC. In our study, both RNA and protein levels of EZH2 and SPINK5 were up-
regulated in HCC, both S100A9 and CCL21 were down-regulated, and the expression level of TNFRSF11B was 
not verified. The different expression status reflects the different transcriptional levels of risk model genes in 
HCC, and the specific mechanisms and roles of this genes need to be further investigated.

By GSEA analysis, it was found that the high-risk group was predominantly enriched for tumor-related 
pathway, such as the P53 signaling pathway, bladder cancer, and mismatch repair, suggesting that tumors in the 
high-risk group were more aggressive. This is consistent with the clinical characteristics of the high-risk group, 
such as hypofractionation, late pathological and clinical staging, poor prognosis, and high mortality. On the other 
hand, the pathways enriched in the low-risk group are mainly related to the physiological metabolism of the liver, 
such as fatty acid metabolism, primary bile acid biosynthesis, and histidine metabolism. The liver is the central 
organ for fatty acid metabolism, and its metabolic pathways mainly include β- oxidation, ω- oxidation and fatty 
acid synthesis, etc. The β- oxidation pathway of fatty acids is one of the important lipid metabolism pathways 
in organisms, and its regulation mechanism is complex and involves the participation of multiple enzymes. In 
addition, the liver is also the main site for primary bile acid biosynthesis and histidine metabolism. Therefore, 
a better clinical outcome was favored compared with the high-risk group. Additionally, this study revealed that 
when the risk score climbed, metabolism-related pathways declined while tumor-related pathways increased. 
According to this, risk scores may be able to forecast a patient’s prognosis for HCC and help researchers better 
understand the molecular processes that lead to the formation of HCC.

The tumor microenvironment (TME) is the cellular environment in which a tumor exists, including the 
tumor itself, as well as surrounding blood vessels, extracellular matrix, surrounding normal cells, and associated 
signaling molecules, and is of great significance to tumor invasion and  metastasis63. The TME’s most prevalent 
population of tumor-infiltrating immune cells, tumor-associated macrophages (TAMs), is a crucial part of the 
 TME64. TAMs were discovered to speed up the development of HCC by secreting a number of cytokines, induc-
ing EMT, and enhancing the proliferation, invasion, and migration of  tumor65. The IL-6 secreted by TAMs can 
promote tumor transfer by activating the downstream JAK/STAT3 signal pathway, downregulating E-caderin, 
and upregulating the expression of EMT-related transcription factors such as vimentin, snail, and  twist66. In 
addition, TNF-α secreted by TAMs activates downstream the Wnt/β-catenin signal pathway, causing HCC to 
occur  EMT67. In addition to secreting cell factors, TAMs also secrete exosomes and S100A9, thereby regulat-
ing the stem cell properties of tumor  cells68,69. The results of this study suggest that the EMTRGs risk model is 
significantly associated with immune cell infiltration and immune subtypes, and hypothesize the difference in 
prognosis between the high-risk and low-risk groups may be due to the different immune statuses of the patients.

The high malignancy of HCC lies not only in its ability to metastasize but also in its insensitivity to chemo-
therapeutic agents. It was found that HCC patients with resistance to sorafenib are linked to the degree of liver 
cancer cell  EMT70,71. miR-216a/217 induces EMT formation through regulation of TGF-β and PI3K/AKT signal-
ing pathways, leading to resistance to sorafenib in HCC patients. Down-regulation of miR-216a/217 expression 
can block the activation of TGF-β pathway to overcome the resistance generated by  EMT72. HGF stimulates 
the P-ERK/Snail/EMT and P-STAT3/ Snail/EMT pathways in HCC to induce resistance to sorafenib. However, 
regorafenib inhibits P-ERK and P-STAT3 to block the HGF-induced EMT process, which in turn inhibits HGF-
induced resistance to  sorafenib73. The high-risk group may be more responsive to treatment with Axitinib, 
Cabozantinib, Gefitinib, Sorafanib, and Sunitinib, according to the results of our drug sensitivity prediction 
research. In contrast, patients in the low-risk group might profit from Erlotinib therapy. Therefore, patients in 
the high-risk group may be better suited for targeted therapeutic agents, and patients in the low-risk group have 
limited treatment options.

Invasive metastasis is the most important biological feature of malignant tumors and is a key determinant of 
patient prognosis, and EMT has attracted widespread attention as a potential mechanism of tumor cell metastasis. 
The RNA and protein expression levels of these genes in HCC were initially investigated. however, this study is 
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needed to be upgraded. Only two databases were used for the construction and validation of these five EMTRGs 
risk model, and cellular or animal experiments are needed to confirm the precise regulatory mechanisms of the 
prognostic features of EMTRGs. In the meantime, the results of this study are based on transcriptomic profiling, 
and the risk model developed for EMTRGs has not been clinically applied or generalized. The role of EMTRGs 
risk models in HCC is the focus of our subsequent studies.

Conclusions
In conclusion, the TCGA database was used to build a novel risk model for EMTRGs, which was then verified 
in the ICGC database. The model can be used to predict the prognosis of HCC patients as a key factor in treat-
ment. The results of this study provide deeper insights into the role of these key prognostic factors in HCC and 
provide some support for their future use as potential diagnostic and therapeutic biomarkers for HCC, laying 
some foundation for future clinical applications.

Data availability
The datasets generated and analyzed during the present study are available and are accessible from correspond-
ing author.
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