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Biosynthesis of JC‑La2CoO4 
magnetic nanoparticles explored 
in catalytic and SMMs properties
Nilesh Satpute 1, Mithun Kumar Ghosh 1,2, Aparna Kesharwani 1 &  
Tanmay Kumar Ghorai 1*

We have reported the synthesis of JC‑La2CoO4 magnetic nanoparticles from Jatropha Curcas L. leaf 
extract in aqueous medium and potential application study in catalytic & Single Molecule Magnets 
(SMMs). Several techniques were used to investigate the structural, morphological, and elemental 
composition, particle size, optical properties, catalytic and magnetic properties by XRD, FTIR, SEM, 
EDAX, XPS, UV–visible and squid magnetic measurement. It was found that the crystallite sizes and 
grain sizes of JC‑La2CoO4 NPs were 11.3 ± 1 and 24.1 ± 1 nm respectively and surface morphology of the 
nanoparticles looks spherical shape with good surface area. The band gap of JC‑La2CoO4 was found to 
be 4.95 eV indicates good semiconductor in nature. XPS studies shows that La and Co present in + 3 
and + 2 oxidation state respectively and suggest the composition formula is  La2CoO4 with satisfied 
all the valency of metal ions. The photocatalytic efficiency of  La2CoO4 shows good result against 
methylene blue (MB) compared to other dyes like MO, NO, RhB in presence of sunlight with rate 
constant 56.73 ×  10–3  min‑1 and completely degraded within 115 mints. The importance of JC‑La2CoO4 
has magnetic properties with antiferromagnetic coupling and SMMs properties with nature.

Synthesis of bimetallic nanoparticles is very attraction to their vast application in industrial, medicinal, optical, 
electronic, magnetic, and catalyst  properties1–5. Plant extraction mediated green synthesis provide cost effec-
tiveness, simple, stable and non toxic. Plant extract is used as a reducing and stabilizing environment friendly 
reducing agent for synthesis of  nanoparticles1. Jatropha curcas L. (JC) is the family of Euphorbiaceae and used 
as herbal medicine and leaf extract used as anti-malaria  medicine6,7. Green synthesizes 3d and 4f. novel metals 
in the field of magnetic nanoparticles (MNPs) has always been a challenging task and recently researchers have 
attracted enormous attention in this area because these magnetic nanoparticles show distinguishing properties 
and are significantly different from bulk materials for many new potential  applications8–10. Lanthanum oxide is 
an optically active sesquioxide among all other rare earth metal  oxides11,12. Simultaneously, among the transi-
tion metals cobalt metal has multiple properties like being a semiconducting material, magnetic, catalytic and 
considerable  attention4,13–15. Dyes are chemical pollutants that are the root cause of water resource contamination. 
Nowadays, dyes are being used in the textile, pigment, photographic, leather, cosmetics, and paper industries to 
determine the attractiveness of consumers. A bulk of contaminated industrial effluents are discharged into bodies 
of water without their possible  treatment16,17. The majority of dye industry waste water is contains diverse natural 
azo colours, which are toxic and these colours are exceptionally harmful in nature and unsafe to sea animals 
and in addition to the human  being18–20. Azo dyes, for example, naphthol orange, methyl orange, rhodamine B, 
conga red were the principal materials in the dye industry.21,22 Simultaneously, methylene blue is also a cationic 
thiazine dye known as methylthioninium chloride and used in the textile, paint industries and has an effect on 
the central nervous  system23.

At present, the green method is an advanced methodology for the removal of toxic substances and the detoxi-
fication of dyes using UV radiation, toxic stabilizer, surfactants, and microbial  degradation24–26. Biologically 
synthesising bimetallic nanoparticles for catalytic reduction of organic dyes received the researcher’s attention 
due to the high potential of degradation of dyes. However, methods for the synthesis of suitable photocatalyst 
nanoparticles using plant extract are prevalent but the application of nanoparticles in the treatment of different 
dye effluents is  limited27. A photocatalyst is one of the most effective techniques for the degradation of organic 
dye without producing any toxic byproduct at the end of the process.
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Therefore, our objective is to remove the dye pollutants from waste water by using synthesized magnetic 
nanoparticles from the green technique. However, there are several examples of green synthesize of single metal 
nanoparticles like  CeO2, AgNPs, AuNPs, PtNPs, carbon-lignin/ZnO,  Co3O4,  Fe3O4 nanoparticles that can be 
used as excellent corrosion inhibitor, indoor air pollutant degradants, photocatalysts, magnetic nanoparticle 
for wastewater treatment, anticancer, antimicrobial and biomedical  applications12,16,28–38. Bimetallic magnetic 
nanoparticles have been reported for catalytic applications, sensors, and the biomedical field and are mainly 
synthesised from organic precursors or  solvents39–42. But here we are very much emphasizing the establishment 
of the biosynthesis of bimetallic magnetic nanoparticles (i.e. La and Co-based metal ions) from plant extract 
and their study in dual applications like catalytic and single-molecule magnets, which is very rare. Advantages 
of biosynthesis do not require adding capping agents for stabilize the compounds because bio extract (Jatropha 
Curcas) itself is used as an oxidizing and reducing agent and stabilizes the magnetic nanoparticles. Single-
molecules magnets are very interesting, mainly used in data storage, exchange bias materials, etc. and mostly 
obtained from organic  precursors43–45. Accordingly, the present research work deals with the green synthesis 
of the magnetic nanoparticle JC-La2CoO4 using Jatropha curcas L. (JC) leaf extract, lanthanum and cobalt. JC 
leaf extract contains the phytochemicals i.e. flavonoids, alkaloids, terpenoids, phenolic acids, amines, tannins, 
saponins and may responsible for the reduction of  La+3 to La and  Co+2 to Co  NPs26,46. The spinel structure of JC-
La2CoO4 nanoparticles has been established from XRD, FTIR and XPS measurements and extensively studied 
in optical, catalytic (degradation of methylene blue) and magnetic properties.

Experimental methods
Materials and methods
Lanthanum nitrate [La  (NO3)3.6H2O] (Alfa Aesar 99.9%), Cobalt nitrate [Co  (NO3)3.6H2O] Merck (99.0%), 
Milli-Q water, All the chemicals and reagent are purchased, and used without purification.

Plant materials
Jatropha curcas L. (family: Euphorbiaceae) is a perennial shrub widely cultivated in the Amarkantak region as 
a living fence (hedge) in the fields and human settlements. The IUCN status of the Plant is ’Least concern’. The 
authentication of the plant species was identified by a plant taxonomist (Dr. Ravindra Shukla) and its physical 
specimen (IGNTU/DoB/2023/Eup/JC/06) was lodged in the herbarium of the Department of Botany, Indira 
Gandhi National Tribal University, Amarkantak as per national, and international guidelines and legislation. 
The wild plant Jatropha curcas (JC) leaves were collected by Ghorai Research Group (N. Satpute, A. Kesharwani 
and M. K. Ghosh) from the Podki near the Indira Gandhi National Tribal University, Amarkantak, Madhya 
Pradesh, India in the month of April 2023 (Fig. 1). The research work of JC was completed in the Department 
of Chemistry, Nanomaterials & Crystal Design Laboratory, Indira Gandhi National Tribal University, Madhya 
Pradesh, Amarkantak, India.

Figure 1.  Green Synthesis of JC-La2CoO4 NPs.
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Preparation of the JC plant extract
An extract of Jatropha curcas leaf was used for the green synthesis of JC-La2CoO4. The leaves of Jatropha curcas 
were washed with running tap water to remove debris and other contaminated particles, followed by double 
distilled water (DDW) twice, and air dried. Collect the fresh leaves and remove the debris and dust by running 
tap water. Wash the leaves with purified water and then Milli-Q water, and then cut them into small pieces before 
being dried. The 15 g of dried leaves are finally cut and kept in a beaker immersed in 150 mL of Milli-Q water 
and heated to boiling for up to 25 min. Cooled the solution and filtered with Whatman (41) filter paper and used 
for the synthesis of JC-La2CoO4 or stored for further use at 4 °C.

Phytochemical analysis
To identifying the major phytochemicals in the sale followed by the standard protocol for qualitative phyto-
chemicals  analysis13,14, shown in the Table 1.

Bio‑synthesis of JC‑  La2CoO4 NPs
At first, La(NO3)3 (0.389 g, 10 mM) was taken in a 200 ml beaker and dissolved in 90 mL of DDW. After that, 
10 mL of JC leave extract was added to the La(NO3)3 solution with a 9:1 ratio, and the mixture was kept at room 
temperature and stirred for about 15 min. In another beaker, a Co(NO3)2 (0.262 g, 10 mM) solution was prepared 
by dissolving in 90 mL of DDW. After that, cobalt nitrate solution was added to the mixture of JC-La- extract 
and stirred constantly for about 2 h and then the mixture was kept in a hot air oven at 35 °C for overnight. A 
greenish yellow viscous solution of JC-La2CoO4 NPs has been obtained as a suspended particle and confirmed 
by UV- visible spectroscopy measurement. The pH of the reaction mixture is 4.15 during the preparation of JC-
La2CoO4 NPs. Finally, the resultant solution was centrifuged at 11,000 rpm for 15 min at room temperature and 
JC-La2CoO4 NPs were precipitated at the bottom of the centrifuge tube, filtered and washed with purified water, 
dried in an oven at 80 °C for 2 h and collected as brown JC-La2CoO4 for further characterization. A phytochemi-
cal test of JC was performed and it may act as reducing as well as capping and stabilizing agents for the green 
synthesis of JC-Co2LaO4 NPs. The schematic representation of JC-Co2LaO4 is shown in the Fig. 1.

Characterization techniques
JC-La2CoO4 NPs formation, optical property, and photocatalytic activity have been characterized by the use of 
the UV visible spectrophotometer (Shimadzu UV-1800). The crystal structure of JC-La2CoO4 NPs was measured 
by Powder X-ray diffraction (XRD) at room temperature by using Xʹ Pert3 Panalytical, equipped with Cu Kα 
(1.54060 Å) as the incident radiation. Scherer equation was used for calculation of crystallite size. The Scherer 
equation was D = Kλ/βcosӨ, K = 0.9, D = Crystal size (Å), λ = Wavelength of Cu-Kα radiation, and β = Corrected 
half width of the diffraction peak. Nicolet iS5 (Thermo Scientific) was used for FT-IR analysis of samples at room 
temperature. The surface morphology and elemental composition of the fine NPs were analysed by Scanning 
Electronic Microscopy (SEM) and EDAX (SEM-EDAX: JEOL 6390LA/ OXFORD XMX N). Oxidation state of 
metals with presence of elemental % of nanomaterial measured by X-ray Photoelectron Spectroscopy (Thermo 
Fisher Scientific: Escalab Xi+). Magnetic Study of prepared sample DC and AC magnetic susceptibility were 
carried out on Superconducting Quantum Interference Device Magnetometry. Quantum Design MPMS-XL 
SQUID magnetometer (IISER Bhopal) equipped with a 7-T magnet and operating in the 1.8 to 300-K range was 
used on vacuum dried solids to collect variable-temperature dc and ac magnetic susceptibility data.

Photocatalytic experiment
Photocatalytic experiments were conducted using JC-La2CoO4 NPs, under aqueous solution of naphthol orange 
(NO), methylene blue (MB), rhodamine B (Rh B) and methyl orange (MO) in presence of sunlight. The reactions 
were performed by adding synthesized nanoparticles (0.1 g) into each set of a 20 mL dye, which is standardized. 
In each set of reaction solutions were measured by UV–VIS spectrophotometer (UV-1800, Shimadzu) after 
10 min intervals. The maximum absorbance of MB is at 662 nm.

Table 1.  Phytochemical analysis of Jatropha curcas leaf.

S. No Phytochemical Test Result

1 Flavonoids –

2 Tannins  + 

3 Phlobatannins –

4 Terpenoids –

5 Steroids –

6 Saponins  + 

7 Glycosides –

8 Phenol  + 

9 Alkaloids  + 

10 Phytosterols –

11 Anthocyanin –

12 Anthraquinone –
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Results and discussion
Green synthesis of JC‑La2CoO4 NPs
The greenish yellow solution of JC-La2CoO4 NPs was obtained from a plant extract, Co(NO3)2 and La(NO3)3 solu-
tion. The formation of JC-La2CoO4 NPs was confirmed by UV–visible spectrophotometer. From the UV–visible 
spectroscopy, JC-La2CoO4 NPs have an absorption peak appears at 270 and 338 nm whereas no peaks observed 
in the mentioned bands for Co(NO3)2, La(NO3)3, and Jatropha curcas extract solution shown in Fig. 2. Co(NO3)2 
and La(NO3)3 solution absorption band was found at 300 nm.

XRD analysis
X-ray diffraction profile of JC-La2CoO4 NPs were obtained after calcination at 200 °C by using Panalytical  Xpert3 
powder with scanning angle (2θ) ranging from 15 to 90 degree (°) at 45 kV, 40 mA, by using Cu Kα radiation 
(λ = 1.5405 Å). XRD pattern illustrated in Fig. 3 confirm the diffraction pattern of the sample were taken and 
indexed by using the Joint Committee on Powder Diffraction Standards for cobalt oxide JCPDS card no. 00-042-
1467, and shows comparative intense peak corresponding to the diffraction peaks at 2θ = 19.0, 31.2, 36.8, 43.7, 
65.2, and 77.3° supported the prepared nanomaterials and exhibited the (hkl) values of (111), (220), (311), (400), 
(440), and (533) corresponding to the cubic structure of  Co3O4

9,13. Lanthanum oxide JCPDS card no.00-005-0602 
corresponding to the diffraction peak at 2θ = 26.1, 29.1, 29.9, 39.5, 46.0, 52.1, 53.4, 55.4, 60.1, 62.4, 72.0, 85.6˚ 
and exhibited the (hkl) values of (100), (002), (101), (102), (110), (103), (200), (112), (004), (202), (203), (210), 
(211), (114), (212), (300) corresponding to the hexagonal structure of  La2O3

10,47, which is matched with good 
agreement of JC-La2CoO4. The highest intense peak of the composition indicates concentration of lanthanum is 
maximum compared to cobalt and supported the formation of  La2CoO4. XRD pattern proves that JC-La2CoO4 
is a spinel with perovskite structure. The average crystallite size of JC-La2CoO4 NPs is 11.3 nm estimated by 
using the Scherrer equation.

FTIR analysis
The vibrational property of the Jatropha Curcas leaf powder and JC-  La2CoO4 are presented in Fig. 4. In the FTIR 
spectra shows significant peaks and wavenumbers and an interpretation of the possible functional groups. It also 
proofs the phytochemicals or functional groups in the JC leaf and are responsible for reducing and stabilizing 
the JC-La2CoO4 NPs. The characteristic stretching band appear at 500  cm-1 indicated the formation of La–O 
 nanoparticles48,49. The band assigned at 668  cm-1 to the bridging vibration of O–Co–O  bands6,18. The bands 
observed at 3315, 2916, 1604 and 1047, 1311 and 781  cm-1, respectively, for the presence of aqueous O–H, 
C-H, C-O, alcoholic O–H and C–Cl functional group of JC leaf powder. Simultaneously bands obtain in the 
JC-Co2LaO4 NPs at 1609, 1316, 1072, and 794  cm-1, corresponds to the C=O, O–H, C–O and C–Cl with good 
agreement and it might be responsible for the bio reduction of Co and La to the JC-Co2LaO4 NPs. The com-
parison study of the IR band observed between JC plant extract powder and JC-Co2LaO4 NPs shown in Table 2.

SEM and EDAX analysis of the JC‑  La2CoO4 NPs
The surface morphology of the prepared nanoparticles was examined using SEM analysis. Energy dispersive 
X-spectroscopy (EDAX) to identify the existing elements in the composite. Figure 5a–c represents the SEM image 
of the JC-La2CoO4 NPs at different magnification (50, 70 and 100KX), which indicates that the nanoparticles 

Figure 2.  UV–visible spectra of JC leaf extract (black), Cobalt nitrate (pink), Lanthanum nitrate (purple) and 
JC-La2CoO4 NPs (brown).
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were well uniform and spherical shape and (d) showing the particle size distribution of c image in red colour. The 
constituents of the green synthesized JC-La2CoO4 NPs consist the elemental peaks for La at 4.5 keV, Co at 1 keV 
and O at 0.5 keV shows in Fig. 5e determined the atomic % of metals. The average grain sizes of the JC-  La2CoO4 
NPs is 24.1 nm estimated using ImageJ software and presented the histogram in Fig. 5d. The sample agglomerates 
of NPs with spherical shape have very fine particle prepared by green method using leaf extract of Jatropha curcas.

XPS analysis of the JC‑La2CoO4 NPs
Surface oxidation state and chemistry of La and Co ions in JC-La2CoO4 were further investigated by using the 
core-level and satellite X-ray photoelectron spectroscopy (XPS). The binding energy (eV) and features of Co2p, 
La3d and O1s spectra shown in Fig. 6. Figure 6a display the hole spectra of JC-La2CoO4 and assign the signals 

Figure 3.  XRD Pattern of the JC-La2CoO4 NPs.

Figure 4.  FTIR-Spectra of the JC-La2CoO4 NPs.
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of La3d, Co2p, O1s and C1s. The lanthanum elements represented by two major peak corresponds to La3d state 
existence in binding energy at 852.3 eV for  La3d3/2 and 835.5 eV for  La3d5/2 respectively shown in Fig. 6b and 
the splitting of La is good agreement with La3d spectrum of La-based perovskites and existence of + 3 oxida-
tion state of  La48–50. Figure 6c represent the binding energy spectra of Co elements having two peaks Co2p state 
existence in 793.6 eV for  Co2p1/2 and 776.3 eV for  Co2p3/2, respectively. The lower binding energy with intense 
XPS signals of the  Co2p3/2 indicates of  Co3+ ions, whereas higher binding energy with the low-intensity signals 
of  Co2p3/2 can be assigned to the  Co2+  ions51,52. At the XPS spectra of JC-La2CoO4, the core-level signals of  Co2+ 
ions show in higher binding energy site more intense XPS signals relative to those of  Co3+ ions, and a high-
intensity peak of metallic Co appears at ~ 777.8 eV suggest + 2 oxidation  state53–55. Which support the binding 
energy of O is located in 530.4 eV and valency is O1s shown in Fig. 6d. Therefore, the XPS spectra supported 
and conclude that the probable composition is JC-La2CoO4, which satisfied the valency and total charges are 
balanced in the composition.

Optical properties
The UV–visible spectrum of the JC-La2CoO4 is displayed in Fig. 7. The interaction of the JC-La2CoO4 the band 
edge appearing in UV–visible spectrum at 270 and 338 nm. The optical absorption study of the JC-La2CoO4 
NPs revealing that electronic transition, band gap energy and luminescent  property11,56. Band gap energy was 
calculated by using Tauc’s relation (Eq. 1).

Figure 5.  SEM image of the JC-La2CoO4 NPs at different magnification (a–c) and particle size distribution of C 
image in red box (d) and EDAX spectra (e).

Table 2.  The comparison study of the IR band observed in JC plant extract and JC-La2CoO4 NPs.

JC-leaf wavenumber  (cm-1) Probable functional group JC-La2CoO4 NPs  (cm-1) Probable functional group

3315 Broad for O–H

2916 Medium for C–H

1604 C=O Stretch 1609 C=O Stretch

1311 O–H Bending 1316 O–H Bending

1047 Medium for C-O 1072 Medium for C–O

781 C–Cl Strong Bending 794 C–Cl Strong Bending

668 Co–O

500 La–O
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where α: represents the absorption coefficient, A: is a constant,  Eg: is showing optical band gap, n: is exponent 
that depends on transition, h: is symbol of plank\rsquo s constant

The optical energy band gap energy of JC-La2CoO4 is 4.95 eV calculated from Fig. 8, which appears through 
extrapolating the linear portion of the curve to (αhʋ)2 = 0 and indicates its semiconductor properties and support 
the study of catalytic activity. Indirect band gap value is also calculated and showing in Figure S1.

Photocatalytic activity
Photocatalytic experiments were conducted using JC-La2CoO4 NPs in presence of sunlight aqueous solution of 
different dyes like NO, MB, MO and RhB. The reactions were performed by adding JC-La2CoO4 (0.1 g) into each 
set of a 20 mL solution of MB (3 mg/L) dyes. Before the degradation process solution agitated in the dark for 
15 mint to established adsorption/desorption time is 20 mint to achieve equilibrium between MB solution and 
nanoparticle. The most prominent result was found in case of MB, which is faster degraded compared to others 
dyes with small time is shown in Fig. 8a. The degradation of MB in presence of JC-La2CoO4 NPs was examined 
by UV–VIS spectrophotometer (UV-1800, Shimadzu) after 10 min interval shown in Fig. 8b. The initial absorb-
ance of MB is about 0.712 at 662 nm and it takes 115 min for complete degradation after that the degradation 
of MB is almost constant. The rate constant of JC-La2CoO4 is 56.73 ×  10–3 after 50% degradation of MB with 
respect to irradiation time. Therefore, JC-La2CoO4 NPs shows good catalytic activity against MB compared to 
other dyes. The probable mechanism for degradation of MB is shown in Fig. 9. It interprets that in presence of 
sunlight JC-La2CoO4 was activated by absorbing specific wavelength of sun light and creates electron/hole pair 
in the valance band. This electron is move from valance band to conduction band and generate hole pair in the 

(1)(αhv)n = A(hv − Eg )

Figure 6.  XPS Spectra for the (a) XPS-Survey analysis of the JC-La2CoO4 NPs, (b) La 3d, (c) Co 2P and (d) O 
1 s of the JC-La2CoO4 NPs.
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valance band. Simultaneously electron populated in the conduction band because of band gap of JC-La2CoO4 is 
4.95 eV and electron easily move from valance band to conduction band. The oxidation and reduction reaction 
will occur at valence and conduction band respectively. The dye molecule at first converted to dye radical cation 
by absorbing photon after that superoxide 2  (O2

∙−) and hydroxyl (∙OH) radical was formed from oxygen and water 
molecule and finally MB degraded into  CO2 and water. UV–Vis. Spectra of MO, NO, and RhB shows in Figure S2 
and dye degradation efficiency of MB, RhB NO and MO, summarize in the Table S1.

Effect of Catalytic dosage and initial concentration of dye on the dye degradation
For catalytic efficiency and to avoid the wasting of photocatalyst, it’s necessary to optimize the amount of catalyst 
in the photocatalytic degradation process. The effect of the catalyst dosage of JC-La2CoO4 was investigated in 
the degradation of MB using 0.025 g,0.05 g, 0.1 g and 0.2 g of catalyst for 115 min, which is shown in Fig. 10a. 
The degradation of MB dye increased as the quantity of catalyst increased from 0.025 to 0.2 g. which is shown 
in Fig. 10 b. As the amount of catalyst dose increased, the amount of adsorbed dye on the surface of the catalyst 
increased. Now the adsorbed dye molecule promptly reacts with ROS (reactive oxygen species)57–59. In the present 
study increased the catalyst dosage from 0.025, 0.05, 0.1, and 0.2 g/20 mL, the degradation percentage of MB dye 
initially increased which may be attributed to the active ROS sites generation. But in higher dosage of catalyst 
0.2 g degradation percentage of MB dye decrease, and it could be due to the decrease in photon penetration on 
the catalyst surface block in solution which leads to a decrease the formation of  ROS60.

The effect of the initial dye concentration of MB on the dye degradation efficiency was studying in presence of 
catalysts. The concentration of dye varying from 3 to 8 mg  L-1 with 0.1 g photocatalyst JC-La2CoO4 and percent 
degradation is shown in Fig. 11.

Figure 11 shows the effect of the dye concentration on the performance of the photocatalyst. The rate of pho-
tocatalytic degradation decreases from 76 to 33%. This degradation percentage occurred with an increase in dye 
concentration because dye concentration blocks the surface-active sites of photocatalyst, inhibiting the process 
for ROS generation and turn decreasing the degradation  efficiency61,62. The maximum degradation efficiency 
was found in the 3 mg/L-1 solution of MB, and therefore MB dye was chosen as the optimum concentration for 
further degradation process.

Effect of pH on dye degradation efficiency
The effect of the pH on the photocatalytic degradation of MB dye was investigated in the presence of JC-La2CoO4 
photocatalyst in sunlight which is shown in Fig. 12a. The pH of the reaction from pH = 4, 7 and 9. Adjustment 
of pH with in the above range by using 0.1 M solution of HCl and NaOH. JC-La2CoO4 photocatalyst giving bet-
ter catalytic activity at pH 9 which is shown in Fig. 12b. As the resulting value nearly same at pH 4,7,9 is more 
favorable for the degradation of MB  dye54,63.

The Effect of active species scavenger test
To evaluate and understand the active species, i.e.,  (O2

∙−)(superoxide),  h+ (holes), and ˙OH (hydroxyl ion) were 
used to study the photocatalysis mechanism which is shown in Fig. 13. For this purpose, isopropyl alcohol 
(IPA,1 mM) was used as ˙OH, ascorbic acid (AA, 1 mM) used for trapping 2(O2

∙−) and ammonium oxalate (AO, 

Figure 9.  Probable mechanism for degradation of MB in presence of JC-La2CoO4.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22122  | https://doi.org/10.1038/s41598-023-47852-9

www.nature.com/scientificreports/

0 20 40 60 80 100 120

0.2

0.4

0.6

0.8

1.0

1.2

 0.025 g JC-La2CoO4

 0.050 g JC-La2CoO4

 0.100 g JC-La2CoO4

 0.200 g JC-La2CoO4

A
bs

 (C
0/C

)

Irradiation time (min)

(a)

0 20 40 60 80 100 120

0

20

40

60

80  0.025 gJC-La2CoO4

 0.050 gJC-La2CoO4

 0.100 gJC-La2CoO4

 0.200 gJC-La2CoO4

D
eg

ra
da

tio
n 

ra
te

 (%
)

Irradiation time (min)

(b)

Figure 10.  (a) Change in the concentration of MB dye in different catalytic dosage in presence of JC-La2CoO4. 
(b) Changes in the degradation rate of MB dye in different catalytic dosage in presence of JC-La2CoO4.

Figure 11.  Effect of initial dye concentration on the photodegradation of JC-La2CoO4 NPs.
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1 mM) used as a  h+ scavenger. In the absence of any active species degradation rate of MB was 79%. With the 
addition of IPA, AA, AO degradation of MB was decrease about 35%,12%,4% respectively. The addition of all 
the species contribute to the degradation of MB dye.

The rate of degradation in presence of IPA and AA rate is highest, therefore the ˙OH, and  O2
- species play a 

key role for the  degradation60,64,65.

Recyclability and stability of the JC‑La2CoO4
Recyclability and stability is an important factor after the degradation process, for this prediction photocatalyst 
was investigated for reusability by subjecting it to three consecutive experiment cycle under the same condition 
up to 115 min. Figure 14 attribute to the effect of reusability test to MB degradation, the first two test efficiency 
rate of degradation nearly the same (77% to 75%). During the third test degradation rate 69%. The Reduction 
in degradation efficiency it might be due to the loss of photocatalyst in each cycle and active site  blockage19,66.

The stability of the reused photocatalyst after repeated cycle was characterized by XRD pattern of JC-La2CoO4, 
which is shown in Figure S4. After the third cycle peaks showing that there is no structural change.

Magnetic (SMMs) study of the JC‑La2CoO4 NPs
DC magnetic study
The DC magnetic susceptibility of the JC-La2CoO4 NPs the temperature dependences χM and χMT are depicted 
in Fig. 15. Magnetic susceptibility as investigated under 10–300 K temperature and applied field is a 1000 Oe 
(0.1 T). The value of χMT 32.66  cm-3  mol-1 K, this value is the contribution of Co (II) ion 4F9/2 (S = 3/2, L = 0, 
g = 2) and La (III) 1S0 (S = 0, L = 0, g = 1)(also support from XPS). Upon cooling, the value of χMT decreases 
monotonically to attain a minimum value 1.55  cm3  mol-1 K at 10.3 K, which is indicative of the existence of 
antiferromagnetic coupling.
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Figure 12.  (a) Change in the concentration of MB dye at different pH value in presence of JC-La2CoO4. (b) 
Changes in the degradation rate of MB dye at different pH value in presence of JC-La2CoO4.
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In the Fig. 16 as temperature decrease from 300 K, the χM value increase, reaching a maximum 0.143 
 cm3  mol-1 at 94 K and then decreases slightly reaching a value 0.138  cm3  mol-1 at 38 K. Upon further cooling, 
the χM value increase again to 0.178  cm3  mol-1 at 10 K. Figure 17 showing the temperature dependence of 1/χM 
at temperature above 195 K has been fitted by the Curie–Weiss  law4,15.

AC magnetic study
AC susceptibility (in phase and out phase) studies have been conducted for the JC-La2CoO4 NPs in between 1.8 
and 15 K in a zero applied field with 3.5Oe driving field to investigate for slow magnetic relaxation, i.e., SMM 
behaviour. The AC susceptibility studies for nanoparticles have been performed at various frequencies such as 
50, 250 and 550 Hz and a plot of χMT versus temperature (in phase and out phase) is presented in Fig. 18a and b.

The ac-in-phase susceptibility of naoparticles are in good agreement with the dc data at the same temperature. 
χM

’T value is significantly increased with increasing the temperature, having a maximum value of 0.0054  cm3 
 Kmol-1 at 300 K (Fig. 18a). The frequency dependent rise in the out-of-phase susceptibility is observed as a peak 
tail, indicating nanoparticles displays behaviour characteristic of a SMM (Fig. 18b and Table S2)67.

Figure 13.  The role of active species on the MB photocatalytic dye degradation.

Figure 14.  Photocatalytic degradation reusability performance of JC-La2CoO4.
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Figure 15.  DC magnetic susceptibility χMT vs T plot of the JC-La2CoO4 NPs.

Figure 16.  χM vs T plot for the JC-La2CoO4 NPs.

Figure 17.  Plot of χM
-1 vs T plot for the JC-La2CoO4 NPs.
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Novelty of the work
In the past, researchers have synthesized  La2CoO4 using various methods, including Spray Flame and Sol–gel 
 techniques68,69. However, our research marks the first instance of synthesizing  La2CoO4 by using environmentally 
friendly, green methods. While other research groups have focused on producing nanoparticles of cobalt (Co) 
and lanthanum (La), by sol–gel or other approach. Therefore, our approach stands out due to its uniqueness. 
What’s more, until now, no nanoparticles have exhibited the dual properties of acting as both photocatalysts 
and single-molecule magnets (SMMs). The literature reviews presented in the Table 3 underscore the innovative 
nature of our work.

Conclusion
In the summary, first time report the bimetallic magnetic JC-La2CoO4 NPs was synthesized from aqueous leaves 
extract of Jatropha curcas through green approach and characterized by different spectroscopic technique. The 
JC-La2CoO4 NPs was stable up to six months due to presence of both capping and reducing agent in the leaves 
extract to stabilize the metal nanoparticles. The leaves extract contained (–COO-, –NH2 and –OH) groups 
where –OH and –NH2 groups involved to reduction of metal ion and –COO- group strongly bind to the sur-
face of NPs. JC-La2CoO4 NPs are semiconductor materials for which it degraded the methylene blue (MB) in 
presence of sunlight. Both spectroscopy studies (XPS and DC Magnetic) prove the La and Co is present in + 3 
and + 2 oxidation state and support the formation of  La2CoO4 spinel perovskite structure. JC-La2CoO4 NPs have 
antiferromagnetic interactions and the value of C is 0.842  cm3 K  mol-1 by Currie-wises law. From DC and AC 
magnetic studies JC-La2CoO4 NPs shows good SMM properties. JC-La2CoO4 NPs may used as catalyst in organic 
transformation reaction. We will work on it in future.

Figure 18.  (a) AC Susceptibility in-phase χ’ M in phase plot for the JC-La2CoO4 NPs. (b) AC Susceptibility 
out-phase χ’’M out-of-phase plot for the JC-La2CoO4 NPs.
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