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Evaluating changes in firefighter 
urinary metabolomes 
after structural fires: 
an untargeted, high resolution 
approach
Melissa A. Furlong 1*, Tuo Liu 1, Justin M. Snider 2,3, Malak M. Tfaily 4, Christian Itson 4, 
Shawn Beitel 1, Krishna Parsawar 5, Kristen Keck 5, James Galligan 6, Douglas I. Walker 7, 
John J. Gulotta 8 & Jefferey L. Burgess 1

Firefighters have elevated rates of urinary tract cancers and other adverse health outcomes, which 
may be attributable to environmental occupational exposures. Untargeted metabolomics was 
applied to characterize this suite of environmental exposures and biological changes in response 
to occupational firefighting. 200 urine samples from 100 firefighters collected at baseline and two 
to four hours post-fire were analyzed using untargeted liquid-chromatography and high-resolution 
mass spectrometry. Changes in metabolite abundance after a fire were estimated with fixed effects 
linear regression, with false discovery rate (FDR) adjustment. Partial least squares discriminant 
analysis (PLS-DA) was also used, and variable important projection (VIP) scores were extracted. 
Systemic changes were evaluated using pathway enrichment for highly discriminating metabolites. 
Metabolome-wide-association-study (MWAS) identified 268 metabolites associated with firefighting 
activity at FDR q < 0.05. Of these, 20 were annotated with high confidence, including the amino 
acids taurine, proline, and betaine; the indoles kynurenic acid and indole-3-acetic acid; the known 
uremic toxins trimethylamine n-oxide and hippuric acid; and the hormone 7a-hydroxytestosterone. 
Partial least squares discriminant analysis (PLS-DA) additionally implicated choline, cortisol, and 
other hormones. Significant pathways included metabolism of urea cycle/amino group, alanine and 
aspartate, aspartate and asparagine, vitamin b3 (nicotinate and nicotinamide), and arginine and 
proline. Firefighters show a broad metabolic response to fires, including altered excretion of indole 
compounds and uremic toxins. Implicated pathways and features, particularly uremic toxins, may be 
important regulators of firefighter’s increased risk for urinary tract cancers.

Firefighting was recently reclassified as a Group 1 Carcinogen by the International Agency for Research in 
Cancer1, and firefighters have elevated rates of multiple cancers and other chronic health conditions, includ-
ing a 16% increase for bladder cancer2, and a 27–30% increase in kidney cancer3–6. Environmental exposures 
encountered during fireground encounters and other occupational activities are presumed to contribute to 
these risks. These exposures include volatile organic compounds such as benzene, toluene, ethylbenzene and 
xylene (BTEX)7–9, per- and polyfluoroalkyl substances (PFAS), which are found in some Class-B aqueous film-
forming firefighting foams; polycyclic aromatic hydrocarbons (PAHs) and PAH-like compounds10–12, which 
are combustion byproducts that increase aryl hydrocarbon receptor (AhR) activity; and organophosphate and 
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organobrominated flame retardants. Firefighters are likely also exposed to a range of other known and unknown 
environmental compounds while fighting fires.

Although there are documented associations of these specific chemicals with a range of health outcomes13–15, 
the effects of exposure to complex mixture of these chemicals and corresponding biological impacts exposures 
is unknown. Untargeted metabolomic profiling, which aims to systematically measure thousands of exogenous 
and endogenous metabolites, can provide key insight into subtle signatures of cancer and other diseases, often 
before they become clinically apparent16–18. In this untargeted metabolomics study, untargeted liquid chroma-
tography was performed with high-resolution mass spectrometry (LC-HRMS) of urine samples collected from 
100 Tucson, Arizona male firefighters at baseline and after exposure to structural fires, to evaluate the range of 
exogenous and endogenous metabolites that change after fire exposures.

Results
Study population
The demographics of the 100 participating fire fighters are presented in Table 1. The majority of participants were 
non-Hispanic white (81%) with a mean age of 38 years.

Metabolome‑wide association study
Compound Discoverer denoted 17,192 and 60,139 features in hydrophilic interaction liquid chromatography-
negative mode (HILIC−) and reverse phase positive mode (RP+), respectively. 286 metabolomic features from 
the HILIC− analysis and 3485 metabolomic features from the RP+ analysis passed filters utilizing the multiple 
QC sample run. Of these features, 175 in HILIC− and 1848 in RP+ produced named annotations. Following 
filtering for missing values and replicate CV, 1558 metabolomic features (153 HILIC− and 1405 RP+) remained 
for analyses (Fig. 1a). Among these, 44 (2.9%) were annotated in both HILIC− and RP+ modes. Most features 
(1220) displayed acceptable confidence (≥ 4, Fig. 1b), although 314 features had low confidence levels of 0.

The heatmap and correlation dendrogram shows the descriptive correlations between the post-fire raw abun-
dances only (Fig. 1c). Clustering patterns are evident amongst this group, with some features displaying minimal 
correlation patterns; notably, taurine shows few correlations with other metabolites. Syringol, an oxygenated 
aromatic and component of wood smoke, clusters with pulcherriminic acid, which is formed by oxidative aro-
matization, and 4-methylhippuric acid, a metabolite of xylene. This cluster may be indicative of smoke-derived 
metabolites. Most correlations were weak to moderate.

After adjusting for covariates (batch, log specific gravity, and participant) in the fixed effects linear regres-
sion models, 268 features were identified that were significantly different post-fire compared to baseline at FDR 
q < 0.05 (Supplemental Table 1). Of these, 19 unique features, and 20 overall features (taurine was identified in 
both RP+ and HILIC− modes) had high confidence (≥ 10) (Table 2). These included several amino acids, includ-
ing taurine, betaine, l-glutamic acid, creatinine, and proline. Hippuric acid (a metabolite of xylene, although it 
is also a metabolite of other phenolic compounds like fruit juice, tea, and wine) was also observed, and evidence 
of uremic toxins (N-methyl-2-pyridone-5-carboxamide, trimethylamine n-oxide (TMAO), and indoles). Among 
these, 19 features were increased after a fire, and 1 feature (betaine) decreased. In-depth descriptions from the 
literature of these metabolites are included in Supplemental Table 2.

Several features were identified that potentially reflect environmental sources (Supplementary Table 1). These 
include a range of naphthols, syringol (a component of wood smoke), europine (a hepatotoxic pyrrolizidine 
alkaloid), a benzene diamine, and metabolites of xylene (4-methylhippuric acid and 3-methyl hippuric acid).

The partial least squares discriminant analysis (PLS-DA) model displayed good classification performance 
with a median accuracy of 0.725 (0.70 for HILIC- and 0.75 for RP+). The classification model-based feature selec-
tion approach identified 38 features with VIP > 60 and confidence > 3 (7 from HILIC- and 31 from RP+, Fig. 2C). 
Individual features from these models, and from linear regression models (FDR < 0.05, estimates > 0.45 or < −0.45, 
and confidence > 3) are presented in Fig. 2a–c. The PLS-DA model (Fig. 2a) identified two features with very high 
annotation confidence (betaine and taurine), and several features with good confidence. Of these, the three with 
the highest variable importance in projection (VIP) scores included choline, 5,6-dihydroxy-2-naphthalenesulfonic 

Table 1.   Sample characteristics of 100 participants, with samples at baseline and post-fire (200 samples).

Ethnicity

 Hispanic 19 (19.0%)

 Not Hispanic 81 (81.0%)

Age (years)

 Median 38

 Q1, Q3 30.0, 43.0

Days in storage

 Median, baseline 1815.7

 Q1, Q3, baseline 1697.7, 1876.5

 Median, post-fire 1849.7

 Q1, Q3, post-fire 1751.7, 1888.7
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acid, and phosphorylated creatinine (labelled as fosfocreatinine). For linear regression (Fig. 2b), taurine had the 
strongest positive estimate and the highest confidence. Other features with high estimates included pulcher-
riminic acid, 2949, n-phenylacetylglutamic acid, europine, and 5,6-dihydroxy-2-naphthalene sulfonic acid. We 

Figure 1.   Description of identified metabolomic features. (A) Venn diagram of features identified with reverse 
phase positive mode and HILIC negative mode. (B) Distribution of features by confidence level. (C) Heat Map 
and Dendrogram of Correlations among features. Correlation matrix was calculated with Pearson coefficients. 
Cells in red indicated positive correlations, and blue indicates negative correlations. The strength of correlation 
was mapped according to color intensity, as shown in legends.
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observed overlap among eight features identified with acceptable confidence from the linear regression and 
PLS-DA models. These included taurine, N-phenylacetylglutamic acid, 4-hydroxyphenylacetylglycine, 5,6-dihy-
droxy-2-naphthalenesulfonic acid, 1-pyrroline-4-hydroxy-2-carboxylate, aliin, hypaphorine, and PEG N7. In the 
volcano plot (Fig. 2c), features that clustered with acceptable confidence, high estimate changes and low p-values 
included o-sebacoylcarnitine, tyr-thr (l-tyrosyl-l-threonine), and n-phenylacetylglutamic acid.

Mummichog19 was used to test whether features that were selected by PLS-DA classification were enriched for 
specific metabolic pathways (Fig. 3). Five pathways were significantly enriched after FDR adjustment at level of 
0.1, including aspartate and asparagine metabolism, urea cycle/amino group metabolism, alanine and aspartate 
metabolism, vitamin B3 (nicotinate and nicotinamide) metabolism, and arginine and proline metabolism. No 
significant enriched pathway was identified from HILIC− mode.

Discussion
Changes in the urinary metabolome from firefighters from baseline to after a fire are indicative of broad bio-
logical responses across the metabolome: changes in several amino acids and amino acid pathways indicative 
of one-carbon metabolism are reported, as well as changes in hormones, volatile organic compounds (xylene 
metabolites), indole metabolites related to AhR activity (Indole-3-acetic acid, gramine), and uremic toxins. Eleva-
tion of syringol, a primary component found in woodsmoke, was also observed. This untargeted metabolomic 
approach is the first application of this method to firefighters that identifies changes after a fire, and revealed 
broad environmental contributions and biological responses after this acute occupational activity.

Amino acid metabolism and cancer
Firefighting is considered a Group 1 carcinogen by the International Agency for Research on Cancer (IARC)2, 
with strong causal evidence for mesothelioma and bladder cancer, and evidence for other cancers including 
bladder, kidney, colon, prostate, and testicular cancers, and melanoma and non-Hodgkin lymphoma2. In support 
of this, in this study, several amino acids and pathways were indicative of one carbon metabolism. Cancer cells 
characteristically rely on aerobic glycolysis (i.e. the Warburg Effect), producing lactate at the expense of oxidative 
metabolism (i.e. TCA cycle). As the TCA cycle provides critical metabolic intermediates necessary for cell health, 
many cancers are capable of shifting metabolism to support this pathway20. This is largely achieved through the 
catabolism of Asp, Gln, Glu, Arg, and Pro20. Our data evaluating the urine metabolome of pre- vs. post-exposure 
demonstrates a significant enrichment in these pathways, potentially drawing a link between fireground expo-
sures and cancer metabolism. In further support of this pro-metastatic metabolic reprogramming, a significant 
enrichment in pathways associated with purine/pyrimidine metabolism was observed. This is a hallmark of many 

Table 2.   High-confidence metabolomic features associated with fireground exposure in fixed-effects linear 
regression models. Results are from fixed effects linear regressions estimating the effect of sample type 
(post-fire vs pre-fire) on log2 metabolite abundance. Models were adjusted for batch, log specific gravity, 
and participant number. Only features with confidence > 10 are shown here, which corresponds to MSI 
identification levels of 1 or 274. A beta coefficient of 0.45 corresponds to a fold change of 1.36, and a beta 
coefficient of −0.45 corresponds to a fold change of 0.732. The full list of features that met FDR < 0.05 threshold 
are included in the Appendix.

Annotated metabolite Beta coef FDR Conf Mol. wt Ret. time Formula Mode

Taurine 0.796 0.004 16 125.01464 1.104 C2H7NO3S RP

Taurine 0.587 0.016 16 125.01469 9.673 C2H7NO3S HILIC

1,7-Dimethyluric acid 0.517 0.035 11 196.05966 8.881 C7H8N4O3 RP

4-Phenylbutyric acid 0.473 0.007 10 164.08372 10.493 C10H12O2 RP

Indole-3-acetic acid 0.435 0.005 10 175.06334 10.801 C10H9NO2 RP

N6,N6,N6-trimethyl-l-lysine 0.410 0.001 10 188.15251 1.076 C9H20N2O2 RP

Trimethylamine N-oxide 0.357 0.029 11 75.06844 1.162 C3H9NO RP

Phenylacetyl-l-glutamine 0.344 0.006 13 264.11097 9.953 C13H16N2O4 RP

5-(Acetylamino)-2-hydroxybenzoic acid 0.333 0.001 10 195.05316 9.67 C9H9NO4 RP

Trans-urocanic acid 0.330 0.021 12 138.04291 2.308 C6H6N2O2 RP

Hippuric acid 0.330 0.025 10 179.05832 9.792 C9H9NO3 RP

4-Acetamidobutanoic acid 0.290 0.009 10 145.07387 2.418 C6H11NO3 HILIC

l-Glutamic acid 0.277 0.008 11 147.05318 1.164 C5H9NO4 RP

Proline.1 0.266 0.021 11 115.06328 1.33 C5H9NO2 RP

N-Acetyl-l-arginine dihydrate 0.254 0.011 12 216.12222 10.826 C8H16N4O3 HILIC

Creatinine 0.252 0.012 13 113.05887 1.203 C4H7N3O RP

N6-acetyl-l-lysine 0.239 0.007 11 188.11618 1.392 C8H16N2 O3 RP

Kynurenic acid 0.234 0.033 10 189.0426 9.917 C10H7NO3 RP

7a-Hydroxytestosterone 0.196 0.01 10 304.20386 15.775 C19H28O3 RP

Betaine -0.290 0.001 14 117.07892 1.187 C5H11NO2 RP
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cancers, where the rapid proliferation rates require increased de novo nucleotide biosynthesis21. The critical 
carbon and nitrogen units required for this process can be derived through catabolism of amino acids, notably 
Gly, Gln, and Asp, which are significantly elevated in the post-fire cohort20. 

Interestingly, elevated levels of several known uremic toxins were also observed, which is consistent with a 
prior study in Saudi Arabian firefighters showing changes in urea nitrogen and kidney functioning after a fire22. 
These include N-methyl-2-pyridone-5-carboxamide, trimethylamine n-oxide (TMAO) 23, hippuric acid, and the 
indoles indole-3-acetic acid, tryptophan and tryptophan derivatives (kynurenic acid, hypaphorine)24 Disruption 
of trimethylamine has been strongly implicated in kidney related disease outcomes25, and is further generated 
from choline, betaine, and carnitines, all of which were observed in this study. Tryptophan metabolism enzymes 
primarily are sourced from the liver, kidney, and brain26. Indoles are also related to tryptophan and are trypto-
phan derivatives, which may reflect general disruption of the tryptophan pathway, and indole disruption may 
also represent functional changes in the gut27,28. This gut based tryptophan metabolism mediates renal fibrosis29, 
which precedes kidney cancer. Some overlap was also observed with features identified in previous untargeted 
metabolome-wide association studies of bladder cancer: notably taurine30, but also choline, aminobutyric acid, 
dihydrotestosterone, niacinamide, and adenosine31. Taurine is related to oxidative stress32. Large changes in 
4-phenylbutyric acid were also reported. Phenylbutyrate is a derivative of butyric acid, which is produced by 
colonic bacteria fermentation, and is also a drug currently used to treat urea cycle disorders33. This metabolite is 
conjugated to glutamine and forms phenylacetyglutamine, another high-confidence feature with large changes 
after fires. These two metabolites may reflect temporal changes in medication usage, or activation of urea cycle 

Figure 2.   Metabolomic features with high fold-changes and annotation confidence from pre-fire to post fire. 
(A) Features identified with high variable importance projection (VIP) values(≥ 60) in the PLS-DA model 
with acceptable confidence (> 3), discriminating between pre and post-fire values. (B) Waterfall plot of features 
identified from the linear regressions, showing differences for post-fire versus pre-fire (x axis linear regression 
coefficient estimates of post-fire to pre-fire, for those with high fold changes (estimate > 0.45 or < −0.45, 
confidence > 3, and FDR q value < 0.05). (C) Volcano plot of metabolomic feature levels of post-fire versus pre-
fire (x axis log2 fold change of post-fire to pre-fire; y axis, log10 FDR adjusted p-value). Metabolites with VIP 
scores on PLSDA ≥ 20, fold change ≥ 1.5, and FDR q-value < 0.05 are plotted in red and those with VIPplsda ≥ 20, 
fold change ≤ 0.8, FDR q-value < 0.05 in blue.
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pathways. In addition to taurine, changes in hippuric acid, phenylacetylglutamine, and carnitines, were also 
observed, which have been previously shown to discriminate strongly between bladder and kidney cancer cases 
and controls34. Carnitines are associated with mitochondrial beta-oxidation dysfunction35.

It is unknown if these metabolites are on the causal pathway between environmental exposures and cancers 
and other health outcomes, or if they reflect an altered underlying biological process that occurs during kidney 
and bladder cancers. For instance, due to the cross-sectional nature of previous untargeted metabolomics studies, 
it is impossible to know if changes in these metabolites contribute to the disease process or is a metabolic adapta-
tion. Our study suggests that in an occupational group with higher risks of these cancers, these metabolites may 
be acutely altered after an occupational event in otherwise healthy individuals. If these metabolites are causally 
related to cancer, then acute, repeated increases in these metabolites over time may be responsible for increased 
risk of bladder and kidney cancer among firefighters. Alternately, acute, repeated increases in a biological process 
that results in changes in metabolite excretion may be related to the increased risk. These metabolites may pro-
vide a potential point of intervention for reducing cancer risk long-term in firefighters. If so, then intervention 
in these metabolic pathways with supplements, or long-term monitoring of levels to identify potential elevated 
risk, might reduce the incidence of urinary tract cancer in this high-risk population.

Hormones
Somewhat unexpectedly, changes in several sex steroid hormones were observed, including 7a-hydroxytestos-
terone, epitestosterone glucuronide, estriol, and 5a-androstan-3,6,17-trione, which may be a stress or immune 
response. Previous studies have reported changes in adrenaline (epinephrine) and norepinephrine 36 after a fire, 
and although both norepinephrine and epinephrine did increase after a fire in our study, they did not meet the 
FDR < 0.05 cutoff (the FDR q values were 0.07 and 0.08, respectively). Some of these hormonal responses may 
be due to endocrine-disrupting properties of some environmental chemicals37–39. Previous studies have shown 
that extracts from used firefighter gear displayed strong antiestrogenic effects40, and AhR activation, which we 
have previously shown to occur in firefighters10, is associated with estrogenic responses in human cells41.

Figure 3.   Pathway overrepresentation analysis of post-exposure versus baseline based on features with 
VIP > 20 in PLS-DA models; dashed line indicates FDR q-value = 0.1; ratio represents the ratio of the number 
of significant metabolites to the number of total metabolites present within the pathway (pathway size); only 
pathways with pathway size ≥ 3 and at least one overlapping metabolite are presented. Mummichog reannotates 
features based on their own internal library, so feature IDs may not exactly overlap with those reported in 
feature-specific tables.
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Environmental exposures
Several findings were consistent with exposures to fires and air pollution. Syringol, for instance, is an important 
component of wood and charcoal smoke, and was annotated with acceptable confidence (≥ 4). The arginine and 
proline pathways were upregulated, as well as the individual features N-acetyl-l-arginine dihydrate and arginine, 
and arginine plays a role in response to burns, smoke inhalation, and nitric oxide 42–47. Hypoxanthine may be 
indicative of physical activity48,49, as well as aspartate and asparagine metabolism pathways50,51. Both arginine 
and hypoxanthine have also been identified as key features identified in ultra-high resolution metabolome-wide 
association studies (MWAS) of air pollution52,53, which is relevant since fire smoke contains multiple components 
of air pollution at high concentrations. These features and pathways may thus reflect a response to typical fire-
ground exposures and experiences. In targeted analyses of metabolite changes after fires, others have reported 
increases in the volatile organic compounds (VOCs) xylene, styrene, and benzene9. Elevations in methylhip-
puric acid were also observed, which are metabolites of xylene, and in fact, several features annotated in our 
data as a form of hippuric acid had FDR q values < 0.10 (4-methylhippuric acid, 4-aminohippuric acid, hippuric 
acid). Other features identified with potential environmental sources include several naphthalenes, including 
1,3,6,8-naphthalenetetrol, a benzenediamine, and a known carcinogen, 1-nitrosopiperidine54–56. Naphthalenes 
and other PAHs have previously shown to be elevated after fires in targeted analyses12, and are associated with 
cancer and other adverse health effects57. Although others have reported increases in the specific PAHs 1-hydrox-
ynaphthalene and 1-hydroxyacenapthene58, these studies were targeted for PAHs with specialized extractions and 
analytical techniques. As ours was an untargeted analysis, more generic extractions and less specific chromatog-
raphy was utilized, and likely impacted our ability to accurately annotate these molecules. Most of the annotated 
naphthalene features in this study increased after fires, relative to before, with the exception of 5,6-dihydroxy-
2-naphthalenesulfonic acid, a feature with a very low p-value, large absolute fold change, and very high VIP 
value, which actually decreased after a fire. 2-Naphthalene 2-sulfonic acid is used in the synthesis of dyes, food 
coloring, surfactants, and dispersants. 5,6-dihydroxy-2-naphthalenesulfonic acid may result from hydroxyla-
tion of this compound via the CYP450 phase I pathway. If other unannotated compounds which firefighters are 
highly exposed to, are preferentially hydroxylated first, the decrease in the hydroxylated form of 2-naphthalene 
sulfonic acid may reflect decreased capacity for phase 1 detoxification, at the time point measured here. Future 
studies should incorporate multiple time points.

PAHs are AhR ligands, and AhR activity is increased after fires12, which we have previously hypothesized 
to be due to PAHs. However, in a recent bioassay, we found that most AhR activity was not, in fact, due to the 
hydroxylated PAHs tested12, and was instead likely due to other unidentified compounds. Interestingly, indoles 
display potent AhR activity, and in this study, several indoles were significantly associated with fires, including 
indole 3-acetic acid and kynurenic acid (a tryptophan metabolite), both of which were described in Table 2. 
PAHs and other environmental contaminants have also been shown to disrupt tryptophan metabolism59,60, and 
a complex relationship exists between the indoles, PAHs, and AhR23. Increased tryptophan and indole activity in 
response to environmental exposures may be responsible for the enhanced AhR activity after fires. This is further 
supported by a review of MWAS studies of environmental exposures60, where authors identified features most 
commonly associated with various environmental exposures. Among those features, we observed in our study 
increases post-fire of various forms and derivatives of tryptophan, but also phenylalanine, proline, methionine, 
hypoxanthine, tyrosine, arginine, and derivatives of lysine. In a study of PAH exposures in earthworms, lysine was 
similarly upregulated61, and in another study of PAHs in zebrafish, tryptophan pathways were also activated62.

Dementia
Interestingly, tryptophan, kynurenic acid, urea cycling, and kidney functioning have also all been implicated as 
risk factors for Alzheimer’s disease and other dementias63–67. In a metabolomic analysis of features comparing 
Alzheimer’s disease to controls, phenylacetylglutamine, l-Arginine, hypoxanthine, uric acid/uric acid deriva-
tives, betaine, and cortisol, along with the arginine and proline metabolism pathway, were significantly different 
in the AD group68, and were elevated in our participants after fires.

Future directions
Overall, changes in features that reflect environmental sources were observed, as well as features that reflect 
endogenous biological activity. Some of the environmentally derived metabolites may be driving changes in 
some of these endogenous metabolites. Future steps will involve a deeper dive into these metabolites to identify 
whether and which environmental contaminants are driving changes in the endogenous metabolites. The two 
to four hour post-fire collection of urine in this study was selected to maximize concentrations of urinary PAH 
metabolites, specifically urinary naphthols, which are present at relatively high concentrations12. Given that 
other contaminants in the fire may have longer elimination half-lives, future studies should also examine urine 
collected at additional time points after the fire.

Taurine was consistently identified with strong fold changes and discriminatory capacity in both PLS-DA 
and linear regression models. As the dietary intake of the firefighters was not restricted, taurine and some of 
the other features could be due to ingestion of energy drinks or medications in the immediate post-fire period, 
although based on discussion with our firefighter coauthors we believe that energy drink consumption is likely 
limited to approximately 10% of firefighters.

Strengths and limitations
This study had several strengths and limitations. A within-person, pre/post exposure paradigm was used to 
potentially identify candidates for acute changes in firefighters that inherently controlled for time-invariant 
confounders, and two methods of statistical analysis (linear regression and PLS-DA) were applied. Two modes 
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(RP and HILIC) were used to maximize the number of identified features, along with a high resolution Orbitrap 
Exploris™ 480 Mass Spectrometer. Limitations include validation against a limited in-house library for annotation 
of features, evaluation of a narrow range of time post-fire, and inability to control for all time-variant confound-
ing, including potentially medications and dietary changes. In future studies, we will evaluate metabolomic 
changes by Hispanic ethnicity, and the effect of timing of collection post-fire on feature abundance. Although 
several signals consistent with increased risk for kidney cancer were observed, the sample is young enough 
and small enough that we are unable to actually evaluate if any of our participants developed cancer. However, 
identifying increased risks for cancers among firefighters is an important future goal.

Conclusions
A broad suite of responses to fires in firefighters were identified that implicate urinary tract cancers, one carbon 
metabolism, xylene and PAH exposures, as well as signals that point towards a complex interplay between PAHs, 
AhR, indoles, and kidney and bladder cancer.

Methods
Study population & sample collection
Firefighters were enrolled as part of a cancer prevention study partnership between the University of Arizona 
and the Tucson Fire Department (TFD)12. The study protocol was approved by the University of Arizona IRB, 
and all methods were carried out in accordance with relevant guidelines and regulations. Informed consent was 
obtained from all subjects.

For this metabolomics study, a subset of samples were selected that included 100 male firefighters who donated 
urine at a time when they had not responded to a fire for at least 4 days (baseline pre- or remote post-fire samples, 
referred to as baseline hereafter), and who additionally donated urine samples within 2–4 h after responding to 
a structural fire (post-fire sample). All fires were structural fires in Tucson, and were predominantly residential 
with some commercial fires. Structure contents were similar across fires, and did not include hazardous materials.

Urine samples were transported from the Tucson Firefighter Department on ice, specific gravities were 
measured, and urine samples were aliquoted in 1.0 ml aliquots and stored at −80 °C for long-term storage at the 
University of Arizona. Demographic and occupational questionnaires were administered to participants at study 
enrollment, which took place between years 2015 and 2016.

Sample preparation
The urine samples were prepared for analysis by spiking 20 µl of 20 µM 13C labeled internal standard mix (con-
taining labeled phenylalanine, succinic acid, valine, taurocholic acid) into a 1:1 solution of urine and ice cold 
acidified methanol to provide an acidified solution at 0.1% formic acid. The resulting mixtures were vortexed, 
centrifuged, and the supernatants collected. Samples were extracted in duplicate and stored at −20 °C until high 
performance liquid chromotagraphy mass spectrometry (HPLC–MS) analysis.

High resolution metabolomics
Untargeted metabolomic profiling was performed using established methods (previously described in69) on 
a Thermo Scientific Orbitrap Exploris™ 480 high-resolution mass spectrometer interfaced to a Vanquish Duo 
Ultra High Performance Liquid Chromatography system (Thermo Scientific, Waltham, MA). Samples were 
extracted and analyzed in duplicate (biological replicate), extracts were injected using a dual-column setup 
(reverse phase (RP)/hydrophilic interaction liquid chromatography (HILIC)) that included C18 chromatography 
(reverse phase) with positive electrospray ionization (ESI) (RP+) and hydrophilic interaction chromatography 
with negative ESI (HILIC−). Analyses were performed in two batches within 3 months of each other. Samples 
were randomized across batches, with the exception of samples from Hispanic firefighters (n = 21), which were 
all analyzed during the first batch. We ran three quality controls (QCs) after every 30 injections (15 samples). 
These three QCs included (1) an internal laboratory sample (ILS-QC) comprised of a mixture of > 50 randomly 
chosen urine samples, which were extracted with every batch to assess inter-batch variability, (2) a pooled QC 
that was comprised of a mixture of all extracted samples, and (3) a standards library mix (to access retention 
time drift). Tandem mass spectrometry (MSMS) data was acquired using iterative MSMS available through 
AcquireX, which was collected using process blank samples and the pooled QC sample (referenced as #2 above) 
at the beginning of each batch.

Following a 1 μL sample injection, RP separation was accomplished using a 1.8 µm, 2.1 × 150 mm HSS T3 
Column (Acquity Premier HSS T3 Column) and methanol gradient (A = 99.9% water 0.1% formic acid, B = 99.9% 
water 0.1% formic acid) consisting of an initial 3 min period of 99% A, and 01% B, followed by linear increase 
to 50% B at 11 min and then increase to 95% B hold for 2 min.

HILIC analyte separation was accomplished using a 1.7 µm, 2.1 mm × 150 mm Amide column (Waters 
ACQUITY Premier BEH Amide Column) with 10 mM ammonium formate and acetonitrile gradient (A = 10% 
water, 90% ACN, 10 mM ammonium formate and 0.1% formic acid, B = 50% water, 50% ACN, 10 mM ammo-
nium formate and 0.1% formic acid) consisting of an initial 3 min period of 99% A, and 01% B, followed by a 
linear increase to 50% B at 11 min and then increased to 95% B hold for 2 min.

Mobile phase flow rate was 0.3 mL/min for both the RP and HILIC methods. The mass spectrometer was 
operated using ESI mode at a resolving power of 60,000 and mass-to-charge ratio (m/z) range 65–1000 Da. 
Detection of m/z features was accomplished by a maximum injection time of 100 ms and custom AGC target 
[normalized AGC target (%)] of 50%.
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Annotation
Compound Discoverer 3.2 (Thermo Scientific, Waltham, MA) was used for spectral alignment, and peak picking, 
identification and annotation, with fill gaps imputation using random forest algorithm. Features were annotated 
utilizing multiple online databases and an in-house library, but priority annotations were applied from the 
in-house standards library developed on the exact same analytical platform used for sample analysis. Con-
firmed metabolites were identified using an in-house library stored in MzVault that was generated using selected 
authentic standards from MetaSci, Inc’s complete human metabolome library, and includes m/z, retention time 
and MSMS spectra for 840 and 442 metabolites in RP( +) and HILIC(−), respectively. Metabolite annotations 
was performed using MzCloud, ChemSpider, and Metabolika. After annotating metabolites, manual QC was 
performed on the features to eliminate poorly annotated features. QC correction was applied in Compound 
Discoverer using a linear regression model which only retained features with a QC area RSD < 40% and was 
limited to a maximum correction of < 20%. The internal laboratory samples that were extracted with every 
batch had < 20% variation in TIC over the run, indicating all batch extractions were comparable. Mass spectra 
and chromatography from duplicate annotations (for a single compound) were manually inspected for spectral 
quality, peak shape, and retention time following data processing with Compound Discoverer to access if one 
of the multiple annotations was correct. When a single confident annotation was identified, all other duplicate 
feature annotations were removed. After statistical analysis, features meeting the FDR threshold were manually 
evaluated for chromatographic and spectral quality.

The percentage of missing features and coefficients of variation among biological replicates were calculated 
(samples that used “gap fill” function and had gap filled, were considered missing), and only included mass spec-
tral features detected in > 25% of all urinary samples, and those with median coefficients of variation between 
sample replicates < 20%. Duplicate feature intensities were averaged. Exploratory data analysis was conducted 
to confirm normality of feature intensity. All features were mean centered and scaled by standard variation such 
that a one unit increase was equivalent to a 1 SD increase, and features with zero variance were removed before 
being used analyses. To obtain a holistic view of the interactions among metabolites, a correlation matrix was 
constructed using Pearson correlation coefficients of the raw abundances and visualized the interaction web 
using Complex Heatmap. To reduce the number of displayed features, the dendrogram was limited to those 
features selected as important in the analysis of changes from baseline to post-fire in the linear regression models 
(described below). To augment confidence scores provided by Compound Discoverer, which do not take into 
account the databases utilized for the annotation (and the accuracy inherent to those searches), a modified 
confidence score was adopted of annotation based on annotation sources and match strength from our in-house 
database (MzVault), and online databases (MzCloud, Chemspider, Metabolika, Masslist), described in Supple-
ment 1. Compounds were only ranked based on this scoring mechanism; no compounds were removed from 
the data set based on this scoring.

Metabolome‑wide association study
To evaluate changes from baseline to post-fire sample collection, a series of fixed effects linear regressions were 
first performed on the log2 value of abundance for each feature, with a fixed effect for participant. Since fixed 
effects linear regression inherently accounts for time-invariant confounding, batch and log specific gravity were 
also adjusted for. False discovery rate (FDR)70 correction was applied to the p-values, and associations with FDR 
q-values < 0.05 are reported. For parsimonious presentation, significant features are presented, with additional 
filters. First, those features are presented that met FDR significance at q < 0.05, and with very high confidence 
(≥ 10). Then, all significant features with high coefficient estimates (> 0.45 or < −0.45) are reported, with accept-
able confidence (≥ 4) and FDR < 0.05, and in the supplement, all features with FDR < 0.05 are reported, regardless 
of fold change or confidence.

Since linear regression does not account for potential collinearity between metabolites, a model-based vari-
able selection was additionally performed (Partial Least Squares Discriminant Analysis, or PLS-DA) with R 
package caret (caret package version 6.0–86). The PLS-DA algorithm is a widely used discriminant analysis 
tool, due to its versatility and capability in handling high-dimensional data and collinearity71. Cross-validation 
based model accuracy was calculated to assess the validity of the classification model since we have a balanced 
dataset72 (Table 1), and variable importance projection (VIP) was used to quantify feature contribution to the 
PLS projection73. VIP measures the contribution of the coefficients, which are weighted proportionally to the 
reduction in the sums of squares and is scaled to 0–100 as a default. A fivefold cross-validation was used to better 
capture classification performance. Since PLS-DA does not inherently adjust for covariates, we first calculated 
residuals from the fixed effects linear regression model after controlling for participant number and batch. These 
residuals were then used as input for the PLS-DA classification model. Features with VIP ≥ 60 are presented. VIP 
scores in the caret package are scaled to a maximum score of 100.

All analyses were done using R (version 4.1.2) with all packages freely implemented.

Pathway analysis
Pathway overrepresentation analysis using Mummichog was conducted (version 2) to identify enriched meta-
bolic pathways associated with fireground exposure. Since overrepresentation analysis requires a relatively large 
number of features to identify pathways, the cutoff for importance was relaxed in the pathway models to 20 to 
allow the algorithm sufficient information. Thus, features previously selected by PLS-DA classification with 
VIP ≥ 20 were included in the pathway overrepresentation analysis. Mummichog predicts metabolite annota-
tion and biological activity directly from mass spectra without upfront metabolite identification (Li et al.19). A 
pathway was considered significant if the adjusted p-values were smaller than 0.1. Only pathways with at least 
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three discriminative metabolites (pathway size/entries ≥ 3) were interpreted. Pathway analysis was also performed 
using results from the linear regressions and included all features with raw p-values < 0.05.

Data availability
Deidentified data is available from the authors upon request, please contact mfurlong@arizona.edu.
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