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A graph‑based approach 
can improve keypoint 
detection of complex poses: 
a proof‑of‑concept on injury 
occurrences in alpine ski racing
Michael Zwölfer 1*, Dieter Heinrich 1, Bastian Wandt 2, Helge Rhodin 3, Jörg Spörri 4 & 
Werner Nachbauer 1

For most applications, 2D keypoint detection works well and offers a simple and fast tool to analyse 
human movements. However, there remain many situations where even the best state‑of‑the‑art 
algorithms reach their limits and fail to detect human keypoints correctly. Such situations may occur 
especially when individual body parts are occluded, twisted, or when the whole person is flipped. 
Especially when analysing injuries in alpine ski racing, such twisted and rotated body positions occur 
frequently. To improve the detection of keypoints for this application, we developed a novel method 
that refines keypoint estimates by rotating the input videos. We select the best rotation for every 
frame with a graph‑based global solver. Thereby, we improve keypoint detection of an arbitrary 
pose estimation algorithm, in particular for ‘hard’ keypoints. In the current proof‑of‑concept study, 
we show that our approach outperforms standard keypoint detection results in all categories and in 
all metrics, in injury‑related out‑of‑balance and fall situations by a large margin as well as previous 
methods, in performance and robustness. The Injury Ski II dataset was made publicly available, aiming 
to facilitate the investigation of sports accidents based on computer vision in the future.

Deep learning-based keypoint detection defines the localization of anatomical landmarks or joints on the human 
body, such as shoulders, hips, and knees, which are detected and localized in an image or video to estimate the 
pose or configuration of a person. In sports, it is common to also consider non-anatomical landmarks (e.g., points 
on skis or other sports equipment) as keypoints. Since the emergence of deep convolutional neural networks 
(CNNs), such algorithms have become capable of automating manual digitization tasks impressively  accurate1,2. 
They have become a standard method for a wide variety of motion capture applications, such as human computer 
 interaction3, human activity recognition and video  surveillance4,5, virtual and augmented  reality6,7, or applica-
tions in sports  science8,9 and  health10,11.

Especially in the field of sports science and biomechanical research, deep learning-based methods offer pos-
sibilities that are difficult to realize with conventional motion capture systems. Beyond fast and efficient perfor-
mance analysis and motion  correction9,11–14, it might also allow for the reconstruction of sports accidents and 
the collection of kinematic data of the injury  event15,16. Manual reconstruction of such accidents is restricted in 
objectivity, very time-consuming and thus limited to a small number of short video  sequences17. State-of-the-art 
keypoint detection algorithms, in contrast, can detect multiple people simultaneously in real time with impressive 
 accuracy1,2,18,19. In particular, this is true for common movements, which are represented in standard motion 
capture datasets. However, in regard to the detection of complex scenarios, such as injury situations in alpine 
ski racing, even the best performing algorithms  struggle1,15,16,20,21. While state-of-the-art keypoint detectors were 
shown to perform very well in regular skiing situations, their performance drops sharply in fall  situations15,16. 
An analysis of misdetected images revealed that occlusions due to snow spray and unusual poses were primarily 
responsible for the algorithm  failures16. In such poses, limbs can be twisted, crossed and sometimes even the 
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whole skier is upside down or in a horizontal  position15,16. Similarly, difficulties with the detection of upside down 
or horizontal positions have been reported by many  studies1,18,20,21. Based on this observation, a postprocess-
ing tool that improves keypoint detection in fall situations was  developed15. However, the performance of the 
proposed method was strongly dependent on the keypoint detection algorithm used, and for normal, upright 
poses, a slight decrease in performance was observed.

Therefore, we propose a new pre- and postprocessing routine to improve keypoint detection in injury sce-
narios. Similar  to15, we leverage information from rotated image sequences to estimate a distribution of key-
points for each joint. While  in15 a kinematic model was used to find the best keypoint among those keypoint 
estimates, we propose to select the best keypoints for every frame by formulating a shortest path problem to 
find an optimized path through the keypoint distribution. In addition, we extend the Injury Ski  I15 dataset with 
930 newly annotated injury images and evaluate our method on this new Injury Ski II dataset. Furthermore, 
we compare the performance of the keypoint detectors  DCPose1 and  AlphaPose2 in regular skiing, as well as in 
out-of-balance and fall scenarios, with and without our new method and with the kinematic model  in15. There-
fore, we evaluate the keypoint detector performance using the common metrics mean per joint position error 
(MPJPE), percentage of correct keypoints (PCK) and average precision (AP). With our method, the detection 
of correct keypoints in fall situations was increased by 16 and 22%, respectively, while the high performance in 
regular skiing situations could be maintained. The Injury Ski II dataset will be made available online for further 
research upon acceptance of this article.

Related work
Human pose estimation has been a very active research field for many years. While in the beginning attempts 
were made to solve the problem by classical approaches using tree-structured or graphical model  approaches22–28, 
great improvements have been achieved especially since the use of convolutional neural networks (CNNs)2,18,29–34. 
In particular, open source keypoint detection algorithms, such as  OpenPose18,  Detectron19 and  AlphaPose2, have 
become increasingly popular in recent years due to their easy application in real-life situations. Most algorithms 
follow a top-down approach, in which first an object detector is employed to detect all humans and generate their 
respective bounding boxes before a pose estimator is applied on the cropped image of each  detection2,19,35,36. 
While these approaches can benefit from very well-developed single pose estimation techniques, their perfor-
mance is highly dependent on the particular person detector. Multiple person settings, occlusions or very unusual 
poses often lead to false person detection, making meaningful pose estimation difficult. In contrast, bottom-up 
approaches perform pose estimation on the entire image first, before the detected segments are then assigned to 
the respective individuals, e.g., using part affinity fields (PAFs)18,32,37,38. However, these approaches usually come 
at a much higher computational cost and were shown to be less accurate than state-of-the-art top-down methods.

Despite the many advances in human pose estimation, there are still many cases where even state-of-the-art 
algorithms fail to correctly identify all  keypoints16,18. These include occluded or invisible keypoints, crowded 
background and highly flexed and/or extended and rotated  poses16,20,21. Several research projects have focussed 
on locating such difficult  keypoints1,2,15,20,21. By introducing a separate network branch that eliminates redun-
dant person detections, AlphaPose achieved remarkably good results, both on current benchmark datasets and 
in highly complex scenarios, such as injury situations in alpine  skiing2,16. Other approaches tackle such ‘hard’ 
keypoints by refining the keypoint estimates directly, either as part of their  pipeline21 or as a postprocessing step 
that can be applied on top of any given keypoint detection  algorithm15,20. Furthermore, as most keypoint detec-
tion algorithms only focus on upright poses with only small rotational changes in their training routines, they 
are not robust to largely rotated segments or  poses15,18,20. By creating a path for learning new rotational changes 
based on a self-supervised method and combining them with the results obtained by a supervised model, great 
improvements for highly rotated poses of up to 15% were  achieved20. Based on the same  observation15, developed 
a postprocessing routine, which was shown to increase keypoint detection results in fall situations up to 21%. 
Similar to the method proposed in this article, input videos were rotated incrementally and keypoints detection 
was performed for every rotation. Thereby, a set keypoint estimates for every joint in every frame was obtained. 
In the following, such a set of keypoint estimates is defined as “keypoint candidates”, as only the best keypoints of 
those candidates are selected by the model. Over all frames, the keypoint candidates result in a keypoint distribu-
tion for each individual body joint.  In15, the selection of the best keypoints among all keypoint candidates was 
then realized by a kinematic model, implemented as an alpha-beta-gamma filter. In this article, we propose to 
solve this task by formulating a shortest path optimization to find an ideal path through the keypoint distribution.

Deep-learning-based human pose estimation was first applied to alpine ski racing by Rhodin et al.39. They 
were able to reconstruct a skier’s 3D pose from a single perspective using a semisupervised multiview training 
approach. Based on this work, Ostrek et al.40 showed that the performance of deep learning-based approaches is 
accurate enough to address biomechanical research in this field. Subsequently, Bachmann et al.41 proposed a 3D 
bundle adjustment method to reconstruct a skier’s relative pose as well as its global position in a multicamera 
setting. While all these research projects focused on 3D pose estimation, only within the scope of the work  of41, 
a 2D keypoint detector was specifically trained on alpine ski racing images using their ski-specific Ski 2D Pose 
dataset. However, this skiing specific dataset is small and shows limited variation, which in turn limits generaliza-
tion, especially regarding injury analysis. Keypoint detection is a crucial part of 3D position estimation, since in 
most approaches, only the detected keypoints are lifted into 3D space. Thus, the pipeline’s overall performance 
is greatly dependent on the 2D keypoint detection results. Therefore, the performance of state-of-the-art 2D 
keypoint detectors in regular skiing situations as well as injury-related out-of-balance and fall situations were 
compared in a previous  work16, and a rotational method to improve keypoint detection in such out-of-balance 
and fall situations was  proposed15. Here, we present a further refinement of this method, which allows even more 
stable results in injury and fall situations.
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Dataset—Injury Ski II
Datasets containing the outdoor motion of any sport are highly desired and rare at the same time. Likewise, also 
publicly available datasets that cover sufficiently many images of skiers or ski racers are very sparse. Currently, 
there are only three such ski-specific datasets that are relevant for human pose estimation  applications15,41,42. The 
Ski 2DPose dataset by Bachmann et al.41 contains approximately 2k images of different skiers in all disciplines, 
varying weather conditions and camera positions, as well as their respective 2D poses. Spörri et al.42 created the 
Ski-Pose PTZ-Camera Dataset by manually labelling approximately 20k images and calculating their respective 
3D poses using passpoints and the method of direct linear transformation (DLT). Both datasets show only regular 
skiing situations and are therefore limited for use in injury analysis. For this reason, the Injury Ski I dataset was 
 created15. This small dataset includes 533 images of skiers in all disciplines shortly before and during a fall that 
led to an injury. To expand this dataset, we create a new Injury Ski II Dataset by annotating an additional 930 
images from nine different injury recordings. The recordings were obtained by television broadcasters or trainers 
and show world-cup athletes facing a fall, that subsequently led to an injury As in elite ski racing, the knee is the 
most frequently injured body  part43, all nine videos covered by this dataset are knee injuries. The videos include 
five male and four female world-cup level ski racers in all disciplines (2x slalom, 2x giant slalom, 1x super-G, 4x 
downhill). In selecting the videos, care was taken to represent different video qualities, skier sizes and camera 
positions, only discarding very low-quality videos that could not be annotated in a meaningful way. Depending 
on the frame rate and video length, approximately 100 frames per recording were sampled and digitized using a 
custom-built LabVIEW script.  Following15,41, 24 keypoints (14 body joints, 8 ski keypoints and 2 pole keypoints) 
were annotated per frame. Keypoints that were not visible were marked with − 1. To further promote research in 
the domain of computer vision and sports science, this injury-specific dataset is available at the following link: 
https:// sport1. uibk. ac. at/ mz/ cv.

Methods
Within the scope of this proof-of-concept study, we developed a novel pre- and postprocessing routine that 
especially tackles ‘hard’ keypoints in injury-related out-of-balance and fall situations. The basic idea is based on 
the observation that skiers in injury situations can be rotated and individual limbs may be twisted. It has been 
shown that even state-of-the-art algorithms give incorrect pose estimates in such  situations16. Since increasing 
random rotations in data augmentation at training the neural networks was reported to lead to an overall decrease 
in  performance15,18, a postprocessing routine was developed that improves the detection in fall situations after 
applying an arbitrary keypoint detection  algorithm15. We were able to improve this work by finding a novel 
approach that improves pose estimation in fall situations while being more robust to different keypoint detection 
algorithms and maintaining a high keypoint detection accuracy in regular skiing situations.

Following15, each input video was rotated incrementally from 0◦ to 360◦ in steps of 10◦ and processed by a 
keypoint detection algorithm (Fig. 2). Since it was shown that DCPose and AlphaPose provide the best results in 
injury-related alpine skiing  situations16, only these two algorithms are compared in this work. Predicted keypoints 
are then rotated back to their original orientation. Thereby, for each keypoint pk , with k = 1, ...,K , 36 keypoint 
candidates pki,n = (xki,n, y

k
i,n, c

k
i,n) , with i = 1, ..., 36 , in each frame n are obtained. K is the number of keypoints 

per pose and can therefore vary depending on the model used. For simplicity, we drop the index k, and let xi,n 
and yi,n refer to the x and y coordinate and ci,n ∈ [0, 1] to the confidence value for each keypoint provided by the 
detection algorithm. We formulate the selection of the best keypoint candidate in each frame as the problem of 
finding the shortest path through a  graph44. A graph is set up, connecting each keypoint candidate pi,n in frame 
n to every keypoint candidate pj,n+1 in the next frame n+ 1 and assigning a cost Ci,n→j,n+1 to each of these 
connections. The cost to get from pi,n to pj,n+1 is composed of three parts: CC , CD and CR . The confidence cost 
CC is assigned as the inverse confidence value of the incoming keypoint candidate ci,n , the distance cost CD is 
calculated as the Euclidean distance between pi,n and pj,n+1 and the rotation cost CR penalizes large differences 
in the rotation angles ri,n and rj,n+1 of the respective keypoint candidates. All contributions are multiplied by the 
respective coefficients c, d and r, as shown in equation 1.

We use Dijkstra’s shortest path  algorithm44 to find the path with the lowest overall cost through the keypoint 
distribution for a given set of hyperparameters c, d and r. To make full use of all injury-specific data available, we 
merge the Injury Ski I and Injury Ski II datasets and split them into parts of eight videos each. Thus, we obtain 
a validation set containing 805 frames and a test set containing 658 frames. To optimize our hyperparameters c, 
d and r, we perform an exponential grid search on the validation set. The best overall performance is found for 
c = 0.01 , d = 1 and r = 0.01.

Following15, we evaluate the performance of our method with respect to different skiing situations. Therefore, 
all frames of our test dataset are split into regular skiing, out-of-balance and fall situations (see Fig. 1). Regular 
skiing situations include all situations in which the skiers demonstrate controlled skiing. Out-of-balance situa-
tions include situations in which the skiers are out of control but still stand on their skis and try to regain balance. 
Finally, fall situations include all images in which skiers have already hit the ground or do not have contact with 
the ground at all. DCPose and AlphaPose are then run in their pretrained configuration on the test set, with and 
without applying our method. The results are evaluated using the average precision (AP), percentage of correct 
keypoints (PCK) and the mean per joint position error (MPJPE) metrics. The PCK threshold is chosen to be 
20% of the torso diameter (PCK@0.2).

(1)
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Results
Without applying our method, we observed a high performance for algorithms in regular skiing situations. Spe-
cifically, 9 out of 10 keypoints were estimated correctly at MPJPEs of less than 10 pixels and an average precision 
above 0.71 (see Table 1). Towards out-of-balance situations, we observed a slight decrease in all metrics for both 

Figure 1.  Example images of our ski- and injury-specific Injury Ski II dataset. Categorization of images 
regarding regular skiing, out-of-balance and fall situations.

Figure 2.  Schematic representation of our method (B) compared to standard keypoint detection (A). First, the 
input videos (1) are rotated incrementally in steps of 10◦ between 0◦ and 360◦ (2). Afterwards, the keypoints are 
estimated by a keypoint detection algorithm, before being rotated back to their original orientation (3). This 
gives us 36 keypoint trajectories for each keypoint (4). Darker colored markers indicate keypoint candidates 
with a higher confidence value c. The trajectories of all rotations are then combined to one keypoint distribution 
per keypoint (5). Each keypoint candidate pi,n in a given frame n is linked to every keypoint candidate pj,n+1 
in the next frame n+ 1 by a cost Ci,n→j,n+1 (6). Using Dijkstra’s shortest path  optimization44, the ideal path 
through each keypoint distribution is determined (7). Finally, the refined pose is composed using the optimised 
keypoints only (8).
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algorithms. The PCK decreased by 3% for DCPose and 4% for AlphaPose, while MPJPEs roughly doubled. In AP, 
the decline was more pronounced, with 0.06 and 0.11, respectively. In fall situations, the performance of both 
algorithms dropped sharply in all metrics. PCK sank to 43% (DCPose) and 58% (AlphaPose), while AP dropped 
to 0.13 and 0.27, respectively. MPJPEs became three times as high as in regular skiing situations. Across all cat-
egories and metrics, AlphaPose outperformed DCPose in this comparison. AlphaPose achieved an 8% higher 
average PCK, with a 1.4 pixel lower mean error and a 0.06 higher AP. The superiority of AlphaPose became espe-
cially clear in fall situations. Here, AlphaPose was ahead by 15% in PCK, 0.14 in AP and by 5.9 pixels in MPJPE.

Our new pre- and postprocessing routine significantly improved the performance of both algorithms. Benefits 
were observed across all categories as well as in all metrics. Even in regular skiing situations, when skiers are 
merely upright and already well detected by standard keypoint detection algorithms, PCK was slightly improved 
by up to 3% , and increases of 6% (DCPose) and 2% (AlphaPose) were observed in out-of-balance situations. 
The largest improvements were made in fall situations with a plus of 22% and 14% in PCK, respectively. A very 
similar pattern was found in AP. In regular skiing situations, high performance was maintained and/or slightly 
improved by up to 0.02. However, in out-of-balance situations, we observed increases of 0.08 for DCPose and 
0.11 for AlphaPose, and in fall situations, the results even improved by 0.22 and 0.17, respectively. Accordingly, 
the MPJPE metric also showed a improvement of up to 0.4 pixels for regular skiing, while in out-of-balance 
situations the errors decreased significantly by 2.9 and 2.2 pixels, respectively. In fall situations, reductions of 
9.6 and 9.0 pixels, which correspond to 31% and 37% , respectively, were observed.

We also  run15 on this dataset. For DCPose, improvements  on15 in comparison to baseline (standard detec-
tions) were observed in out-of-balance and especially in fall situations in all metrics. In regular skiing situations, 
the improvements in PCK and MPJPE were marginal, while a slight decrease in AP was found. For Alphapose, 
however, only fall situations were improved compared to baseline in all metrics, while in regular skiing and out-
of-balance situations, a decline was observed in PCK and AP (Table 1). By contrast, our new method consistently 
improves standard keypoint detection in all categories and metrics.

Figures 3 and 4 show example keypoint distributions for the DCPose algorithm. In the top and bottom row, 
example images overlayed with the standard prediction (top) and the same images overlayed with the refined 
keypoint estimates (bottom) are presented. In the middle part, example keypoint distributions are shown. In the 
first graphs, the unrotated predictions in blue and the ground truth in red are plotted. The second row shows 
the distribution of all 36 keypoint candidates, ground truth and our refined model in yellow. A darker shading 
of the keypoint candidates indicates a high confidence value.

Discussion
The main contributions of this work were as follows: (1) We proposed a novel graph-based pre- and postprocess-
ing routine to improve keypoint detection in ‘hard’ scenarios, such as out-of-balance and fall situations in alpine 
ski racing. (2) We showed that our method outperformed plain state-of-the-art 2D keypoint detection in all 
categories (i.e., regular skiing, out-of-balance and falls) and metrics (i.e., PCK, AP and MPJPE). (3) We extended 
the Injury Ski Dataset, providing another 930 ski- and injury-related images and their corresponding 2D poses.

Rotating each input image, running keypoint detection and transforming the keypoint estimates back to 
their original orientation allowed us to generate multiple keypoint candidates for each keypoint in each frame 
(Figs. 3 and 4). Given the keypoint candidates of all frames, the selection of the best keypoint candidates was 
accomplished by formulating a shortest path optimization. In the underlying graph, the cost of getting from 
one keypoint candidate in a given frame to another keypoint candidate in the next frame, referred to as an edge 
in graph theory, was defined based on the following observations. (1) The confidence value of each keypoint 
estimate correlates with the observed quality of the estimation. Although sometimes high confidence keypoints 
may be wrong, they usually match the ground truth well. Therefore, a confidence cost CC was assigned as the 
inverse confidence value of the incoming keypoint candidate, penalizing connections to low confidence key-
point estimates. (2) Keypoint trajectories are smooth, rarely showing large gradients. By defining a distance cost 
CD , keypoint candidates that lied close to each other were favoured. This ensured that the overall model stayed 
smooth and outliers, even if they had a high confidence value, were discarded. (3) Rotational changes from one 
frame to another are relatively small, and fast rotational changes are therefore unlikely. Penalizing such fast 
changes in the rotation angle between the respective keypoint candidates by a cost proportional to the angular 
distance CR , the performance on our validation set was further increased. With this method, we provide an 
improved alternative  to15. Both methods take the confidence value, the spatial distance and the angular distance 
between two keypoint candidates into account when determining the best keypoint candidate in each frame. 
However, in contrast to the graph-model-based approach proposed in this article,  in15, the best keypoints were 
selected using a kinematic model based on an α-β-γ filter. Furthermore, validation and testing were performed 
on a three times smaller dataset.

Analysing the keypoint distributions revealed interesting findings about the keypoint detector performance, 
particularly at ‘hard’ out-of-balance and fall frames. Narrow keypoint distributions were found in regular skiing 
situations at sufficiently high image qualities. In these frames, the standard (unrotated) predictions align very 
well with all other keypoint candidates as well as the ground truth data (Fig. 3 (1)). The high performance of 
both keypoint detection algorithms, even without applying our method, is expressed by these narrow keypoint 
distributions. Towards out-of-balance and fall situations, keypoint estimates scatter, resulting in a wider and more 
diffuse keypoint distribution. While large deviations between the standard predictions and ground truth were 
frequently observed in these situations, estimates from other rotation angles could match the ground truth very 
well (Fig. 3 (2)–(4)). A cross-check with the corresponding videos revealed that these diffuse keypoint distribu-
tions correlate with twisted and compressed poses, often combined with partial occlusions due to snow spray 
(Fig. 3 (2)). These hard poses may occur due to high ground reaction forces when hitting the snow surface, e.g., 
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after a fall, or when one ski suddenly catches an edge, after slipping away during a turn, as described by the slip-
catch mechanism, the most frequent mechanism of ACL injuries in alpine ski  racing45. In out-of-balance and fall 
situations, bimodal keypoint distributions were also observed. In these cases, crossed limbs and/or self-occlusion 
led to mismatched keypoints, as shown in Fig. 3 (4). Finally, there were also very thin distributions in which only 
very few keypoints were detected at all. These thin keypoint distributions, mainly caused by occlusions due to 
snow spray, external objects or the skier itself and/or a very low image quality, led to no keypoint detection in 
the unrotated input frame at all. In most of these cases, keypoint estimates were still found in other rotations. 
This shows that our approach not only improves largely rotated poses but also provides valuable information for 
‘hard’ keypoints, such as occluded keypoints, in general (Fig. 4 (2)–(4)). Comparing both algorithms, AlphaPose 
provided generally narrower and denser keypoint distributions with a larger number of high confidence key-
points, which explains the overall superior performance of AlphaPose over DCPose. All these findings are very 
much in line  with15 as well as the observations  of18,20, who identified rotated poses as a major source of errors for 
standard keypoint detection algorithms. In all of the situations described above, additional information about 
the keypoint location is supplied by the keypoint distributions.

Without applying any pre- and postprocessing, we observed a high keypoint detection accuracy in regular 
skiing situations. The detection results decreased towards out-of-balance situations, while the performance 

Figure 3.  Example of the left ankle coordinates x and y of video number 2 detected by DCPose. The first row 
shows reference images overlaid with unrotated DCPose detections. The same images overlaid with our refined 
keypoint estimates are presented at the bottom for comparison. The first charts of the middle section show the 
ground truth ankle trajectory in red as well as the unrotated standard DCPose detections in blue. Gaps in the 
sequence of unrotated detections indicate frames where the corresponding keypoint was not detected. Below 
you find the keypoint distribution of all rotations. A darker shading indicates a higher confidence value. The 
ground truth is again shown in red, our refined model in orange and the kinematic  method15 in blue.
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Figure 4.  Example of the head coordinates x and y of video number 12 detected by DCPose. The first row 
shows reference images overlaid with unrotated DCPose detections. The same images overlaid with our refined 
keypoint estimates are presented at the bottom for comparison. The first charts of the middle section show the 
ground truth head trajectory in red as well as the unrotated standard DCPose detections in blue. Gaps in the 
sequence of unrotated detections indicate frames where the corresponding keypoint was not detected. Below 
you find the keypoint distribution of all rotations. A darker shading indicates a higher confidence value. The 
ground truth is again shown in red, our refined model in orange and the kinematic  method15 in blue.

Table 1.  Comparison of both algorithms without any pre- and postprocessing vs. the kinematic  method15 vs. 
our results by the mean per joint position error, percentage of correct keypoints (PCK) and average precision 
(AP) metric with respect to regular skiing (reg), out-of-balance (oob) and fall frames.

MPJPE PCK AP

All reg oob Fall All reg oob Fall All reg oob Fall

DCPose 16.4 9.5 17.3 30.5 0.75 0.87 0.84 0.43 0.55 0.71 0.65 0.13

DCPose +  kinematic15 13.7 9.4 15.8 18.6 0.83 0.89 0.87 0.66 0.61 0.70 0.69 0.33

DCPose + ours 13.3 9.1 14.4 20.9 0.84 0.90 0.90 0.65 0.65 0.73 0.73 0.35

AlphaPose 15.0 8.5 17.8 24.6 0.83 0.92 0.88 0.58 0.61 0.77 0.66 0.27

AlphaPose +  kinematic15 14.6 9.6 17.7 19.2 0.83 0.91 0.86 0.65 0.59 0.70 0.64 0.33

AlphaPose + ours 12.5 8.3 15.6 15.6 0.86 0.92 0.90 0.72 0.65 0.77 0.71 0.44
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dropped sharply in fall situations. This matched the results  of15,16 and was in good agreement with the observa-
tions on the keypoint distributions discussed above. Large deviations between standard detection results and 
ground truth were predominantly observed in out-of-balance and fall situations, where keypoint distributions 
became diffuse or sparse. Furthermore, we also compared the DCPose and AlphaPose results to their original 
literature. DCPose reached 0.79 AP on the PoseTrack 2018 test  set1, while AlphaPose achieved 0.73 AP on the 
COCO test  set2. Despite the very different test data, our results on regular skiing situations of 0.71 (DCPose) 
and 0.77 (AlphaPose) in AP match with the literature quite well.

Our new method significantly improved the performance of both the DCPose and AlphaPose, across all 
categories and in all metrics. The effects were less pronounced in regular skiing situations than in out-of-balance 
situations. The largest improvements were achieved in fall situations. In regular skiing situations, PCK and AP 
were only marginally improved, while MPJPEs were reduced by up to 10% . Maintaining the inherently high 
performance of both algorithms in this regime and even achieving delicate improvements can be considered a 
success of our method. The very sharp keypoint distributions observed in these situations indicate that major 
improvements are hardly possible. In contrast, in out-of-balance situations, large benefits were observed. With an 
improvement in PCK by up to 6% and 0.08 in AP, the detection results for both algorithms were elevated to the 
regular skiing level. Both exemplary keypoint distributions (Figs. 3 and 4) showed how our refined model may 
benefit from the rotated keypoint estimates to compensate for misdetected standard keypoint estimates. In fall 
situations, such ‘hard’ keypoints became more frequent. Therefore, keypoint detection results could profit even 
more from our method. We report improvements in PCK by 22% for DCPose and 14% for AlphaPose. Accord-
ingly, AP was elevated by 0.22 and 0.17. Reductions in MPJPE of 31% and 37% were observed.

Our new method outperformed the kinematic model described  by15 in just about all categories (i.e., regular 
skiing, out-of-balance and fall situations) and metrics. Only in the fall category for DCPose did both algorithms 
perform similarly, with a marginal advantage  for15 in PCK and MPJPE. While the improvements in fall situations 
were large, e.g., 23% for DCPose and 7% for AlphaPose in PCK, in regular skiing and out-of-balance situations, 
improvements were only achieved for the DCPose algorithm. For AlphaPose, a decrease in both metrics (PCK 
and AP) was found. As mentioned above, differences between AlphaPose and DCPose were clearly reflected in 
their keypoint distributions. Whether our new method or the kinematic model works well depends on the infor-
mation provided by these keypoint distributions. Therefore, our results lead us to conclude that the application 
of the graph-based model is more robust to different keypoint distributions and therefore to different keypoint 
detection algorithms than the kinematic model used before. The novel method proposed in this study improved 
the results regardless of the applied keypoint detection algorithms and can be applied to any input video.

To the best of our knowledge, there is only one other study that offers a refinement of keypoint detection 
for rotated settings as a postprocessing tool that can be applied to any keypoint detection  algorithm20. In this 
approach, a semisupervised neural network is trained on learning new rotational changes and combining the 
results with conventional keypoint detection results. Similar to our results, the authors report standard keypoint 
detection results in the range of 0.7 and 0.8 in AP. For largely rotated images, AP dropped to below 0.1 and 0.3 
on the COCO dataset, depending on the keypoint detection algorithm used. However, as this method was tested 
on different datasets, images were artificially rotated and other keypoint detection algorithms were used, a direct 
quantitative comparison of the methods improvement is not reasonable.

Finally, we discuss our extended Injury Ski dataset. Adding another 930 images of professional alpine ski 
racers in injury situations, we can now provide a total of 1466 ski- and injury-related images plus their respective 
2D poses. This makes our dataset similar in size to the only other publicly available 2D dataset for alpine  skiing41. 
This dataset covers regular skiing images sampled from 16 different video recordings showing mainly competi-
tive ski racers from many different perspectives in various weather conditions. Similarly, our combined Injury 
Ski dataset covers 16 elite athletes in all alpine skiing disciplines (slalom, giant slalom, super-G and downhill) 
and varying image qualities. Since all images were annotated following the annotation scheme  of41, the Ski2D 
Pose dataset and Injury Ski dataset can be merged easily to exploit an even more powerful dataset to develop 
computer vision applications for alpine skiing, in particular with a focus on ski accidents. Other than these two 
datasets, only one other skiing related dataset is publicly available. While this comparatively large 3D Ski-Pose 
PTZ-Camera  dataset42 provides 3D motion capture data of approximately 20k labelled skier frames of six elite 
ski athletes, it only covers three subsequent turns of a single GS track.

Limitations
This study is limited by the relatively small size of our dataset. Although we could triple the number of ski- and 
injury-specific frames compared to previous  work15, more frames in each category would make our results more 
robust and would allow us to fine-tune deep learning methods. However, the availability of exploitable injury 
footage is limited, as accidents are seldom and can hardly be staged. Furthermore, only the two best performing 
keypoint detection algorithms  of16 were investigated in this study. Concluding that our method works well for 
any given keypoint detection algorithm should be confirmed on a larger number of algorithms.

Conclusion
Computer vision-based motion capture offers fantastic opportunities in sports science analysis. At the same time, 
the complex and often fast movements in some sports pose great challenges to human observers but equally to 
automated keypoint detection algorithms. For example, when analysing injuries in alpine ski racing, situations 
often arise in which individual limbs are occluded or twisted, or even the entire athlete is upside down. In this 
article, we propose a new method that leverages rotated input images to improve keypoint detection in such 
situations. The method can be applied as pre- and postprocessing independent of the chosen keypoint detection 
algorithm. We have shown that our approach outperforms standard keypoint detection results in all categories 
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and in all metrics, especially for ‘hard’ keypoints. In fall situations, we observed a reduction in the mean per 
joint position error of approximately one-third, while the percentage of correct keypoints was increased by up to 
22%. We were also able to outperform previous methods, such  as15, in performance and robustness. We report 
that AlphaPose is superior to DCPose in all metrics and categories on our dataset. Furthermore, we extended 
the Injury Ski dataset and made it publicly available for further research.

Data availability
The datasets generated during and analysed during the current study are available in the ‘injuryski’ and ‘inju-
ryskiII’ repositories, https:// sport1. uibk. ac. at/ mz/ cv.
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