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Topological magnetic structure 
generation using VAE‑GAN hybrid 
model and discriminator‑driven 
latent sampling
S. M. Park 1, H. G. Yoon 1, D. B. Lee 1,2, J. W. Choi 3, H. Y. Kwon 3* & C. Won 1*

Recently, deep generative models using machine intelligence are widely utilized to investigate 
scientific systems by generating scientific data. In this study, we experiment with a hybrid model of 
a variational autoencoder (VAE) and a generative adversarial network (GAN) to generate a variety of 
plausible two‑dimensional magnetic topological structure data. Due to the topological properties in 
the system, numerous and diverse metastable magnetic structures exist, and energy and topological 
barriers separate them. Thus, generating a variety of plausible spin structures avoiding those barrier 
states is a challenging problem. The VAE‑GAN hybrid model can present an effective approach to this 
problem because it brings the advantages of both VAE’s diversity and GAN’s fidelity. It allows one to 
perform various applications including searching a desired sample from a variety of valid samples. 
Additionally, we perform a discriminator‑driven latent sampling (DDLS) using our hybrid model to 
improve the quality of generated samples. We confirm that DDLS generates various plausible data 
with large coverage, following the topological rules of the target system.

Driven by the successful advances of deep generative models in the past few years, scientific data generation has 
become one of the essential topics in the scientific research field. Novel computational approaches based on deep 
generative models have been developed to generate scientific data from experimental or simulation datasets. 
The deep generative models stand for deep neural networks which are designed to generate synthetic data by 
approximating complicated and high-dimensional data  distribution1. The two representative deep generative 
models, variational autoencoder (VAE)2 and generative adversarial network (GAN)3, are extensively used for 
scientific research and data generation. For example, VAEs have been used for new physics mining at the Large 
Hadron  Collider4 and molecular  designing5, whereas GANs have been used for weather  prediction6 and CT 
image  augmentation7.

In condensed matter physics, the magnetic system is a representative system where deep learning techniques 
are actively  applied8–10. This is not only because unique physical characteristics appear due to the competition 
of several complicated magnetic interactions, but also because several toy models based on magnetic systems 
(such as the Ising and Heisenberg models) are generally used to analyze the physical phenomena observed in 
various research fields. Among the deep learning techniques, VAE-based models have been widely adapted to 
various magnetic systems for investigating phase transition  behaviors11–15, characterizing crystal  structures16, 
interpolating and extrapolating magnetic  structures17, searching for optimal magnetic  structures18, estimating 
effective  fields19, and finding the ground  states20,21.

Despite these successful applications, the sampling data for topological spin structures using VAE still 
has certain limitations, which originated from the representative disadvantage of VAE called the latent space 
 smoothness22. In the usual training process of VAE, the latent space is formed to follow a simple prior distri-
bution (e.g., Gaussian distribution). It means that complicated target data distributions may not be accurately 
represented by the simple continuous latent space of VAE, and it leads to difficulties in capturing intricate 
relationships between the data points. Also in the case of sampling data for topological spin structures, each of 
the spin structures is distinctly separated with high energy barriers induced by topological properties, but VAE 
cannot learn the details of topological difference between the spin structures. Consequently, it allows the genera-
tion of non-plausible spin structures with topological defects including nodal  points18,21. The previous studies 
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address this issue using prior scientific knowledge of the target system, such as adding the energy of generated 
spin configurations to the cost  function21 or polishing the generated samples to lower their  energies18. However, 
prior knowledge is often absent for other datasets, thus additional studies are needed for generating topological 
data avoiding topological defects without any prior knowledge.

On the other hand, the various deep generative models based on GANs are also applied to generate sci-
entifically plausible data in various research fields of condensed matter  physics23,24. In a usual GAN model, a 
discriminator network learns to distinguish between real and fake samples while a generator network is trained 
to produce samples that are realistic enough to deceive the discriminator network. Because of the adversarial 
relationship between the discriminator and generator, the GAN-based models have shown greater capabilities 
in photo-realistic data generation compared with the  VAE25. Analogously, it is expected that the GAN-based 
models can produce more realistic spin structures with no or fewer nodal points. However, a problem of GAN-
based models is that the diversity of generated samples is poorer than VAE-based  models26. To secure both the 
high plausibility of GAN-based models and the high diversity of VAE-based models simultaneously, recently the 
hybrid models of VAE and GAN are intensively studied and applied to various research  fields27–29.

The goal of this study is to implement a generator which can produce physically and topologically reliable 
magnetic structures. To achieve our goal, we build a hybrid model of two representative deep generative models, 
VAE and GAN, and train it with two-dimensional spin structures to exhibit its strengths as a topological structure 
generator. The results are compared with those of standalone VAE and GAN. The trained models are quanti-
tatively evaluated by coverage and energy metrics that measure the diversity and fidelity of generated samples, 
respectively. We visualize the latent space manifolds of the trained models to analyze the underlying reasons for 
topological defects that appeared in generated samples. Additionally, we suggest that the discriminator-driven 
latent sampling (DDLS)  method30–32 can be applied to improve the plausibility of generated samples by eliminat-
ing topological defects.

Strategy
VAE‑GAN hybrid model
The hybrid model combines the training workflows of VAE and GAN. For the comparative investigation, we train 
three models: VAE, GAN, and the hybrid model. The VAE is built with two neural networks of encoder E and 
generator (decoder) G as shown in Fig. 1a. The encoder converts training data xd into a latent code zE , and the 
generator decodes zE to x̃ . On the other hands, the GAN consists of generator G and discriminator D as shown 
in Fig. 1b. A random latent code zp is sampled from a prior distribution p0(z) and becomes a fake data xp via the 
generator. Then, the real data xd and fake data xp are classified by the discriminator. The hybrid model has three 
neural networks, encoder, generator, and discriminator. Figure 1c illustrates the overall training workflow of the 
hybrid model. Note that the reconstructed data x̃ is also fed into the discriminator as fake data. Therefore, unlike 
a standalone GAN, the number of fake samples is twice the number of real samples.

The loss function of the hybrid model also contains both components of VAE and GAN losses. The loss func-
tion of VAE, LVAE , is shown in Eq. (1), where N is the dimensionality of input features ( 128× 128× 3) ,  β is a 
coefficient of the regularization  term33, and pE(z|x) is the posterior distribution of the encoder. The terms E and 
DKL denote expectation value and the Kullback–Leibler divergence, respectively.

The first term measures how well the VAE can reconstruct the input data and the second term enforces the 
trained latent space of the VAE to be close to the prior distribution, p0(z) , which is the Gaussian distribution 
in this study.

For the GAN loss functions, we use the non-saturating  losses3 as shown in Eq. (2), where LGAN
D  and LGAN

G  
denote the loss functions for the discriminator and generator, respectively.

(1)L
VAE =

1

N
E

[
(xd − x̃)2

]
+ βDKL

(
pE(z|x)p0(z)

)
.

Figure 1.  (a–c) Illustration of the training workflows of (a) VAE, (b) GAN, and (c) hybrid model. The E, G , and 
D denote the encoder, generator (or decoder), and discriminator, respectively. (d) The schematic description 
of standard sampling in VAE, GAN, and hybrid model. (e) The schematic description of DDLS sampling. The 
dashed arrow indicates the gradient backpropagation and the α denotes the gradient step size.
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The discriminator learns to classify real and fake data with LGAN
D  , the loss function of discriminator. The first 

term, −E
[
log(D(xd))

]
 , represents the expectation of the negative log probability that the discriminator assigns 

to real data, denoted by xd , being real. The second term, −E
[
log

(
1− D

(
xp
))]

 , represents the expectation of the 
negative log probability that the discriminator assigns to data produced by the generator, denoted by xp , being 
fake. It means that the discriminator learns to classify the real and fake data. On the other hand, the loss func-
tion of generator, −E

[
log

(
D
(
xp
))]

 , represents the negative log probability that the discriminator assigns to the 
fake data xp being real.

Finally, the entire loss functions of the hybrid model are shown in Eq. (3), where γ is the coefficient of the 
GAN loss.

These loss functions are separately used to train the encoder, discriminator, and generator. Detailed training 
conditions and hyperparameters are described in the Experimental Section.

Discriminator‑driven latent sampling
The standard sampling method of deep generative models, including VAE and GAN, is sampling a random 
latent code z from a prior distribution (e.g., the standard normal distribution) and feeding it into the generator 
network, as shown in Fig. 1d. In GAN-based models, there is another approach to generate new samples, called 
discriminator-driven latent sampling (DDLS). At the end of training GAN, the adversarial game between the 
generator and discriminator generally does not converge to the generator’s ground truth (generating extremely 
realistic data and completely deceiving the discriminator), thus the discriminator still watches for the implausibil-
ity of generated data. Based on this fact, previous studies have proposed various DDLS methods such as rejecting 
unrealistic  samples34 and polishing implausible factors of generated samples using a Monte Carlo  method30–32 
via the discriminator evaluation.

We implement a simple DDLS algorithm, as shown in Fig. 1e, and use it to improve the topological plausibil-
ity of generated samples. In the algorithm, a latent code is initially sampled from a prior distribution, and it is 
iteratively updated using a gradient descent method to maximize the evaluation of the trained discriminator, 
D(G(z)) . Since the discriminator is trained to return a value of one for real data and zero for fake data, the pro-
cess of maximizing the discriminator’s evaluation is expected to evolve the generated spin configuration, G(z) , 
to become more realistic (without topological defects). The results of DDLS are presented later in the Results 
Section.

Dataset
We train the VAE, GAN, and hybrid models on two-dimensional metastable spin structures which have various 
labyrinth  patterns35. The dataset is generated by a simulated annealing process implemented by the Monte Carlo 
method. We suppose the Heisenberg model with the Hamiltonian H = −J

∑
�i,j�

−→
S i ·

−→
S j −

∑
�i,j�

−→
D ij ·

(
−→
S i ×

−→
S j

)
 

in a square lattice of 128× 128 grid sites with a periodic boundary condition, where J , −→D ij , and −→S i denote the 
exchange interaction parameter, the Dzyaloshinskii-Moriya interaction  vector36,37, and the Heisenberg spin on 
the i-th grid site, respectively. The parameters J and 

∣∣∣−→D ij

∣∣∣ are fixed at 1.0 and 0.3, respectively. In this system, the 
spin configurations are determined by the spontaneous symmetry-breaking process, so that we can generate 
countless different metastable states under the fixed condition. We generate a total of 40,000 spin configurations, 
which are divided into 30,000 training datasets and 10,000 test datasets.

Metrics
Our goal is to evaluate the diversity and fidelity of each data generation strategy based on the VAE, GAN, and 
hybrid model with and without the DDLS. Unfortunately, many representative metrics, such as the Inception 
 Score38 or Fréchet Inception  distance39, evaluate generative models without discerning between diversity and 
fidelity. Furthermore, these metrics are properly available only to the models trained on the ImageNet  dataset40 
because they need a reference model pre-trained on the same dataset to embed the generated samples into the 
feature space of the reference model. For these reasons, we measure the diversity using the coverage  metric26 
which counts the mass of real data “covered” by the model distribution implied in a generator network. To 
evaluate the fidelity of generated spin configurations, we simply measure the energy using the Hamiltonian H 
because the spin configurations in our dataset are the results of the simulated annealing process so that they are 
energetically stabilized.
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Results
Comparison between the VAE, GAN, and hybrid models
The hybrid model shown in Fig. 1a is trained with our dataset and losses discussed in the Strategy Section, and 
the standalone VAE and GAN are also trained under the same conditions to be compared with the hybrid model. 
Figure 2a–d show the comparison between the ground truth (a sample of spin configuration in our test dataset) 
and spin configurations generated from each of the trained models. The spin configuration generated by the 
trained VAE model exhibits lots of nodal points, as indicated by the red circles. In contrast, the spin configura-
tions generated by the trained GAN and hybrid models show a smaller number of nodal points in comparison 
with that of the VAE model. These nodal points are implausible structures; they are the topological defects in 
this magnetic system, thus they do not appear in the ground truth spin configuration. In addition, these nodal 
points are energetically unstable; in the energy density maps, there are high-energy peaks (bright points) at the 
positions of the nodal points exist. It means that we can measure the plausibility or fidelity of the generated spin 
configurations by their energy, and the number of nodal points is strongly related to them. By these facts, one 
can check that the fidelity of the GAN and hybrid models surpasses that of the VAE model.

To quantitatively investigate the coverage and energy metric values, we independently perform the training 
processes five times and generate 10,000 samples for each trained model as shown in Fig. 2e. Higher coverage 
values indicate better diversity and lower energy values indicate better plausibility; the upper left part of the 
graph in Fig. 2e indicates better results. As mentioned above, we confirm that both GAN and hybrid models 
produce lower energy samples compared with the VAE. This is consistent with the conventional understanding 
that usual GAN-based generative models have the advantage to generate more realistic samples than VAE-based 
models. On the other hand, the coverages of the VAE and hybrid models are around 0.92 and 0.90 on average, 
respectively, whereas the coverage of GAN is only 0.80 on average. Consequently, we confirm that the hybrid 
model takes advantages of both the high coverage of VAE and the high fidelity of GAN simultaneously. Another 
advantage of the hybrid model is that it is more stable than the standalone GAN. This can be observed from the 
fact that the coverage and energy metric values of the five independent trials of hybrid models show less disper-
sion compared to those from the standalone GANs.

Latent space analysis
To investigate the underlying characteristics of the deep generative models trained with the topological magnetic 
structure dataset, we analyze the latent space manifolds of the models as shown in Fig. 3. To display the high-
dimensional latent space of each model, we arbitrarily select two axes, z1 and z2 , out of a total n axes ( n = 128 , 
where n is the dimensionality of a latent space) and sample various latent codes by scanning a specific region of 
the chosen two-dimensional latent space. The other n− 2 components of latent codes are fixed as the random 
numbers sampled from the standard normal distribution which is the prior distribution of our models. It is veri-
fied that the choice of axes does not make any significant differences in the discussion of this section. The sampled 
latent codes are decoded into the spin configurations through the trained decoder or generators of VAE, GAN, 
and hybrid models for calculating the energy and discriminator logits of them. To plot the calculated values on 
the chosen two-dimensional latent space, we use heatmap representations as shown in Fig. 3a for the energies 
and (b) for the discriminator logits on the same latent space region.

The most interesting feature in Fig. 3a is that, compared with the blurred energy heatmap of the VAE, the 
energy heatmaps of the GAN and hybrid models include several narrow lines and flat regions surrounded by the 
lines. This interesting feature is also shown in the heatmaps for the discriminator logits of the GAN and hybrid 
models in Fig. 3b. Considering that the spin configurations in our dataset are distinctly separated by topological 
properties with high energy barriers, the latent spaces partitioned into several flat regions by the narrow lines 
may imply that the GAN and hybrid models properly learn the topological properties in our dataset. Specifically, 
the narrow lines are supposed to be indicating the specific regions in the latent spaces which can be decoded 

Figure 2.  (a) A sample spin configuration in our test dataset and its energy density map. (b–d) Spin 
configurations generated by the trained (b) VAE, (c) GAN, and (d) hybrid models, and their energy density 
maps. The colors and black/white contrast of the spin configurations indicate the in-plane and out-of-plane 
directions of local spins, respectively. Red circles highlight the positions of nodal points. (e) Coverage and 
energy metric values of the trained models. Each scatter point indicates the result of independent trials.
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into high energy states with emerging implausible topological defects, implying the boundaries between the 
energetically stabilized but topologically different spin configurations.

Figure 3c directly supports that the narrow lines are closely related to the emergence of implausible topo-
logical defects. For each of the VAE, GAN, and hybrid models, three spin configurations are decoded from the 
latent codes at three different latent positions, k , l  , and m marked in Fig. 3a. Within each latent space, k and m 
represent two separate flat regions and l  is on the boundary line between them. As indicated by the red circles 
shown in Fig. 3c, the spin configurations from k and m exhibit topologically distinct local spin structures, while 
the spin configuration from l  includes a nodal point.

Consequently, we confirm that the latent spaces formed by the training with our topological data are com-
posed of multiple latent domains (flat regions) and latent domain walls (boundaries between the latent domains), 
which are strongly related to the topological properties implied in the dataset. In addition, it is also confirmed 
that the latent domains and latent domain walls are clearly distinguished in the latent spaces of the GAN and 
hybrid models, whereas the latent space of VAE is blurred overall than the other models.

Data generation using DDLS
As discussed in the previous section, the GAN and hybrid models considered in this study have an advantage 
in generating plausible data by narrowing down the latent regions which can be decoded into implausible data. 
However, there is still a possibility that a latent code is sampled from the narrow regions. To generate new samples 
without implausible defects, we apply the DDLS algorithm shown in Fig. 1e using the generator and discrimina-
tor in a trained hybrid model.

Figures 4a and b show the results of the DDLS algorithm. As the DDLS progresses, the initial spin configura-
tion becomes energetically stabilized by removing several nodal points; for example, the nodal points within the 
local spin structures highlighted by the red box in the initial spin configuration are removed after the first few 
iterations. After 100 iteration steps, the initial spin configuration evolves into a new spin configuration without 
any implausible topological defects.

To offer an insight into how the DDLS algorithm can eliminate the nodal points in the initial spin configura-
tions, we plot a gradient-based class activation map (Grad-CAM)41 as shown in Fig. 4c to demonstrate the role 
of the discriminator in the DDLS algorithm. The Grad-CAM is an explanation method for convolutional neural 
network classifiers including the discriminators in the GAN and hybrid models. It shows the specific regions 
in the input data that significantly influence the decision of classifiers. Obviously, the Grad-CAM result on the 
initial spin configuration highlights the position of nodal points, indicating the nodal points are crucial factors 
for the discriminator to determine the spin configuration as a fake data. As the nodal points gradually disappear 
during the DDLS progresses, the level of highlighting is reduced. This means that it becomes more challenging 
for the discriminator to determine the spin configuration as a fake data.

Consequently, it is confirmed that the crucial factor for the discriminator to classify a spin configuration as 
a real or fake data is the existence of nodal points, which are the implausible topological defects in our target 

Figure 3.  Latent space visualization. (a–b) Heatmaps for the representations of (a) energy values and (b) 
discriminator logits along two axes, z1 and z2 , within a range from − 2 to 2. The brighter(darker) color in (a) 
and (b) indicates the higher(lower) energy values and the real-like(fake-like) samples in the perspective of the 
discriminators, respectively, for each trained model (no discriminator in VAE). (c) Spin configurations decoded 
from the latent codes on the k , l  , and m positions in (a). Red circles are highlighting the changing structures.
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system. Using the discriminator, we can utilize the DDLS algorithm to generate topologically plausible data by 
removing implausible defects as shown in Fig. 4.

Applications of the hybrid Model
The trained hybrid model is not only capable of generating plausible data but is also applicable for various 
other purposes. In this section, we demonstrate two application examples. The first example is searching for 
the optimal solutions for various objectives, including maximizing out-of-plane magnetization Mz , minimizing 
Mz , and minimizing energy ǫ of a spin configuration. Utilizing the well-trained generator in our hybrid model, 
various optimization algorithms can be implemented within the latent  space18. Specifically, we can search for 
the optimal solutions according to defined objectives by obtaining the corresponding latent codes. We employ 
a genetic algorithm, a conventional optimization algorithm inspired by the biological evolution  processes42. 
The second example is investigating intermediate states between the optimal spin configurations. It also can be 
performed in the latent space of the hybrid model by interpolating between the latent codes corresponding to 
the optimal solutions.

Figure 5a schematically illustrates the locations of optimized latent codes and the interpolation lines, where 
the I, II, and III represent the latent codes obtained by maximizing Mz , minimizing Mz , and minimizing ǫ , 
respectively. The results of optimizing Mz (either by maximizing or minimizing) are skyrmion lattices, high-
lighted within the red squares on the left and right sides of Fig. 5b. Minimizing ǫ results in well-aligned stripe 
structures, highlighted within the red squares on the right sides of Fig. 5c, d. The Mz values of the optimal solu-
tions are 0.211 and − 0.204, respectively, which represent extreme values compared to the Mz distribution of 
the training dataset, which has mean of 0.000 with a standard deviation of ± 0.016 (see Fig. 5e). The optimized 
ǫ value is − 0.0442, which is significantly lower than that of the training dataset: ǫ has a mean of − 0.0423 with 

Figure 4.  Data generation process using the DDLS algorithm. (a) Changes in spin configuration during the 
iterative process of the DDLS algorithm. The red square in the initial spin configuration highlights a nodal point 
region. (b) Magnified view of the highlighted region in (a). (c) Grad-CAM of each spin configuration. The red 
color indicates an important area for the discriminator to predict the spin configuration as fake.

Figure 5.  Application of the trained hybrid model. (a) A schematic illustration of interpolation in the latent 
space. Three dots, I, II, and III, represent the optimized latent codes obtained by maximizing Mz , minimizing 
Mz , and minimizing ǫ , respectively. (b–d) Spin configurations obtained by the linear interpolation between (b) 
I and II, (c) I and III, and (d) II and III. The red squares indicate each optimal spin configuration. (e) The Mz 
distribution of test dataset. The Mz values of the optimal solutions I and II are indicated by arrows. (f) The ǫ 
distribution of test dataset and the ǫ value of the optimal solution III.
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a standard deviation of ± 0.0002 (see Fig. 5f). These optimal solutions, the skyrmion lattices and well-aligned 
stripe structure, are physically reliable. In a magnetic system, the Mz can be controlled by applying an out-of-
plain external field. Numerous studies reported that the labyrinth structures become skyrmion structures when 
the external field is  applied43,44. The well-aligned stripe structures are also observed as the ground state of the 
system in previous  studies35,45.

The optimization process using our trained model is completed in a short period of time (In our study, it 
takes approximately 20 min), whereas it is impossible to achieve the goal in a reasonable time frame with con-
ventional micromagnetic simulations. Notably, the ground state of the system, characterized by a well-aligned 
stripe structure, remains elusive to conventional micromagnetic simulations due to the existence of numerous 
metastable states. The computational efficiency of optimization using our hybrid model is attributed to the 
dimensionality reduction achieved through the trained generative model. While the original system has dimen-
sions of 128 × 128 × 3, the latent space of our model is 128-dimensional, which substantially narrows the target 
space where we search for optimal solutions. In the realm of optimization, higher dimensions dramatically 
increase the complexity of the problem and constrain the efficiency of algorithms applied. Our hybrid model 
effectively reduces this dimensionality, which facilitates the successful application of the genetic algorithm within 
the dimensionally reduced latent space of the model. We believe this optimization strategy can be applied to a 
wide range of systems and objectives, such as designing molecules or materials. The approach is also adaptable 
to other conventional optimization algorithms, including gradient-based methods and Monte Carlo methods.

It is important to highlight that, as we mentioned above, the optimized solutions generated by the hybrid 
model are absent from the training dataset. At a same time, they are physically reliable, not displaying any node 
points. This indicates that the hybrid model is capable of generating new, physically reliable samples, extending 
beyond the training dataset. We confirm that the hybrid model can generate a wide variety of samples (high 
diversity) with high fidelity.

The central areas in Fig. 5b–d illustrate the results of linear interpolation within the latent space: from the 
latent code I to II (b), from I to III (c), and from II to III (d). The interpolated structures transition smoothly 
from one optimal state to another, exhibiting few node points and maintaining physically appropriate configura-
tions under varying out-of-plane magnetization Mz and energy ǫ . The reliability of these interpolated structures 
can be ascribed to the adversarial training, contrasting with the increased number of node points observed in 
interpolations performed within the latent space of a standalone VAE model. We confirm that our hybrid model 
possesses advantages, including the capability to generate a diverse of new, physically reliable samples and the 
potential for application across various domains.

Conclusion
We investigate the performance of a VAE-GAN hybrid model as a generator for the data with topological proper-
ties. We generate a dataset composed of various spin configurations which are simulated on a two-dimensional 
magnetic system and use it to train a simple VAE-GAN hybrid model. The performance of the trained hybrid 
model is evaluated in the aspects of diversity and fidelity, and it is compared with those of standalone VAE and 
GAN models. It is confirmed that the hybrid model exhibits high diversity and high fidelity simultaneously by 
incorporating the strengths of both standalone VAE and GAN models. Through the latent space visualization, 
we find that the latent space built by each model is partitioned into the numerous latent domains by latent 
domain walls which are closely related to the topological properties implied in our dataset. We show that, even 
if a topologically implausible structure appears on a generated sample, the DDLS algorithm can improve the 
plausibility of the sample by removing the appearing topological defects. Finally, we demonstrate two applica-
tion examples of the trained hybrid model, which are searching for the optimal solutions for various objectives 
and investigating intermediate states between them. We believe that the hybrid model has great potential as a 
generator for topological data, offering numerous versatile applications.

Experimental section
Neural network structures
For the neural networks, the pre-activation residual building blocks (ResBlocks)46,47 with batch-normalization 
and Leaky-ReLU activation function are used, as shown in Fig. 6a. Figure 6b–d shows the generator, discrimi-
nator, and encoder architectures. Periodic padding is applied before all convolutions because of the periodic 
boundary condition of the dataset. The spectral  normalization48 is applied for the discriminator layers, thus the 
batch normalization layers were removed from the discriminator network. To force the generator output pixels 
to be the Heisenberg spins (normalized pixels), the pixels were normalized at the end of the generator. The Up 
sampling of 2× 2 is applied for upsizing in the generator, whereas the downsizing in the discriminator and 
encoder is implemented by a convolutional layer with a stride size of 2 and kernel size of 4× 4.

Hyperparameters
The β , coefficient of the regularization loss term in the VAE loss, is chosen by 0.001 . The γ , coefficient of the GAN 
loss component in the generator of the hybrid model, is chosen by 0.001. For training, we use Adam  optimizers49 
with the learning rate, β1 , and β2 of 0.0002, 0.0, and 0.9, respectively. The training dataset contains 30,000 samples. 
The batch size is 50 and the number of total training steps is 6000 (100 epochs).
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Data availability
The dataset used in this work is available at https:// data. mende ley. com/ datas ets/ 4833b hfjv3/1.
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