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Habitat selection of resident 
and non‑resident gray wolves: 
implications for habitat 
connectivity
M. van den Bosch 1*, K. F. Kellner 1, M. G. Gantchoff 2, B. R. Patterson 3, S. M. Barber‑Meyer 4, 
D. E. Beyer 1, J. D. Erb 5, E. J. Isaac 6, D. M. MacFarland 7, S. A. Moore 6, D. C. Norton 8, 
T. R. Petroelje 8, J. L. Price Tack 7, B. J. Roell 8, M. Schrage 9 & J. L. Belant 1

Habitat selection studies facilitate assessing and predicting species distributions and habitat 
connectivity, but habitat selection can vary temporally and among individuals, which is often ignored. 
We used GPS telemetry data from 96 Gray wolves (Canis lupus) in the western Great Lakes region 
of the USA to assess differences in habitat selection while wolves exhibited resident (territorial) or 
non‑resident (dispersing or floating) movements and discuss implications for habitat connectivity. We 
used a step‑selection function (SSF) to assess habitat selection by wolves exhibiting resident or non‑
resident movements, and modeled circuit connectivity throughout the western Great Lakes region. 
Wolves selected for natural land cover and against areas with high road densities, with no differences 
in selection among wolves when resident, dispersing, or floating. Similar habitat selection between 
resident and non‑resident wolves may be due to similarity in environmental conditions, when non‑
resident movements occur largely within established wolf range rather than near the periphery or 
beyond the species range. Alternatively, non‑resident wolves may travel through occupied territories 
because higher food availability or lower human disturbance outweighs risks posed by conspecifics. 
Finally, an absence of differences in habitat selection between resident and non‑resident wolf 
movements may be due to other unknown reasons. We recommend considering context‑dependency 
when evaluating differences in movements and habitat use between resident and non‑resident 
individuals. Our results also provide independent validation of a previous species distribution model 
and connectivity analysis suggesting most potential wolf habitat in the western Great Lakes region is 
occupied, with limited connectivity to unoccupied habitat.

Understanding how animals select habitat is necessary to explain and predict species distributions, facilitating 
population management and species  conservation1,2. Characterizing species-habitat relationships can inform 
where populations can  establish3 and identify linkages between habitat patches suitable for  dispersal4. Whereas 
habitat selection and associated connectivity studies are  valuable2,4, processes underlying habitat selection are 
often poorly  understood5. Drivers of habitat selection can differ among life stages or individuals and understand-
ing these differences can improve our understanding of habitat selection and  connectivity5,6.

Mismatches between landscape connectivity analyses and species ecology can be mitigated by accounting 
for behavioral aspects that can influence  movement6,7. Processes underlying animal movements are relevant 
to connectivity analyses as they influence the behavior and movements of dispersing  animals8. Human land-
scape disturbances, including high human population densities and associated activities, can alter large carni-
vore  movements9,10, but avoidance of human disturbance can be lower for non-resident individuals than for 
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 residents11. This can affect accuracy of connectivity models, as studies generally consider habitat selection across 
individuals as  equivalent12,13.

Reduced avoidance of human disturbance by non-resident animals has been documented for dispersing 
red wolves (Canis rufus;14) and lions (Panthera leo;15), which avoided areas near roads and with higher human 
population densities less strongly than residents. Non-resident gray wolves (C. lupus) similarly displayed reduced 
selection against human disturbance compared to resident  wolves16,17. Alternatively, dispersers may not avoid 
areas of higher human disturbance at all; resident brown bears (Ursus arctos) avoided public roads and resident 
Iberian lynx (Lynx pardinus) avoided low-traffic roads, while dispersers did  not18,19.

Gray wolves historically occupied the Northern Hemisphere north of 11–20° N, though by 1970 wolves were 
extirpated from most of their historical range in the contiguous  USA20. Following federal protection in 1974, 
wolves recolonized additional areas of Minnesota, and former range in  Wisconsin21 and the Upper Peninsula of 
 Michigan22. The western Great Lakes population appears to have stabilized at around 4200  wolves23. Unoccupied 
habitat within former wolf range has been identified in the eastern USA, with apparent limited connectivity 
to current wolf range in the Great Lakes  region24. However, estimates of habitat availability and connectivity 
should further consider factors underlying habitat selection including potential differences between resident 
and non-resident movements.

Gray wolves are territorial, though most disperse from their natal territory and establish or become residents 
of different  territories25. Other wolves do not establish new territories or join existing territories and exhibit 
nomadic (or floating) movements, constrained by conspecific  territories20,26. Wolves also make extraterritorial 
excursions (i.e., predispersal movements) of varying distance and  duration27,28. Greater use of human-disturbed 
areas by wolves when dispersing or floating could result from avoiding existing wolf territories in less human-
disturbed areas or decreased site familiarity that reduces their ability to avoid human disturbances, compared 
to when they are resident of a  territory8,29. Alternatively, disturbances such as roads may facilitate efficient travel 
for non-residents30, while areas with high livestock abundance may provide food when lower site familiarity or 
prey abundance limits acquisition of wild  prey29.

We investigated habitat use by gray wolves in the western Great Lakes region exhibiting resident (territorial) 
or non-resident (dispersing or floating) movements relative to human disturbance. We predicted wolves would 
select for areas with greater natural land cover and against areas of greater human disturbance as indexed by road 
densities and proportions of agricultural land cover, with stronger selection during resident than non-resident 
movements. We also quantified habitat selection and connectivity throughout the western Great Lakes region 
and evaluated these results against an existing connectivity map for wolves in the eastern USA. We expected a 
strong correlation between a previous connectivity map developed using winter track  surveys24 and one resulting 
from this habitat selection analysis based on telemetry data.

Methods
Study area
The study area (Fig. 1) included the area representing the western Great Lakes distinct population segment of gray 
wolves (hereafter, western Great Lakes region;31), including Minnesota (220,185  km2), Wisconsin (145,593  km2), 
and Michigan (151,279  km2), and parts of North Dakota (108,193  km2), South Dakota (93,571  km2), Iowa 
(99,971  km2), and Illinois (27,190  km2).

The study area also included southern Ontario, Canada (515,966  km2), delineated by the Area of the Under-
taking (the area in Ontario under forest management;32), and southern Manitoba (84,920  km2). The climate is 
predominantly humid continental, with warm summers and cold  winters33. Average summer (June–September) 
minima are 7–17 ° C and maxima are 17–30 °C while average winter (December–March) minima are – 25 to  
− 6 °C and maxima are – 10 to 4 °C34. Elevations are 30–757 m above sea  level35. The study area, excluding the 
Great Lakes, contains 46% natural land cover (primarily various forest types and wetlands) and 18% water, while 
agricultural and urban areas comprise 32% and 4%,  respectively36. The primary prey of wolves in the study area 
is white-tailed deer (Odocoileus virginianus), in addition to American beaver (Castor canadensis), moose (Alces 
alces, where available), and other  mammals37. Average wolf mid-winter pack size across Minnesota, Wisconsin, 
and Michigan is 2.7–5.6  individuals38–40, and the combined population is about 4200  wolves23.

Data collection and processing
We used gray wolf GPS telemetry data collected during 2017–2021 by state, federal, and tribal agencies of Min-
nesota, Wisconsin, and Michigan. Animal capture and handling for data collection during original research and 
monitoring were approved by the respective state, tribal, and federal agencies. Use of these data for this study 
was approved by the Michigan State University Institutional Animal Care and Use Committee. We excluded the 
first five days of post-capture data from each wolf to reduce potential capture  effects3. We created a dataset of 96 
wolves (51 males, 39 females, 6 unknown) collared in Michigan (44), Wisconsin (31), and Minnesota (21), with 
13- or 16-h relocation intervals. We compared two preliminary models using datasets with 13- or 16-h relocation 
intervals, found no notable differences, and pooled these datasets for analysis.

We separated resident (territorial) from non-resident (dispersing or floating) annual wolf movements by 
calculating relative net squared displacement (rNSD), which represents the squared Euclidian distance between 
consecutive  locations41. For each wolf during each biological year (starting 15 April), we used the MigrateR 
 package42 in program  R43 to fit data to three a priori non-linear models representing resident, dispersing, and 
floating (named ‘nomadic’ in the MigrateR package)  movements41. The rNSD assigns data to the model with the 
most similar net-squared displacement curve. For example, a curve whereby rNSD values are low and stable, 
exponentially increase, and thereafter stabilize at high rNSD values is classified as a disperser, as this is a curve 
typical of an animal that was resident to a territory, then dispersed, and thereafter settled into a new territory 
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with a high relative distance from the first location in the dataset. After fitting data to each of the a priori curves, 
the best supported movement type is assigned based on the lowest AIC  score44.

When data could not be assigned to a movement type because wolves displayed multiple movement types 
within a biological year, we split data between multiple movement categories based on visual inspection of the 
rNSD-plots and raw GPS  data42. Visual inspection of movement data to confirm rNSD classifications is recom-
mended to override rNSD classifications when suspected to be  incorrect42. We then calculated 90% bivariate 
normal kernel utilization distributions to approximate annual range size using the ‘kernelUD’ function in Ade-
habitatHR  package45. State reports during 2017–2021 were used as an independent source to set the maximum 
annual range size for wolves to be considered resident: from these reports we extracted the maximum territory 
size (561  km2) found across Minnesota, Wisconsin, and  Michigan46. We classified movements within annual 
ranges ≤ 561  km2 as resident and reclassified movements within larger annual ranges initially classified as resi-
dent movements as floating movements. We classified extraterritorial movements between a territory and a 

Figure 1.  Top panel: land cover within the western Great Lakes distinct population segment of gray wolves 
(Canis lupus), USA and southern Ontario and Manitoba, Canada. Bottom panel: Circuit connectivity for the 
western Great Lakes distinct population segment of gray wolves (Canis lupus), USA and southern Ontario and 
Manitoba, Canada, 2017–2021. Figure based on a step-selection function (main figure) and circuit connectivity 
map derived from the same study area based on snow track data (24; inset). Figures were created using ArcGIS 
Pro 3.0.0 (https:// www. esri. com).

https://www.esri.com
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non-overlapping territory as dispersal movements, from the first movement beyond the initial territory to the 
last movement before entering the subsequent territory. We included potential predispersal  movements27,28 as 
dispersal movements by including extraterritorial movements leaving from and returning to the same territory, 
with a duration ≥ 10 days, based on visual inspection.

Modeling landscape use
We used step-selection functions (SSF), linking consecutive animal locations and contrasting each observed 
step with three random available  steps47. To obtain random steps, we pooled individual movements by move-
ment  type47 then randomly sampled the length and angle of random steps from the distribution of observed 
steps for each type. We used road density, proportion of natural land cover, and proportion of agricultural cover 
as continuous variables, whereby proportional land covers were calculated as the percentage of respective land 
cover types within a cell. We achieved this by assigning the value ‘1’ to the land cover of interest and ‘0’ to other 
land covers at the original raster resolution (30-m), after which we summed all values in an aggregated raster 
with 300-m resolution. We used road data from TIGER/line shapefiles (50-m resolution;48) and the Canadian 
National Road Network (5-m resolution;49), the most comprehensive road databases for these countries including 
categories ranging from highways to service roads, and roads only accessible by four-wheel drive vehicles. We 
used the North American land change monitoring system (NALCMS; 30-m resolution)36 to calculate propor-
tional land cover. We reclassified land covers as natural (managed and unmanaged ‘forest’ classes, ‘shrubland’, 
‘grassland’, ‘barren land’, and ‘wetland’), agricultural (class ‘cropland’), urban, and water (Fig. 1). We resampled 
rasters to 300-m resolution to reduce spatial mismatch between species and environmental  data50, and rescaled 
continuous variables (− 1 to 1) to facilitate effects comparisons.

We fit the SSF using a conditional Poisson regression model, which yields equivalent estimates to the con-
ditional logistic regression model typically used for  SSFs51. We included random slopes for the continuous 
 variables51 to account for individual variation among wolves. We fit the model using the glmmTMB  package52 
in program R. We used variance inflation factors (VIF) and pairwise correlations to test for multicollinearity 
of variables with thresholds of 10 and 0.70,  respectively53. We selected from two candidate models based on 
the lowest AIC, or the competing model (ΔAIC < 2) with fewer  terms44: one model contained road density and 
proportion of natural land cover, and another model contained these variables interacting with movement type. 
We created used-habitat calibration plots (UHC) to visualize how well model predictions characterize used 
locations by plotting the distribution of an explanatory variable at used locations and overlaying this with the 
distribution of explanatory variable values predicted by the  model54. As a measure of ecological importance of 
statistical estimates, we spatially predicted relative strength of selection (RSS;55) throughout the study area by 
calculating RSS as the probability of selecting a given point over a point with average variable values in our study 
area, scaling probabilities from 0 to 1.

Modeling connectivity
We used Circuitscape software to assess landscape-level connectivity without the assumption of animals having 
landscape  knowledge56. We inverted the RSS surface raster to obtain an estimate of movement  resistance57 then 
replaced each cell from the movement resistance surface with nodes connected by resistors, translating con-
nectivity to ‘current flow’. We limited connectivity analysis to non-resident movements if the results of our SSF 
indicated significant differences (α < 0.05) in habitat selection for resident and non-resident wolf movements. 
We incorporated part of Indiana (8795  km2) into the study area to avoid a spatial interruption that would bias 
the circuit connectivity model. We assigned 154 points at about 40-km intervals along the perimeter of the study 
area and calculated connectivity between all pairs of points, providing an omnidirectional connectivity map for 
animals moving randomly through the  landscape56. Connectivity between perimeter points is prone to edge 
effects as connectivity increases near these points. We therefore placed perimeter points at the midpoint of a 
15-km buffer bordering the study area edge, filled cells within this buffer with the average movement resistance 
value of the study area, and removed this buffer after  analysis57. To assess how the connectivity map compared 
to a previous species distribution model (SDM) and circuit connectivity analysis for gray wolves in the eastern 
USA and southern  Canada24, we resampled our RSS and circuit connectivity maps to 1-km resolution and 
calculated Pearson’s correlation coefficients between the RSS and SDM rasters and their respective circuit con-
nectivity rasters.

Results
We retained 24,540 steps, with a median of 878 steps per wolf (range = 156–3811 steps). Of these steps, 16,668 
were classified as resident, 1656 as dispersing, and 6216 as floating movements, with median step-lengths of 609, 
1011, and 655 m for resident, dispersing, and floating movements, respectively. Resident, dispersing, and floating 
movements were found for 72, 20, and 24 wolves, respectively, and 17 of 96 wolves displayed multiple movement 
types. We used a maximum annual range size of 561  km2 for resident wolves to support movement type classifi-
cation using the NSD-method and visual inspection, though average estimated annual range sizes were smaller 
for wolves classified as resident (mean = 195  km2, StDev = 116) than for dispersers (9294  km2, StDev = 15,065) 
or floaters (8608  km2, StDev = 11,119). Short-distance dispersal events occurred (n = 16, median = 54 km), with 
the longest dispersal being 615 km. Proportions of natural (VIF = 3.36) and agricultural (VIF = 3.03) cover were 
correlated (r = − 0.80), and we retained proportion of natural cover as it is inverse to the combined proportions 
of agricultural and urban cover, thus a stronger proxy of human disturbance.

The model retaining movement type interacting with proportion of natural land cover and road density 
indicated no habitat selection differences among resident, dispersing, and floating wolves (Table 1; Fig. 2). Our 
final model included road density and proportion of natural land cover without interactions with movement 
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type, and had a lower AIC value than the model including these interactions (ΔAIC = 5.2). This final model sug-
gested wolves avoided areas with greater road density and selected for areas with greater proportions of natural 
cover (Fig. 3).

Calibration of our top-ranked model was successful for road density and reasonable for proportions of natural 
cover, based on visual inspection of overlap between predicted and used values in UHC plots (Appendix A).

Table 1.  Model selection results comparing used and available steps within the western Great Lakes distinct 
population segment of gray wolves (Canis lupus), USA and southern Ontario and Manitoba, Canada, 2017–
2021. Models were ranked using AIC; variables included road density (km/km2) and proportion of natural 
cover, and their interactions with movement type (reference level: Resident). Continuous variables were scaled 
(− 1 to 1) and included random slopes for continuous variables to account for individual variation among 
wolves. Parameter estimates are reported with standard error (SE) and p-values (α < 0.05).

Top model AIC = 454,149.5

Parameter Estimate SE P-value

Prop. natural cover 0.335 0.033  < 0.001

Road density − 0.175 0.025  < 0.001

Second model ΔAIC =  + 5.2

Parameter Estimate SE P-value

Prop. natural cover 0.335 0.033  < 0.001

Road density − 0.175 0.025  < 0.001

Road density × Floating 0.031 0.052 0.557

Prop. natural cover × Floating − 0.069 0.064 0.275

Road density × Dispersing 0.037 0.061 0.548

Prop. natural cover × Dispersing 0.017 0.050 0.734

Figure 2.  Characteristics of used and available steps for road density (km/km2, top panel) and proportion of 
natural cover (0–100, bottom panel) for 96 Gy wolves (Canis lupus) in the western Great Lakes region, USA, 
and southern Ontario and Manitoba, Canada, 2017–2021. Circles represent average selection of wolves by 
movement type, and error bars are 95% confidence intervals of these averages.
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Areas previously estimated suitable that were not selected by wolves included parts of the Lower Peninsula of 
Michigan, and isolated and fragmented areas east of the Missouri river in North and South Dakota. Non-resident 
movements in our dataset were limited to established wolf range. Because we detected no differences in habitat 
selection between resident and non-resident movements, we retained all data for connectivity analysis. Our 
circuit connectivity map indicated highest connectivity for wolves in the northern and eastern parts of Ontario 
and was positively correlated (r = 0.75) with the circuit connectivity raster of the SDM (Fig. 1). The resampled 
RSS raster (Appendix B) was positively correlated (r = 0.78) with a previous habitat suitability  raster24.

Discussion
Our estimate of gray wolf habitat selection in the western Great Lakes region of the USA and southern Ontario 
and Manitoba, Canada, supported our prediction that wolves avoid areas with high road densities and select 
for areas with high proportions of natural cover. Contrary to our prediction, we found no differences among 
habitat selection of wolves exhibiting resident, dispersing, or floating movements. We also confirmed unoccupied 
habitat in the western Great Lakes region is limited, and connectivity between occupied and unoccupied habitat 
is constrained by the Great Lakes, areas of extensive agriculture, and urban areas.

Habitat selection of resident and non-resident wolves in our study was similar, though previous studies 
found it can differ by disturbance type. Gray wolves in Portugal displayed increased tolerance toward roads and 
settlements during dispersal, but not towards areas with higher livestock densities or  windfarms11. The absence 
of increased tolerance for high road densities or proportions of urban or agricultural land cover during non-
residency may be due to non-resident movements in our study occurring within established wolf range, causing 
high similarity or overlap in habitat characteristics to which residents and non-residents are exposed. Only four 
dispersing wolves exceeded estimated mean dispersal distances (range = 29–148 km) for the western Great Lakes 
 region58. The prevalence of short-distance dispersals (median = 54 km), and dispersal and floating movements 
being largely limited to established wolf range, may be caused by increased opportunities for non-residents to join 
existing packs due to high pack  densities59,60. Alternatively, with little unoccupied habitat available, non-residents 
may traverse conspecific territories when higher prey availability or lower human disturbance in occupied habitat 
outweighs risks of encountering  conspecifics17.

The relative selection strength (RSS) map was positively correlated with a habitat suitability map for the 
same area based on wolf winter track  surveys24, while derived connectivity maps were also positively correlated. 
This similarity provides validation of current wolf range and habitat connectivity throughout the western Great 
Lakes region from independent data. Our results also suggest that accounting for differences between resident 

Figure 3.  Predictions from a step-selection function for gray wolves (Canis lupus) in the western Great Lakes 
region, USA, and southern Ontario and Manitoba, Canada, 2017–2021. Predicted values are probabilities of 
selection relative to the average variable value of used and available steps (dashed lines, average proportion of 
natural land cover = 90.42%, average road density = 0.83 km/km2).
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and non-resident movements using data  transformations61, or by limiting connectivity analyses to non-resident 
movement  data15,16, may be unnecessary when non-resident movements are largely limited to established range 
or otherwise similar to resident individuals.

We note several limitations to our study. Similar to how movement resistance rasters are calculated from 
habitat suitability  maps24, we calculated a resistance raster by inverting the RSS map resulting from our  SSF62. 
This is not ideal because RSS values are conditional  probabilities55, though no alternative approach is available. 
Additionally, we used a traditional step-selection function that builds a habitat selection analysis upon estima-
tion of movement, which can introduce a bias in habitat selection because habitat selection to an extent may 
depend on the movement capability of  animals63. A fully mechanistic approach to classifying movement types is 
unavailable, and the migrateR package was developed primarily for migratory animals, so classification depends 
in part on visual interpretation of  data42. Also, wolves can swim up to 2  km64 but can cross larger waterbodies 
during freeze-over65. Our approach resulted in waterbodies having above average resistance to movement due 
to low natural, terrestrial cover, but as the Great Lakes are roadless they have a lower resistance than areas with 
low natural cover and high road density. Year-round estimates of connectivity are imperfect due to seasonal 
changes in movement resistance of water. Using GPS locations collected at shorter intervals could be used to 
assess finer-scale wolf movements, and may reveal differences in habitat selection among movement  types11. 
Analysis including non-resident movements beyond established range also is needed to confirm whether differ-
ences in habitat use between resident and non-resident wolves depend on differences in the range of conditions 
they occur in. Finally, wolves generally avoid higher road densities but can select for minor, lower traffic roads 
for efficient  travel66. The road databases used here generally group unpaved rural roads, that wolves are known 
to use, with roads in suburban areas that wolves would likely avoid, thus testing the response to road densities 
classified by road type was not possible.

We suggest potential for further recolonization of the western Great Lakes region is low, as unoccupied habitat 
and habitat connectivity are limited. The Straits of Mackinac can connect current range in the Upper Peninsula 
of Michigan with the Lower Peninsula during freeze-over, though recent crossings of the straits have been too 
infrequent for population  establishment67. Recolonization of potential habitat in North and South Dakota is 
limited by low dispersal frequencies and high anthropogenic  mortality68, and connectivity with current range 
may be higher through Manitoba than through Minnesota.

Conclusions
We offer further support that gray wolves in the western Great Lakes region select for areas with high propor-
tions of natural cover, and against human disturbance as indexed by road densities. We found no differences 
in habitat selection among wolves that were resident, dispersing, or floating. The need to limit connectivity 
analyses to non-resident movements, or to apply transformations to data of primarily resident wolf movements, 
will depend on the magnitude of differences in habitat characteristics experienced by resident and non-resident 
individuals. As most wolf habitat in the western Great Lakes region appears occupied and there is limited habitat 
connectivity between currently occupied range and limited unoccupied range in the USA part of the western 
Great Lakes region, further recolonization appears most likely through Canada to connect with wolf habitat in 
North Dakota, and across the Straits of Mackinaw to connect with habitat in the Lower Peninsula of Michigan. 
Interjurisdictional cooperation will be important to improve landscape connectivity for gray wolves between 
Canada and the USA. If recolonization of areas beyond current wolf range in the Great Lakes region is desired, 
promoting human-wolf co-existence in areas most likely to be recolonized is pertinent, though further natural 
recolonization within and beyond the Great Lakes region appears limited by the dominance of urban and agri-
cultural areas surrounding current range.

Data availability
Data supporting the conclusions of this article are not publicly available as the subject species (gray wolf) is 
federally protected under the Endangered Species Act, and subject to poaching within the study area. Data are 
available upon request from co-authors affiliated with the Department of Natural Resources of Minnesota (john.
erb@state.mn.us), Wisconsin (david.macfarland@wisconsin.gov), and Michigan (petroeljet@michigan.gov).
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