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Novel waves structures 
for the nonclassical Sobolev‑type 
equation in unipolar semiconductor 
with its stability analysis
Tahir Shahzad 1,2, Muhammad Ozair Ahmed 1, Muhammad Zafarullah Baber 1, 
Nauman Ahmed 1,3,5, Ali Akgül 3,4,5* & Sayed M. El Din 6

In this study, the Sobolev-type equation is considered analytically to investigate the solitary wave 
solutions. The Sobolev-type equations are found in a broad range of fields, such as ecology, fluid 
dynamics, soil mechanics, and thermodynamics. There are two novel techniques used to explore 
the solitary wave structures namely as; generalized Riccati equation mapping and modified 
auxiliary equation (MAE) methods. The different types of abundant families of solutions in the form 
of dark soliton, bright soliton, solitary wave solutions, mixed singular soliton, mixed dark-bright 
soliton, periodic wave, and mixed periodic solutions. The linearized stability of the model has been 
investigated. Solitons behave differently in different circumstances, and their behaviour can be 
better understood by building unique physical problems with particular boundary conditions (BCs) 
and starting conditions (ICs) based on accurate soliton solutions. So, the choice of unique physical 
problems from various solutions is also carried out. The 3D, line graphs and corresponding contours 
are drawn with the help of the Mathematica software that explains the physical behavior of the state 
variable. This information can help the researchers in their understanding of the physical conditions.

Various physical phenomena can be formulated by a set of equations that help to understand and predict future 
events. In the past twenty years, partial differential equations (PDEs) have been used to study a wide range of 
natural phenomena1–5. The flow of fluids with fissured rock, thermodynamics, finance, ecology, mathematical 
physics, soil mechanics, and heat conduction difficulties in diverse materials are some of the disciplines where 
nonlinear PDEs and nonlinear Sobolev equations arise. Nonlinear PDEs better describe physical processes6–12. 
PDE analytical solutions are a dynamic field of study. The PDEs’ solutions are obtained by applying a variety 
of analytical techniques. Gómez gave the Sobolev-type equations some thought. The many forms of solutions, 
including periodic and soliton solutions, were obtained by the author through the analytical investigation using 
the generalised Tanh-Coth technique13. Aristov worked on the Sobolev equations’ precise solutions. He acquired 
the many families of the quadrature and elementary function solutions14. For the analytical investigation of 
various mathematical physics of nonlinear equations, Polyanan et al. employed a modified version of functional 
separation of variables techniques. Implicit shape and extended travelling wave solutions were the obtained 
solutions15.

By using the Hirota bilinear approach to the geophysical Korteweg-de Varies problem, Rizvi et al. were able 
to get several types of solutions, including lump-periodic soliton, lump-kink soliton, and lump-kind periodic 
solutions16. The G′/G2 expansion method and the expansion function methodology were two unique techniques 
used by the authors to study the Gilson-Pickering equation. They succeeded in obtaining the answers in the form 
of singular, shock, shock singular, periodic, rational, and singular periodic waves (citation 17). Cheema et al. 
worked on the solutions of Maccari’s system and Generalized elliptic equation with the extended fan technique. 
The authors gained different types of solutions, like triangular-type solutions, soliton-like solutions, and single 
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and combined non-degenerate Jacobi elliptic wave function-like solutions18. Lu et al. considered the unstable 
nonlinear Schrödinger equation and used the modified form of the simple equation methods to gain solutions 
of the various types, namely trigonometric, rational, hyperbolic, and exponential functions19. Arshad et al. dis-
cussed the higher ordered nonlinear schrödinger equations analytically with the NMEDA approach and obtained 
various trigonometric solutions20. Inc et al. worked on the solitary wave solution of the Sawada-Kotera equation 
with two different techniques and obtained numerous solutions21.

We are considering the nonclassical Sobolev equation such as

here � denotes the real value of the function of the spatial variable x and t > 0 , µ is a real value except zero and 
q > 1 is a natural number. It explains the quasi-stationary approaches that occur in a unipolar semiconductor 
when the free charge current of source is supply. Here △= ∂2

∂x2
+

∂2

∂y2
 denotes the higher dimensional spatial 

variable, q stands for the nonlinearity of the unknown function and we take q = 4 is used for this study. So, we 
can modify the nonclassical Sobolev Eq. (1) as given below,

When we talk about analytical solutions in mathematics, we usually mean solutions that are stated in terms of 
mathematical functions, such as infinite series or other precisely defined mathematical expressions. Both series 
and explicit (closed-form) representations are possible in analytical solutions. Usually, these answers are obtained 
by applying different mathematical operations to the differential equations. Solutions that satisfy a particular 
differential equation exactly, devoid of any approximation, are referred to as exact solutions. These solutions 
could be explicit formulas or analytical solutions, which are expressed in terms of mathematical functions or 
series. Particularly when it comes to partial differential equations, precise solutions are frequently interchange-
able with analytical solutions.

Alquran, M., et al., Heart-cusp and bell-shaped-cusp optical solitons for the complex Hirota model22, and 
multiplicative of dual-waves dual-mode Schrödinger with nonlinearity Kerr laws23. Jaradat, et al., discussed the 
numerical solutions of weak-dissipative two-mode perturbed Burgers’ and Ostrovsky models24 and solitary 
two-wave solutions for a new two-mode version of the Zakharov-Kuznetsov equation25. He also constructed the 
variety of physical structures to the generalized equal-width equation derived from Wazwaz-Benjamin-Bona-
Mahony model26 and the combination of Dark-Bright Binary-Soliton derived from the (2 + 1)-dimensional 
Nizhnik-Novikov-Veselov (TMNNV) equation27.

There are many techniques that are developed to gained the exact solitary wave solutions such as generalized 
exponential rational function method28–32, Hirota’s bilinear transform33, 34, Jacobian elliptic functions method35, 
and etc. Ghanbari, B. used the generalized exponential rational function method and constructed the different 
form of optical soliton solutions for the Hirota-Maccari equation36 and Kundu-Mukherjee-Naskar equation37, 
generalized Schamel equation [?]. Also, he explored the new exact wave solutions of the variable-coefficient 
(1 + 1)-dimensional Benjamin-Bona-Mahony and (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov 
equations are constructed38, and for the gardner’s equation39. The soliton solutions are investigated for the modi-
fied nonlinear Schrödinger equations40 and (4 + 1)-dimensional nonlinear evolution equation41.

In this study we used two techniques namely as New Auxiliary Equation (NAE) technique and the Gener-
alised Riccati Equation (GRE) mapping method. Depending on your preferences and the particular problem 
you are attempting to address, you can choose between the New Auxiliary Equation (NAE) technique and the 
Generalised Riccati Equation (GRE) mapping method. Both approaches are instruments for solving specific 
kinds of differential equations, and the situation at hand will determine how successful they are. Nonlinear 
ordinary differential equations (ODEs) can be solved by the GRE mapping method, which converts them into 
Riccati differential equations. When used properly, this approach can be very effective. It is especially helpful 
for various applications related to control theory, optimum control issues, and specific kinds of mathematical 
modelling. In certain situations, the differential equations may become simpler as a result of the GRE approach, 
making them easier to analyse and solve numerically. This method have different types of 27 abundant solutions. 
The NAE approach is useful in many engineering and physics contexts because it works effectively in situations 
when the differential equation’s coefficients are constants. Second-order linear differential equations, such as those 
describing oscillatory and harmonic systems, can be solved well using this method. It might not be appropriate 
for handling time-varying coefficients or more complicated nonlinear differential equations. Moreover it have 
not verity of the solutions it contains only five types of solutions.

The Generalized Riccati Equation Mapping Method and the New Auxiliary Equation Mapping Method are 
both mathematical techniques used to find exact solitary wave solutions to various nonlinear partial differen-
tial equations (PDEs). Each method has its strengths and weaknesses. These methods can be applied to a wide 
range of nonlinear PDEs, making it versatile in solving various physical and mathematical problems. It provides 
a general framework for finding solitary wave solutions, which can be customized and adapted for specific 
PDEs. These methods can involve complex algebraic manipulations and may require specialized mathematical 
skills to apply effectively, especially for more intricate PDEs. Success in finding exact solutions depends on the 
specific PDE and its characteristics. There is no guarantee that it will work for all PDEs. The main innovations 
of the manuscript are that the non-classical Sobolev equation is under consideration analytically. The analytical 
solutions are carried out with two techniques. The stability of the model is also discussed. New families of the 
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solutions are obtained. The unique physical problems are chosen from various solutions. Graphical behavior is 
represented for various solutions.

Extraction of exact solutions
In this part, the specific solutions of Eq. (1) must be found, applying the transformation by converting PDE into 
ODE for � = w(η) , here η = ζ1x + ζ2y + ζ3t . Where ζ1 , ζ2 , ζ3 and w are the constants and a actual value function 
respectively. Hence, by replacing the above modification into Eq. (1), we receive the ODE develop as given below

where w is a polynomial and ′ = d
dη.

Also, we take the solution of Eq. (2) and get the polynomials develop as43, 44,

 where the constants �0 and �j (i = 1,2,3,…M) that can be solve to be later,here ψ(η) is simplify the Reccati Eq. 
as given below.

Homogenous balancing principle can be applied to find the value of K  in the previous Eq. (3) and we can 
enter M = 1 in Eq. (4)

Determine the derivatives of Eq. (6) by applying the Eq. (5) and replace in the Eq. (3). After simplifying, 
collect each coefficients of the identical power of ψ and set them then all to zero to gain a equations of system. 
Apply mathematica to deal with the system of calculation and gain the family of solution as,

Family of solution

Type 1: When b22 − 4b3b1 > 0 and b3b1  = 0 , then the twelve type of hyperbolic solutions exist such as,

(3)ζ3
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where m and n are two non-zero real constants and satisfies n2 −m2 > 0,

Case 2: When b22 − 4b3b1 < 0 and b3b1  = 0 , then the twelve type of trigonometric solutions exist such as,
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where m and n are two non-zero real constants and satisfies m2
− n2 > 0,
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Case 3: When b1 = 0 and b2b3  = 0 , then the two type of hyperbolic solutions exist such as,

Case 4: When b1 = 0 = b2 and b3  = 0 , then one type of rational solutions exist such as,

In the next section we find the solution by the help of modified auxiliary equation method.

Modified auxiliary equation technique
We take the solution of Eq. (3) and get the polynomials form as follows45,

where the constants �0 , �i and νi (i = 1,2,3,…M) that can be solved after that, here ω(ζ ) is simplify the solution 
that is given below.

here, b1 , b2 , b3 and u with u > 0 u  = 1 are arbitrary constant that are determine later. Homogenous balancing 
principle can be applied to find the value of M in the previous Eq. (3) and we can enter M = 1 in Eq. (34)

Determine the derivatives of Eq. (36) by applying the Eq. (35) and replace in the Eq. (3). After simplifying, 
collecting the coefficients of the same power of ω(uζ )j and ω−(uζ )j and set them then equal to zero in all poly-
nomials to gain a system of equations. Apply mathematica to deal with the system of calculation and gain the 
family of solution as,

Family of solutions

Case-1: When b21 − 4b2b3 < 0 and b3  = 0 , then the trigonometric solutions are exist such as,
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Case-2: When b21 − 4b2b3 > 0 and b3  = 0 , then the hyperbolic solutions are exist such as,

and

Case-3: When b21 − 4b2b3 = 0 and b3  = 0 , then the rational solutions are exist such as,

Stability
This part examined at the sobolev type equations stability analysis. We determined the transformation as,

Apply this value, we gain S is the constant and steady state solution of Eq. (1),

now, Linearising in the form ε , we get

Assume the following solution to the previous equation,

where ϒ1 , ϒ2 and � are the normalized wave number and frequency. Replace this transformation in Eq. (45),

after solving the previous equation we gain the value of � as,

Since the value of the � is imaginary, there will be an exponential growth in perturbation and no apparent 
decay in the superposition of the solution. This indicates an unstable dispersion.

Physical representation
Here, examined is the graphical behavior of solutions given different parameter choices. Various families of 
solutions including singular periodic, periodic, singular wave, shock wave, shock-singular, periodic-singular, 
complex solitary-shock, and double singular have been efficiently gained. The gained results are very helpful in 
understanding the nonlinear dynamics for the comparison of experimental and numerical solutions. The 3D, 
line graphs and corresponding contours are drawn with the help of the Mathematica software that explains the 
physical behavior of the state variable. The Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 are shows the dark soliton behavior 
while Figs. 2,3 are presents the bright soliton. Figures 4,5,6,7 are gives us the solitary wave representations. The 
kink soliton behavior is observed from the Fig. 8 while combined dark-bright behavior is shown in Figs. 9,12. 
The singular soliton behavior is drawn in the Fig. 10. These soliton behaviors are very fruitful for the current 
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passing in the semiconductors that how the current travels from one place to another place. Diagrams of the 
initial and boundary values have been presented by Figs. 13, 14, 15, 16.

The physical explanation of our findings may be useful as a tool for future research into nonlinear wave 
problems in applied science.

Figure 1.   The dark soliton behavior for the solution w1

(

x, y, t
)

 using α1 = 0.1,α2 = 0.3,α3 = −0.1,µ = 0.5,

y = 1.5,�1 = 0.2,�2 = 0.1,�3 = 0.01.

Figure 2.   The bright soliton behavior for the solution w4

(

x, y, t
)

 using α1 = 0.1,α2 = 0.3,α3 = −0.1,µ = 0.5,

y = 1.5,�1 = 0.2,�2 = 3.9,�3 = 0.01.
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Selection of unique physical problem
In this section, we select the unique physical problems from the above solutions that help the researchers to take 
such problems for the sake of approximate solutions. Unique characteristics like as stability, non-dispersiveness, 
and the capacity to hold their form while travelling at constant speeds make exact soliton solutions to nonlinear 
partial differential equations intriguing solutions. In domains like nonlinear optics, plasma physics, and fluid 

Figure 3.   The bright soliton behavior for the solution w10

(

x, y, t
)

 using α1 = 0.1,α2 = 0.3,α3 = −0.1,µ = 0.5,

y = 1.5,�1 = 0.2,�2 = 3.9,�3 = 0.01.

Figure 4.   The solitary wave behavior for the solution w17

(

x, y, t
)

 using α1 = 0.99,α2 = 0.1,α3 = 1.2,µ = 0.2,

y = 0.5,�1 = 2.5,�2 = 0.1, and�3 = 0.2).
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dynamics, they are frequently employed to explain a variety of physical phenomena. Solitons behave differently 
in different circumstances, and their behaviour can be better understood by building unique physical problems 
with particular boundary conditions (BCs) and starting conditions (ICs) based on accurate soliton solutions.

Example 1:  We pick the unique situations for solving Eq. (7) like,

the IC is selected as

(49)w2(x, 0) = 0.12785− 0.156583cot((0.0850517+ 0.i)(0.1x + 0.135)),

Figure 5.   The solitary wave behavior for the solution w18

(

x, y, t
)

 using α1 = 2.1,α2 = 0.1,α3 = 0.05,µ = 0.3,

y = 0.5,�1 = 0.5,�2 = 1.1,�3 = 0.2.

Figure 6.   The solitary wave behavior for the solution w22

(

x, y, t
)

 using α1 = 0.4,α2 = 0.1,α3 = 0.9,µ = 0.3,

y = 0.5,�1 = 2.5,�2 = 0.1, and�3 = 0.2.
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Figure 7.   The solitary wave behavior for the solution w23

(

x, y, t
)

 using α1 = 5.1,α2 = 2.1,α3 = 0.09, b3 = 1.3,

µ = 0.3, y = 0.5,�1 = 2.5,�2 = 3.1,�3 = 1.2.

Figure 8.   The kink soliton behavior for the solution for the solution w26

(

x, y, t
)

 using α1 = 2.2,α2 = 7.1,

α3 = 0.19, d = 2.9,µ = 0.8, y = 1,�1 = 0.5,�2 = 0.1, and�3 = 0.3.
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Figure 9.   The dark-bright soliton behavior for the solution w27

(

x, y, t
)

 , using α1 = 2.1,α2 = 0.4,α3 = 1,

b3 = 0.4, d1 = 0.5,µ = 0.3, y = 0.5,�1 = 2.5,�2 = 0.1, and�3 = 0.2.

Figure 10.   The singular soliton behavior for the solution w28

(

x, y, t
)

 , using ζ1 = 0.5, ζ2 = 0.2, ζ3 = 0.04,µ = 3, andy = 1.



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22452  | https://doi.org/10.1038/s41598-023-47838-7

www.nature.com/scientificreports/

the BCs are selected as,

Example 2:  We pick the unique situations such as,

the IC is selected as

(50)w2(−1, t) = 0.12785− 0.156583cot((0.0850517+ 0.i)(0.9t + 0.035)),

(51)w2(1, t) = 0.12785− 0.156583cot((0.0850517+ 0.i)(0.9t + 0.335)).

Figure 11.   The dark soliton behavior for the solution w31

(

x, y, t
)

 , using ζ1 = 1.1, ζ2 = 0.6, ζ3 = 1.11,µ = 2.1, and y = 1.

Figure 12.   The dark-bright soliton behavior for the solution w32

(

x, y, t
)

 , using ζ1 = 0.5, ζ2 = 0.2, ζ3 = 0.03,

µ = 0.1, and y = 1.
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the BCs are selected as,

Example 3:  We pick the unique situations such as,

the IC is selected as

(52)w14(x, 0) = 1.49295tan(0.663403x + 0.0408248)+ 1.21899,

(53)w14(−1, t) = 1.21899− 1.49295tan(0.622579− 0.459279t),

(54)w14(1, t) = 1.49295tan(0.459279t + 1.36763)+ 1.21899.

Figure 13.   Diagrams of the initial and boundary values w2(x, t).

Figure 14.   Diagrams of the initial and boundary values w14(x, t).

Figure 15.   Diagrams of the initial and boundary values w25(x, t).

Figure 16.   Diagrams of the initial and boundary values w32

(

x, y, t
)

.
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the BCs are selected as,

Example 4:  We pick the unique situations for solving Eq. (38) such as,

the IC is selected as

the BCs are selected as,

Conclusions
In this study, the Sobolev-type equation is considered analytically to explored the exact solitary wave solutions. 
These types of equation have their own importance in applied sciences due to the involvement of the mixed 
third order derivative. The Sobolev-type equations are found in a broad range of fields, such as ecology, fluid 
dynamics, soil mechanics, and thermodynamics. To, obtained the explicit solitary wave solutions we apply the 
two novel techniques namely as; generalized Riccati equation mapping and modified auxiliary equation (MAE) 
methods. The different types of abundant families of solutions in the form of dark soliton, bright soliton, solitary 
wave solutions, mixed singular soliton, mixed dark-bright soliton, periodic wave, and mixed periodic solutions. 
Moreover, we also discussed the linear stability analysis for the underlying model. Also, the specific physical 
problems with specific boundary conditions (BCs) and initial conditions (ICs) are constructed that are based 
on exact soliton solutions that can be help us better understand how solitons behave in various situations. Thus, 
selecting distinct physical problems (ICs and BCS) are also constructed from a range of solutions. The unique 
physical problems are selected from numerious solutions that will help the researchers to check the nonlinear 
dynamics in an accurate way. The 3D, line graphs and corresponding contours are drawn with the help of the 
Mathematica software that explains the physical behavior of the state variable.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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