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Assessment of hyperspectral 
imaging and CycleGAN‑simulated 
narrowband techniques to detect 
early esophageal cancer
Kai‑Yao Yang 1, Arvind Mukundan 2, Yu‑Ming Tsao 2, Xian‑Hong Shi 2, Chien‑Wei Huang 1,3* & 
Hsiang‑Chen Wang 2,4,5*

The clinical signs and symptoms of esophageal cancer (EC) are often not discernible until the 
intermediate or advanced phases. The detection of EC in advanced stages significantly decreases 
the survival rate to below 20%. This study conducts a comparative analysis of the efficacy of several 
imaging techniques, including white light image (WLI), narrowband imaging (NBI), cycle‑consistent 
adversarial network simulated narrowband image (CNBI), and hyperspectral imaging simulated 
narrowband image (HNBI), in the early detection of esophageal cancer (EC). In conjunction with 
Kaohsiung Armed Forces General Hospital, a dataset consisting of 1000 EC pictures was used, 
including 500 images captured using WLI and 500 images captured using NBI. The CycleGAN model 
was used to generate the CNBI dataset. Additionally, a novel method for HSI imaging was created with 
the objective of generating HNBI pictures. The evaluation of the efficacy of these four picture types in 
early detection of EC was conducted using three indicators: CIEDE2000, entropy, and the structural 
similarity index measure (SSIM). Results of the CIEDE2000, entropy, and SSIM analyses suggest 
that using CycleGAN to generate CNBI images and HSI model for creating HNBI images is superior in 
detecting early esophageal cancer compared to the use of conventional WLI and NBI techniques.

Esophageal cancer (EC) is one of the deadliest cancers which is predominant in the countries in Africa, North 
America and south east Asia. Currently, it is the sixth most deadly cancer with the 5-year survival rate as low as 
15%1,2 while it is the seventh most commonly found cancer in the world with more than 500,000 deaths every 
 year3,4. EC can be classified into two common types; namely esophageal squamous cell carcinoma (ESCC) and 
esophageal adenocarcinoma (EAC)5. The most common type of EC is ESCC which accounts to approximately 
90% cases over the  world6,7. Although, recent trends suggests that EAC has been increasing  steadily8.

With the increase in the cancer occurrences and the poor survival rate, detection and immediate personalized 
treatment of EC during its earlier stage is very  important9. Even with many developments in cancer detection 
techniques if EC is not detected in its early stages, the survival rate of the patients drops to less than 20%10. 
However, if the cancer has been detected at an earlier stage the survival rate can be improved  drastically11,12. 
The endoscopists are unable to spot the EC in during its initial phase because there are no specific symptoms 
which suggests the presence of  EC13,14. Therefore, the use of artificial engineering (AI) or biomarkers based on 
bio-sensors are required for detecting EC in the earlier  stages15–18.

Ghatwary et al., developed a new deep learning (DL) model based on faster region-based convolutional neural 
network (Faster R-CNN) and gabor handcrafted features automatically to detect esophageal anomalies from 
endoscopic  pictures19. Yang et al., trained a deep convolutional neural network (DCNN) using 798 PET images 
for early detection of  ESCC20. In their research, Wang et al. used a deep convolutional neural network (CNN) 
combined with a single-shot multibox detector (SSD) to effectively identify early  EC21. Li et al. conducted a study 
to examine the viability of using serum-enhanced Raman spectroscopy in combination with silver nanoparticles 
(Ag NPs) and a support vector machine (SVM) for the purpose of distinguishing between individuals with EC 
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and those without the  disease22. The investigation of semantic segmentation has been conducted to explore its 
potential for early identification and categorization of esophageal  cancer23. Although CAD, RGB image process-
ing, and biosensors have been used for cancer diagnosis and have shown their effectiveness in giving valuable 
information, it is important to acknowledge that these systems also have some drawbacks. In the realm of CAD, 
the conventional approach necessitates the use of substantial quantities of aggregated training data and comput-
ing resources in order to achieve enhanced machine learning  performance24. This is mostly due to the fact that 
traditional CAD systems only employ three color channels, namely red, green, and blue. The effectiveness of CAD 
models in cancer detection is hindered by a technical constraint identified in a recent CAD model for colonos-
copy, which used a limited  dataset25. One potential approach to address the many issues is the integration of HSI 
with CAD approaches. The possible enhancement of cancer detection performance may be achieved by using a 
broad range of light, spanning from ultraviolet (UV) to far-infrared, for picture capture, rather than relying on 
the usual RGB color model. The use of a noninvasive methodology yields a more extensive range of information 
pertaining to the topic matter, as shown by empirical study outcomes. However, only with white light imaging 
(WLI) alone it is impossible to diagnose the EC at the early stages. However, HSI combined with narrow-band 
imaging (NBI) is a technique used to enhance the image for early EC  detection26,27. HSI has many applications 
including air pollution  detection28,29, cancer  detection30–33, counterfeit  detection34–36, aerospace  engineering37–40, 
 military41,42,  agriculture43–45, remote  sensing46,47, quality  detection48,49,  microbiology50,51 among others.

Therefore, this study compares the performance of WLI, NBI, CycleGAN CNBI, HNBI to detect esophageal 
cancer in its early stages. The results of the CIEDE2000, entropy and SSIM analysis suggests that the use of 
CycleGAN to generate CNBI and HNBI images were superior detect esophageal cancer when compared with 
normal WLI and NBI. The key contribution and findings from this study are:

• Advanced imaging techniques: introduction and evaluation of cutting-edge imaging techniques, including 
HSI and CNBI, for early EC detection.

• Comparative analysis: comprehensive assessment of the effectiveness of four distinct image types (WLI, NBI, 
CNBI, and HNBI) in the context of early EC detection, shedding light on their relative performance.

• Practical applications: exploration of the potential applications of CycleGAN-simulated NBI images in AI-
driven object detection, streamlining image collection, and preprocessing while reducing patient discomfort 
and procedure time, especially in the context of newer endoscopic cameras like capsule endoscopes.

• Improved medical practices: the potential to enhance doctors’ recognition rates, providing patients with a 
higher level of comfort, and enabling earlier symptom detection through the continued development and 
implementation of advanced imaging technology.

• Interdisciplinary insights: bridging the gap between advanced imaging techniques and medical practice, 
offering a valuable interdisciplinary perspective with far-reaching implications for early disease detection 
and patient care.

Materials and methods
In this study, we conducted an analysis of esophageal cancer utilizing a dataset consisting of 1000 images. This 
dataset included 500 images captured using WLI and another 500 images captured using NBI. These images 
were sourced from the Kaohsiung Armed Forces General Hospital. While this number may appear limited in 
certain contexts, it is important to note that the dataset was carefully curated, focusing on high-quality images 
and relevant criteria to ensure its suitability for our study. The sample size was determined based on the avail-
ability of high-quality medical images meeting our research objectives. Although larger datasets are valuable, 
the quality and relevance of the data often take precedence in medical imaging research. To ensure the quality 
and appropriateness of the dataset, we performed a data curation step in which we eliminated images that were 
excessively blurred, obscured by mucus, or contained an excessive number of air bubbles. The overall workflow 
of our study is depicted in Fig. 1. The first step involved preprocessing the two types of endoscopic images. Dur-
ing this phase, we conducted the following operations:

Image cropping and zooming: we systematically cut and zoomed the images to remove any unnecessary 
content and standardize their dimensions. This preparation was essential for ensuring uniformity in the data 
that would be fed into our subsequent analytical models.

Patient information removal: we applied a process to anonymize the images by removing any patient-specific 
information, thereby complying with privacy and ethical considerations.

Border trimming: unnecessary black borders surrounding the images were removed to enhance the quality 
and consistency of the dataset.

After this preprocessing, we harnessed hyperspectral imaging technology to transform the white light endo-
scopic images into spectral data. The conversion process was described in detail in "Hyperspectral imaging 
algorithm" of the paper.

In essence, this transformation involved mapping the visible light spectrum (ranging from 380 to 780 nm) into 
401 distinct spectral bands. To do this, we employed a set of 24 color reference blocks as targets for calibration. 
Both a spectrometer and the endoscope were employed to capture the spectral information and images of these 
reference blocks. The collected data, comprising spectral information and images from these 24 color blocks, 
was then subjected to further analysis. A key aspect of this analysis involved the derivation of transformation 
matrices for each color space utilized in the study. These transformation matrices allowed us to convert RGB 
images into spectral information, a crucial step in our research. This detailed process of data preprocessing, 
spectral conversion, and transformation matrix generation was central to our study and formed the foundation 
for subsequent analysis and model development.
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Data preprocessing
WLI images were acquired using the Olympus Evis Lucera CV-260 SL endoscopy system, and NBI images were 
captured using the Olympus Evis Lucera CLV-260 endoscopy system. These two distinct endoscopy systems were 
selected to ensure comprehensive image acquisition and analysis in our study. The Olympus Evis Lucera CV-260 
SL, equipped with its specific imaging technology, provided high-quality conventional white light images, while 
the Olympus Evis Lucera CLV-260, designed for narrow-band imaging, offered specialized images that highlight 
specific tissue characteristics through the use of narrow spectral bands. This deliberate selection of endoscopy 
systems allowed us to capture a diverse range of images, catering to the objectives of our research and enabling a 
more detailed and accurate analysis of esophageal cancer cases. Data cleansing was performed on the images in 
the database, and then the image was trimmed to remove unnecessary noise, black borders, and patient infor-
mation, leaving an image of the esophagus, which was then uniformly scaled to a 380 × 380-pixel image size.

Hyperspectral imaging algorithm
In this paper, the visible light band (380–780 nm) was used to simulate the preprocessed WLI images into NBI 
images using HSI conversion technology. The HNBI technique used in this study was developed by Hitspectra 
Intelligent Technology Co., Ltd, Taiwan based on the spectrum aided visual enhancer (SAVE). More detailed 
description of hyperspectral imaging algorithm was shown as S5 of supplementary information. To have the same 

Figure 1.  Flowchart of research architecture. It includes data acquisition, preprocessing, spectrum conversion, 
hyperspectral image simulation narrow-band, CycleGAN narrow-band simulation, objective index evaluation.
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standard between the spectrometer and the endoscope, the standard 24 color blocks were used as the conver-
sion shooting benchmark. To obtain the conversion matrix between the endoscope (OLYMPUS EVIS LUCERA 
CV-260 SL) and the spectrometer (Ocean Optics, QE65000), both instruments captured the image to obtain its 
chromaticity value, and the spectrum was measured to obtain its spectrum value. Through data processing the 
conversion matrix was derived. The overall modeling architecture flow chart is shown in Fig. 1. In the endoscope 
part, sRGB color gamut space is converted to the XYZ color gamut space using Eq. (1).

Because the endoscope image stores data in accordance with the sRGB color gamut space standard format, 
the red, green, and blue (RGB) values (0–255) of the endoscope image needed to be converted to a small-scale 
range (0–1). The gamma function converts the sRGB value into a linear RGB value and when combined with 
the conversion matrix (T), the linear RGB value can be converted to the XYZ values normalized by the gamut 
space. However, in the conversion, the chromatic adaptation transformation matrix must be used to make cor-
rections because the standard white point of the sRGB color gamut space is D65 (XCW, YCW, and ZCW), which 
is different from the white point (XSW, YSW, and ZSW) of the measured light source. Thus, the real XYZ value 
(XYZEndoscope) under the measured light source can be obtained through the chromatic adaptation transforma-
tion matrix. In the spectrometer part, the light source spectrum (S(λ)) and the XYZ color matching function 
(x ̅(λ)、y ̅(λ)、z ̅(λ)) need to be combined. The Y value of the XYZ color gamut space is proportional to the 
brightness, and the upper limit of the Y value is 100. Using the Y value in Eq. (2), the maximum brightness and 
the overall brightness ratio (k) of the light source spectrum can be calculated. The reflection spectrum data can 
be obtained from Eq. (3).

Many errors could contribute to this process such as nonlinear response, dark current, inaccurate color 
separation of color filters, and color shift. Therefore, a correction coefficient matrix (C) was obtained by carrying 
out multiple regression analysis using Eq. (4). The correction matrix was multiplied with a variable V matrix to 
obtain the corrected X, Y, and Z values (XYZCorrect).

The root-mean-square error (RMSE) of the data of XYZCorrect and XYZSpectrum were calculated, and the average 
errors of WLI and NBI endoscopes are 1.40 and 2.39, respectively. Using the XYZ values of the 24 color patches 
obtained from XYZCorrect and the reflection spectrum data of the 24 color patches measured by the spectrometer 
(RSpectrum), the transformation matrix (M) was computed. Then, principal component analysis was performed 
on RSpectrum of the 24 color blocks to find the main components and compare the corresponding principal com-
ponent scores with the XYZCorrect to obtain the conversion matrix. Finally, by comparing the obtained 24-color 
patch simulation spectrum (SSpectrum) with the RSpectrum, the RMSE and error of each color patch were determined. 
The average error of WLI is 0.057, and the average error of NBI is 0.097. The difference between SSpectrum and 
the RSpectrum can be expressed by color difference. The average color differences between WLI and NBI are 2.85 
and 2.60.

The visible light hyperspectral process and technology can calculate and simulate the reflection spectrum 
from the RGB values captured by the monocular camera. If the RGB values of the entire image are calculated 
through hyperspectral technology, an HSI can be obtained.

Band selection
Using hyperspectral techniques, HSI image within bandwidth of 380–780 nm (401 bands) was generated. In order 
to simulate NBI images, this study uses the band of 415 nm and 540 nm. 415 nm wavelength can allow the light to 
be absorbed by heme, and with low penetrating power for the superficial mucosal tissue, which is advantageous 
for blood vessel observation of superficial mucosal. The microvessels will appear brown. Using the 540 nm band 
is conducive to distinguishing superficial mucosal tissue lesions. The blood vessels in the submucosal tissue are 
blue. The use of the above two bands can create a strong sense of hierarchy, which is more conducive to identify-
ing mucosal tissue lesions. Figure 2 is a schematic diagram of band selection.
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CycleGAN model parameter settings
In this paper, CycleGAN was used to generate the CNBI image, and Pytorch was used as its DL framework. 
Adversarial loss, cycle consistency loss, and equilibrium were used as the loss functions. The sum of the loss 
known as the identity loss is shown in Eq. (5). The batch size was setx to 1, and the initial learning rate was 
0.0002, which decreases as the number of training times increases. More detailed description of CycleGan was 
shown as S1 of supplementary information.

Metrics used for evaluation
CIEDE2000 is a color difference formula that quantifies the perceptual difference between two colors. It is based 
on the CIELAB color space. The equation for CIEDE2000 is shown in Eq. (6). More detailed description of 
CIEDE2000 was shown as S2 of supplementary information.

Here, ΔL’, ΔC’, and ΔH’ represent differences in lightness, chroma, and hue, respectively, between two colors. 
The constants kL, kC, and kH are scaling factors, and R is a rotational term. The range of CIEDE2000 typically falls 
between 0 and 100, with lower values indicating smaller color differences, and higher values indicating larger dif-
ferences. Entropy is a measure of the amount of information or randomness in an image. The equation for entropy 
is shown in Eq. (7). More Entropy description of CycleGan was shown as S3 of supplementary information.

Here, H(X) represents the entropy of the image, and p(x) is the probability of occurrence for each pixel value 
x. Entropy values range from 0 to the maximum value of the information source (usually 8 bits, i.e., 0 to 255 
for images). Higher entropy values indicate greater information content or randomness. SSIM quantifies the 
structural similarity between two images. The equation for SSIM is shown in Eq. (8).

Here, μx and μy represent the means of the two images, σx and σy are the standard deviations, and σxy is 
the covariance. C1 and C2 are small constants added for numerical stability. SSIM values range from -1 to 1, 
where 1 indicates perfect similarity, 0 suggests no similarity, and -1 denotes perfect dissimilarity. More detailed 
description of SSIM was shown as S4 of supplementary information.

Institutional review board statement
In this study, all image data provided by the Kaohsiung Armed Forces General Hospital are completely removed 
from personal data information. A statement confirming that informed consent is not required to have been 
obtained from all subjects and/or their legal guardians, according to the guidelines of the Declaration of Helsinki, 
and approved by the Institutional Review Board of Kaohsiung Armed Forces General Hospital (KAFGHIRB 
112-018).
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Figure 2.  Schematic diagram of band selection.
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Results and discussions
This section uses WLI, NBI, HNBI, and CNBI, as shown in Fig. 3, to evaluate and compare the objective indica-
tors of CIEDE2000, entropy, and SSIM and interpret the results. We chose these metrics due to their relevance 
to the primary research objective, which is the detection of early-stage esophageal cancer using various imaging 
techniques. SSIM assesses structural similarities between images, which is essential for detecting anomalies in 
medical images. Entropy effectively measures information content in images, while CIEDE2000 is well-suited for 
evaluating color differences. Firstly, these metrics are widely recognized and accepted within the field of image 
analysis and medical imaging, ensuring the compatibility of the findings with existing  research52. Secondly, these 
metrics are particularly suited to the assessment of image quality and characteristics relevant to our study, such 
as structural similarities, information content, and color differences. Moreover, the practicality and efficiency 
of these metrics were crucial considerations, as they allowed for a focused and meaningful evaluation without 
compromising the depth of our analysis.

CIEDE2000 result evaluation
Table 1 shows the results of the color difference between the blood vessels and the esophagus background tissue 
of each of the four images of WLI, NBI, CNBI, and HNBI. The total number of images tested is 100, and the size 
of each image is adjusted to 380 × 380. The minimum, average, and maximum images are listed. The WLI color 
difference values are 2.07, 8.24 and 14.91. The NBI color difference values are 5.85, 12.29 and 20.71. The CNBI 
color difference values are 5.91, 12.86 and 20.13. The HNBI color difference values are 6.43, 13.61, and 21.06.

Entropy result evaluation
Table 2 shows the entropy comparison results of the four images of WLI, NBI, CNBI, and HNBI. The minimum, 
average, and maximum values are listed. The entropy values of WLI are 5.31, 6.47, and 7.37. The order of entropy 
values of NBI is 5.11, 6.15, and 7.19. The order of entropy values of CNBI is 4.71, 5.67, and 6.62. The order of 
entropy values of HNBI is 3.39, 4.77, and 6.18.

Figure 3.  Images of WLI (a), NBI (b), HNBI (c), and CNBI (d).

Table 1.  Color difference comparison table of WLI, NBI, CNBI, and HNBI.

Images
CIEDE 2000
Minimum

CIEDE 20000
Average

CIEDE 2000
Maximum

WLI 2.07 8.24 14.91

NBI 5.85 12.29 20.71

CNBI 5.91 12.86 20.13

HNBI 6.43 13.61 21.06
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SSIM result evaluation
Table 3 shows the comparison results of SSIM similarity between WLI, NBI, HNBI, and CNBI. The number 
images used for evaluations is 74. The minimum, average, and maximum values of SSIM are presented. The 
SSIM values of NBI compared with HNBI are 0.61, 0.68, and 0.8. The SSIM values of NBI and CNBI are 0.57, 
0.64, and 0.76.

Figure 4 is a statistical chart of the color difference comparison results between the blood vessels and the 
esophagus background tissue of each of the four images of WLI, NBI, CNBI, and HNBI. The tissue chromatic 
aberration is low in WLI. The esophageal background tissue color difference of HNBI blood vessels is slightly 
higher than that of NBI and CNBI. Figure 5 is a statistical chart of the entropy comparison results of the four 
images of WLI, NBI, CNBI, and HNBI. The entropy value of HNBI is generally lower than that of WLI, NBI, and 
CNBI. Figure 6 is a statistical chart of the comparison results of SSIM between WLI, NBI, CNBI, and HNBI. The 
similarity between HNBI and NBI is slightly higher than that of CNBI and NBI, which shows HNBI has more 
advantages in simulating NBI.

The combination of HSI with NBI via band selection enables the creation of HNBI pictures, which exhibit 
improved capability in differentiating blood vessels within these images. Moreover, the use of CNBI technology 
proves to be a vital asset in the realm of AI for enhancing object recognition in images. This technique effectively 
minimizes the duration needed for picture acquisition and preprocessing. This discovery has the potential to 
be effectively incorporated into contemporary endoscopic cameras, such as tiny capsule endoscopes that do 
not include narrowband filters. Consequently, it may enhance patient comfort and optimize the efficiency of 
endoscopic treatments. In addition, the use of a 256 × 256 picture resolution for emulating narrowband images, 
accompanied by efficient conversion rates, guarantees compatibility with diverse hardware capabilities, hence 
facilitating the integration of this approach into a wide array of endoscope systems. The aforementioned devel-
opments possess the capacity to augment diagnostic precision for healthcare professionals and expedite the 
identification of early symptoms, hence diminishing the likelihood of patient fatality. Notwithstanding these 
benefits, it is essential to address certain constraints of our suggested approach. The efficacy of our methodology 
may be subject to the impact of hardware capabilities, leading to variances in conversion performance across 

Table 2.  Entropy comparison table of WLI, NBI, CNBI, and HNBI.

Images
Entropy (bits)
Minimum

Entropy (bits)
Average

Entropy (bits)
Maximum

WLI 5.31 6.47 7.37

NBI 5.11 6.15 7.19

CNBI 4.71 5.67 6.62

HNBI 3.39 4.77 6.18

Table 3.  Comparison table of SSIM similarity between NBI, CNBI, and HNBI.

Images
SSIM 
Minimum

SSIM
Average

SSIM
Maximum

WLI 0.61 0.68 0.8

NBI 0.57 0.64 0.76

Figure 4.  Statistical chart of color difference comparison results.
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diverse configurations. Furthermore, it should be noted that the potential effectiveness of HNBI pictures is 
contingent upon the particular demands of the diagnostic undertaking and the apparatus used. Moreover, while 
CNBI technology demonstrates effective image augmentation, its applicability to various datasets and clinical 
contexts need additional research. Like any other technology advancement, the effective incorporation of these 
techniques into clinical settings may need continuous refinement and verification, such as conducting rigorous 
clinical studies and evaluating their usefulness.

Conclusions
The purpose of this paper is to verify the effectiveness of NBI images simulated by the combination of HSI and 
band selection by using four different images: WLI, NBI, CNBI, and HNBI. The effectiveness of distinguishing 
blood vessels in this type of images are studied by three indicators: entropy, color difference, and SSIM. HSI com-
bined with NBI has relatively satisfactory performance. The NBI images simulated with CycleGAN can be used in 
AI object detection image augmentation to reduce the time required for image collection and preprocessing. This 
simulated NBI technology can be used along with the newer endoscopic cameras such as capsule endoscopic cam-
eras that cannot be fitted with narrowband filters, thereby reducing the discomfort for the patients and the time 
required for endoscopy. At the same time, new endoscopes, such as capsule endoscopes, in order to improve the 
convenience of entering the body and reduce the discomfort of patients, are designed to be in the size of capsules, 
which are not suitable for carrying NBI filters. The 256 × 256 image size is used to simulate narrow-band images, 
and it is found that the conversion speed of CycleGAN is about 3 fps, and the hyperspectral conversion speed is 
about 25 fps. With different hardware facilities, there will be different conversion performance. Therefore, the 
hyperspectral simulated narrow-band images in this study can be matched with new endoscopes. It is believed 
that it can provide doctors with better recognition rates in the future. If the technology of this study continues 
to develop, it can also be used with artificial intelligence object detection, not only provide patients with better 
comfort, but may also be able to detect symptoms earlier and reduce the risk of patient death.

Figure 5.  Statistical graph of entropy comparison results.

Figure 6.  Statistical chart of SSIM similarity comparison results between NBI, CNBI, and HNBI.
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Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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