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Topological electromagnetic waves 
in dispersive and lossy plasma 
crystals
Chen Qian 1,4, Yue Jiang 1,4, Jicheng Jin 1, Thomas Christensen 2, Marin Soljačić 2, 
Alexander V. Kildishev 3 & Bo Zhen 1*

Topological photonic crystals, which offer topologically protected and back-scattering-immune 
transport channels, have recently gained significant attention for both scientific and practical reasons. 
Although most current studies focus on dielectric materials with weak dispersions, this study focuses 
on topological phases in dispersive materials and presents a numerical study of Chern insulators in 
gaseous-phase plasma cylinder cells. We develop a numerical framework to address the complex 
material dispersion arising from the plasma medium and external magnetic fields and identify Chern 
insulator phases that are experimentally achievable. Using this numerical tool, we also explain the 
flat bands commonly observed in periodic plasmonic structures, via local resonances, and how edge 
states change as the edge termination is periodically modified. This work opens up opportunities 
for exploring band topology in new materials with non-trivial dispersions and has potential radio 
frequency (RF) applications, ranging from plasma-based lighting to plasma propulsion engines.

The discovery that topological phases can exist beyond electronics1–3 has garnered significant attention in other 
wave systems such as photonics4–6, plasmonics7–9, polaritonics10, acoustics11,12, and even water waves13,14. Of 
particular interest is the quantum anomalous Hall effect, also known as Chern insulators, which can offer topo-
logically protected transport channels and immunity against back-scattering at the interface with normal insu-
lators. Such transport channels have both scientific inquiry and practical applications in fields such as optical 
communication, low-loss waveguides, and circulators.

To create photonic Chern insulators, time-reversal symmetry must be broken while retaining near-Hermitic-
ity. This requires a permittivity or permeability tensor that breaks reciprocity, such that εT  = ε or µT  = µ . The 
properties of the underlying materials, along with their geometric aspects, determine the topological invariants 
(Chern numbers) of the electromagnetic band gaps and their transport properties.

Most current studies of photonic Chern insulators have relied on gyromagnetic materials (e.g. yttrium iron 
garnet2,15–17) and external magnetic fields. These materials are mostly dielectric in nature, meaning their perme-
ability remains positive in the frequency range of interest, resulting in Bloch modes that are delocalized in the 
photonic crystals. There has been recent interest in gyroelectric materials, which have the potential for large 
Faraday effects in magnetized plasmas in metals. This focus has centered on continua18 and plasmonic crystals7–9, 
where the Chern insulator phase is mostly composed of coupled plasmonic resonances localized at individual 
sites with Drude-like material responses and negative permittivity.

Here, we present a numerical study of photonic Chern insulators in plasma crystals with gaseous-phase 
plasma, which simultaneously exhibit both extended photonic bands and localized plasmonic modes in the RF 
regime. Our design is based on a 2D crystal of plasma cells placed in an external magnetic field. Without the 
magnetic field, the responses of the plasma elements are Drude-like, and the associated structure is known to 
support coexisting de-localized and localized modes in suitable polarizations19–21. We explore the time-reversal 
broken generalization, which exhibits an interesting interplay between the Drude and Lorentzian dispersion due 
to the applied magnetic field causing cyclotron motions in the plasma. We propose a plasma crystal design that 
features a Chern insulator gap between de-localized photonic bands, coexisting with nearby dense groups of flat 
bands associated with localized plasmons of fixed-handedness. On termination of this crystal, we observe a rich 
interplay between localized plasmonic bands and de-localized chiral edge states inside the Chern insulating gap. 
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Finally, we explore how local and de-localized edge modes evolve under continuous deformations of the interface 
between the Chern insulator and perfect magnetic conductors. The mode evolution can then be interpreted as 
a manifestation of the filling anomalies.

Our work is organized as follows: first, we review the plasma dispersion without and with an external mag-
netic field. Then, we present the band structure of plasma crystals without and with an external magnetic field 
and their associated topological invariants. Next, we explain the origin of the observed flat bands in calculations 
as localized surface plasmon polariton resonances. Afterward, we explore how the chiral edge state dispersion 
evolves when the edge termination changes. Finally, we discuss the limitations existing in our calculations and 
practical aspects related to the experimental verification of our proposal.

Results
Dispersion of plasma without magnetic field: drude model
We start by presenting a comprehensive review of the dispersion properties of the plasma permittivity ( ε ) by 
employing the widely accepted Drude model22. In our analysis, we made the fundamental assumption that the 
positive ions within the plasma are significantly heavier and thus remain immobile. Consequently, the contribu-
tion to the volume current density (J) is exclusively attributed to the movement of electrons: J = −nev . In this 
equation, n represents the volume density of electrons, and −e corresponds to the electron charge of an individual 
electron. The equation of motion for electrons in the plasma crystals reads:

Here, me is the electron mass, γ is the damping rate, and E is the electric field. For harmonic solutions at a fixed 
angular frequency ω , all temporal derivatives can be substituted via ∂t → −iω . Accordingly, the frequency-
dependent plasma conductivity σ can be written as

Here, ωp =
√

ne2

meε0
 is the plasma frequency. Noting that the volume current density is also related to the electric 

polarization: J = ∂tP = −iωP , the Drude permittivity of plasma ε can be defined as:

Dispersion of magnetized plasma
Following these steps, we calculated the permittivity tensor describing gaseous phase plasma placed in an external 
magnetic field (Fig. 1a). Following Eq. (3), we need to re-write the conductivity tensor ( ̄̄σ ), based on the updated 
equation of motion for electrons. Considering the Lorentz force, the equation of motion becomes:

Re-writing the equation in circular bases in the xy plane: (J+, J−, Jz) = (
Jx+iJy√

2
,
Jx−iJy√

2
, Jz) and 

(E+,E−,Ez) = (
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2
,
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2
,Ez) , both matrices ¯̄σ and ¯̄ε become diagonal. Specifically, the conductivity tensor 

¯̄σ can be expressed as:
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Figure 1.   Permittivity dispersion of plasma medium in an external magnetic field. ε+ ( ε− ) is the permittivity of 
right-handed (left-) circular polarization under an external magnetic field of 0.054 T. εz is for polarization along 
the z direction. The real and imaginary parts of the permittivity are shown in blue and red, respectively. Both ε+ 
and ε− are affected by the cyclotron resonance at fc = 1.5GHz , while εz is unaffected and remains to be given 
by the standard Drude model.
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Here ωc = eB
me

 is the cyclotron resonance. Accordingly, the permittivity tensor of the magnetized plasma ¯̄ε has 
the following form in a Cartesian basis:

where the column vectors of the matrix U label the directions of the optical principle axes:

Meanwhile, along the principal axes, the material dispersion can be expressed as:

This outcome can be intuitively understood as follows: when subjected to an external magnetic field along the 
ẑ direction, electrons undergo cyclotron motion, forming orbits at a constant angular frequency of ωc within 
the xy plane. In a co-rotating (counter-rotating) reference frame synchronized with the electrons, the induced 
electric field preserves the same (opposite) circular polarization but is slightly shifted in frequency by ωc ( −ωc ), 
yielding the distinctive properties ε+ and ε− , respectively. On the other hand, the electric field applied in the z 
direction remains unaffected by the cyclotron motion. Consequently, the dispersion of εz maintains the conven-
tional characteristics of the standard Drude dispersion.

Next, we numerically compute the material dispersion as functions of frequency f = ω/2π using the typical 
values in gaseous phase plasma. The results are shown in Fig. 1, where the external magnetic field is set at 0.054 T 
and the corresponding cyclotron resonance is at fc = ωc/2π = 1.5GHz . The plasma frequency is controlled 
by the number density of electrons, which is set to be a practical value of n = 3.1× 10

11
cm

−3 throughout the 
calculations. Accordingly, the plasma frequency is at fp = ωp/2π = 5GHz . The real and imaginary parts of 
the permittivity are shown in blue and red, respectively. The parameter γ refers to the damping rate, which 
mostly originates from the electron-ion collisions at room temperature. For helium plasma gas, the damping 
rate is roughly linearly proportional to the gas pressure: γ = 0.318GHzTorr

−1 × p . Using a practical pressure 
of p = 0.314 Torr , the damping is set to be γ = 0.1GHz throughout our calculations.

As expected from Eq. (8), both ε+ and ε− are affected by the cyclotron resonance and deviate from the stand-
ard Drude model ( εz ). For example, at low frequencies ( f ≈ 0 ), ε+ is positive and diverges as 1/f; ε− is negative 
and diverges as 1/f; meanwhile, the Drude model εz is negative and diverges as 1/f 2 . These fundamental differ-
ences in scaling lead to challenges when fitting the dispersion to standard formalism in commercial software, 
as described later.

We note that our description of the plasma medium is limited by a few approximations. Overcoming these 
approximations would lead to modifications of our results and will be discussed elsewhere. First, only electrons 
are assumed to move under the influence of external electromagnetic fields, while ions are assumed to be always 
stationary. Second, our permittivity ignores non-local effects, which leads to a frequency gap between surface 
plasmon polaritons traveling in opposite directions23–25. Finally, we neglect the inhomogeneous broadening 
effect, and thus the bandwidth of our permittivity is defined solely by electron damping.

Band structures of plasma crystals without external magnetic field
Utilizing the dispersion equation outlined in Eq. (8)26, we compute the band structure associated with a square 
lattice comprising plasma cylinders positioned within an air medium. Our investigation primarily centered 
around quadratic point degeneracy, a distinctive phenomenon safeguarded by both spatial symmetry and time-
reversal symmetry. This quadratic point is important in our study, as it arises from the combined effects of spatial 
symmetry ( C4 ) and time-reversal symmetry (T), which is broken when T is broken.

The plasma photonic crystal unit cell is shown in Fig. 2a, where the lattice constant a is 6 cm, and the radius 
of the cylinder r is 1.5 cm. The external magnetic field along the z direction preserves the mirror symmetry in 
z ( σz ) and separates the electromagnetic modes into two mode types: to avoid possible terminology confusion, 
we follow the definition of Sakoda27 to distinguish the E-polarization case (with the E-field parallel to the z-axis) 
from the H-polarization case (with the H-field parallel to the z-axis). We also use the E-case and H-case for short. 
Given that the gyroelectric response has response components only in the xy-plane but not along the z-direction 
[Eq. (5)], we focus solely on the H-case and disregard the associated E-case.

Without breaking time-reversal symmetry (T), i.e., B = 0 , the plasma dispersion follows the standard Drude 
model, and the H-case can be calculated using a standard finite element method (FEM). The results are plotted 
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along high-symmetry lines in the Brillouin zone (Fig. 2b). As shown, a pair of quadratic degeneracies are found 
at the M point in the Brillouin zone around 2.4  GHz, which is protected by the 90-degree rotation symmetry 
C4z and T. Specifically, the two modes, marked as ‘ + ’ and ‘−’, have C4z indices of ±i ,. They are connected to each 
other by T. The phases of the corresponding mode profiles, arg(Hz) , confirm the C4z indices of the two modes. 
We note that a set of flat bands is observed in the calculation (blue ribbon) with an upper-frequency bound of 
fp/

√
2 = 3.5GHz , which is further discussed in the next section.

Band structure of the magnetized‑plasma photonic crystals and Chern insulators
In the presence of an external magnetic field, the behavior of the plasma dispersion ( ε+ and ε− ) deviates from the 
conventional Drude model. This alteration introduces complexities that pose challenges for accurately represent-
ing the band structure using standard material dispersion models available in commercial software solutions. 
As a result, we modify a standard Finite Element Method (FEM) technique to effectively capture the intricacies 
of the band structure, especially concerning band crossings that demand precise resolution. Following conven-
tional methodologies (e.g., in28–32), we applied Floquet periodic boundary conditions in the 2D spatial domain. 
This technique allowed us to address a quadratic eigenvalue problem within a square unit cell configuration, as 
illustrated in Fig. 2a. To solve this problem, we discretized the unit cell to formulate a weak FEM approach. Our 
computational process leveraged COMSOL Multiphysics™, a versatile software platform adept at constructing 
customized systems of coupled equations. For the numerical eigenvalue computations, we integrated the Portable 
Large Scale Eigenvalue Package (P_ARPACK)33. P_ARPACK, which is a parallel implementation derived from the 
ARPACK software34. P_ARPACK employs the Implicitly Restarted Arnoldi Method (IRAM) and is particularly 
suited for tackling large sparse eigenvalue problems, even when constrained by specific eigenvalue counts. The 
combination of COMSOL Multiphysics™ and P_ARPACK facilitated the development of a scalable and efficient 
eigenvalue solver, making it feasible to tackle the customized quadratic eigenvalue problems arising from our 
research. The adaptability of the software, coupled with its user-friendly interface, allowed us to fine-tune key 
parameters of the IRAM-based solver according to our requirements. Furthermore, the efficiency of employing 
P_ARPACK within the COMSOL framework for addressing customized quadratic eigenvalue problems has been 
demonstrated by multiple studies, exemplified by references31,35,36. This substantiates the reliability and advantages 
of our chosen approach for solving complex eigenvalue problems in our research context.

In contrast to the known methods largely employing the auxiliary equations for the polarization vector, we 
couple the weak-form equations for the current density and the E-field, achieving a stable performance with flexible 
tracking of a desired number of bands and unambiguous resolution of the band crossings. We have provided a 
general equation for current density under an external magnetic field. In the H-case, we directly use the External 
Current Density Interface with an auxiliary algebraic equation (AE) for in-plane vectors,
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Figure 2.   Real part of the band structure of a plasma photonic crystal without external magnetic field. 
(a) Schematic drawing of a photonic crystal made of gaseous plasma cylinders placed in the air. (b) Calculated 
H-case without magnetic field ( B = 0 ), where a quadratic degeneracy, modes ‘ + ’ and ‘−’, with C4z = ±i 
respectively, is found at the Brillouin zone corner. A set of flat bands (blue ribbon) are also observed in the 
calculation.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20445  | https://doi.org/10.1038/s41598-023-47848-5

www.nature.com/scientificreports/

The weak form is obtained by integrating the dot product of Eq. (10) with an arbitrary test function jxy = test(jxy) 
over the Drude material domain,

An auxiliary equation for the current density is introduced to the COMSOL framework through the Weak 
Contribution interface,

where Exy = test(Exy) is the E-field test function and kp = ωp/c is the plasma wave number. The approach exhib-
its good error convergence with accuracy controlled through the meshing density and the FE order. In contrast 
with31,35–38 we completely exclude the polarization vector, reducing the order of the auxiliary equations and 
improving the numerical accuracy at ω → 0 . The full details on the numerical implementation and verification 
of the IRAM-based eigensolver are not the main focus of the paper and these details will be published elsewhere.

An example of the calculated band structures is shown in Fig. 3a when the external magnetic field is set to be 
B = 0.054 T . As time-reversal symmetry T is broken, the M-point degeneracy is lifted, opening an 8% full energy 
gap, from 2.18 to 2.37 GHz (green ribbon). As the structure still maintains C4z symmetry, the Chern number C 
of the first band is necessarily non-trivial39, since

where C2z is the phase change of the mode profile after a π-rotation. C2z(Ŵ) = 1 since the phase of an electromag-
netic wave is locked at zero frequency, and C2z(M) = −1 because it originates from the time-reversal symmetry 
breaking of the degenerate modes shown in Fig. 2b. As a result, the first gap highlighted in green corresponds to 
a Chern insulator40 and supports unidirectional transport channels, as shown next. Due to the magnetic field, 
the flat bands split into two regions (two blue ribbons), as explained in detail in the next section.

Flat bands from localized surface plasmon polariton resonances
In this section, we elucidate the origin of the flat bands observed above, from the viewpoint of localized sur-
face plasmon polaritonic (SPP) resonances. We note that such flat band features are also commonly observed 
elsewhere, such as in metallic photonic crystals28. The one unusual feature is related to the splitting of flat band 
regions under an external magnetic field (Fig. 3a).

It is more straightforward to understand the flat bands if we consider the local SPP resonances supported by 
a single plasma cylinder7,8. As the cylinder has full rotation symmetry, the SPP resonances can be labeled by 
different azimuthal numbers, m, corresponding to different angular momenta. A few interesting features can be 
observed in Fig. 3b. First, the resonances with negative m (orange dots, rotating counter-clockwise) are at higher 
frequencies than the resonances with positive m (blue dots, clockwise). Second, the local SPP resonance frequency 
generally increases with |m|, approaching different bounds near the two ends: (

√

f 2c + 2f 2p + fc)/2 = 4.4 GHz 
when m approaches −∞ and (

√

f 2c + 2f 2p − fc)/2 = 2.9GHz when m approaches +∞ . Finally, the resonances 
with larger |m|s are better localized in space than the resonances with smaller |m|. Such a trend can be well 
observed in the comparison between the mode profile of m = −5 (more localized) versus the model profile of 
m = 1 (more extended, inset of Fig. 3b). Taken together, at large |m|, the SPP resonances are tightly confined to 
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Figure 3.   Real part of the band structure of magnetized-plasma photonic crystal featuring a Chern insulator 
gap. (a) Under an external magnetic field of B = 0.054 T , a full energy gap is opened (green ribbon), featuring a 
non-zero Chern number. Meanwhile, the flat bands split into two groups (blue ribbons). (b)  Local resonances, 
labeled by different azimuthal numbers m, are responsible for observed flat bands in (a). Two example mode 
profiles ( m = 1 and m = −5 ) are shown, both in amplitude (hot color map) and phase (gray-scale). (c) The 
frequency of local resonances agrees well with the surface plasmon polariton (SPP) dispersion at the interface 
between air and magnetized plasma.
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individual cylinders, resulting in minimal modal overlaps. This limited overlap leads to reduced dispersion, 
which, in turn, results in the formation of flat bands. Thus, each flat band corresponds to a different m. Further-
more, the frequency of the flat bands (blue ribbons) also splits into two regions, approaching the two frequency 
bounds mentioned above.

Here we note that the number of calculated flat bands using our numerical method increases with increased 
mesh density—a common feature also observed in the literature28—although the frequency of the flat bands is 
always confined to the blue regions. Furthermore, the reliable azimuthal number of calculated modes is always 
limited by the numerical resolution. In our specific setting, modes with |m| > 10 are no longer reliable. See Sup-
plementary Information for more details.

Finally, we verify the local SPP resonance frequencies in each plasma cylinder using the SPP dispersion along 
the interface between air and magnetized plasma, where a good agreement is found (Fig. 3c). The momentum 
of each local SPP resonance is determined as m/r, where m is the azimuthal number and r is the radius of the 
cylinder.

Evolution of the chiral edge state dispersion with changing edge termination
While the existence of chiral edge states (CES) is guaranteed at the interface between a Chern insulator and a 
trivial insulator, their exact dispersion depends on the details of the interface. In this section, we continuously 
change the interface configuration and study how the CES dispersion evolves accordingly. Our finding suggests 
that CES dispersion essentially reflects that a localized plasma resonance emerges at the interface when the 
plasma is cut through, and the frequency of the antenna state decreases with the shrinking of the plasma region.

The dispersion of Chiral Edge States (CES) is computed through interactions at the interfaces between a Chern 
insulator super-cell and a pair of perfect magnetic conductors (PMC), as visualized in Fig. 4. Each unit cell within 
the Chern insulator preserves the identical design and parameters presented in Fig. 3. The arrangement entails 
a fixed lower interface (blue), while the upper interface (red) is systematically adjusted by incrementing the dis-
tance d from 0 to a. Beginning with d/a = 0 , a significant outcome is observed in the super-cell dispersion-two 
CES bands materialize. One is located at the upper interface (red), and the other emerges at the lower interface 
(blue). As the ratio d/a increases, the CES located at the upper interface (red) progresses in frequency, ascending 
until the PMC interacts with the plasma cell at d/a = 0.25 . With further increments in d/a, the high-frequency 
section of the CES remains relatively unchanged while the low-frequency component continues ascending. This 
trend persists until d/a = 0.5 where the PMC bisects the plasma cell. As d/a continues to rise, the CES dispersion 
transforms into a progressively flatter profile.

At d/a=0.7 , the CES dispersion undergoes a pivotal change-dividing into two bands. One of these bands 
traverses the topological gap and retains CES characteristics, while the other is a trivial band existing outside the 
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topological gap. A second splitting transpires at d/a = 0.735 , yielding an additional trivial band. As the distance 
d/a increases further, both trivial bands descend in frequency, crossing through the initial bulk continuum and 
eventually vanishing at zero frequency f = 0 when d/a = 0.75 . See Supplementary Information for the case 
when d/a = 0.74996 . Upon reaching d/a=1 , the interface configuration regresses to the d/a = 0 arrangement, 
leading the CES dispersion to revert to its initial configuration.

In essence, this detailed description captures the intricate evolution of CES dispersions as the distance d is 
varied in relation to the unit cell size a. The interplay between interface configurations and distance ratios results 
in a rich spectrum of phenomena and transitions.

Discussion
Our simulation has a few limitations that should be noted. Firstly, the ions are assumed to be stationary and not 
moving, i.e., only electrons are allowed to move under the external fields. Introducing ions’ motion would lead 
to an effective mass and lower plasma frequency. Secondly, our permittivity model ignores non-local effects, 
which results in a frequency gap between surface plasmon polaritons traveling in opposite directions23,24. Thirdly, 
we have neglected the inhomogeneous broadening effect in the plasma, and the bandwidth of our permittivity 
is contributed solely by electron damping. Introducing the inhomogeneous broadening effect would further 
broaden the energy bands and reduce the effective size of the band gaps. It is also worth noting that the cyclotron 
frequency of the plasma at 1.5 GHz is much larger than the electron damping rate at 0.1 GHz, and hence the 
homogeneous broadening effect contributes solely to the broadening of the energy bands without qualitatively 
changing the band topology.

Despite these limitations, we believe that our proposal is feasible to demonstrate in an experiment. The 
required magnetic field of 0.314 T can be achieved, even over large areas, via commercial electromagnets or 
permanent magnets. Meanwhile, the required carrier number density of 3.1× 10

11
cm

−3 and the pressure of 
0.314 Torr are also within the typical range in experiments.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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