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Exploration of the molecular 
mechanism of intercellular 
communication in paediatric 
neuroblastoma by single‑cell 
sequencing
Jing Chu 

Neuroblastoma (NB) is an embryonic tumour that originates in the sympathetic nervous system 
and occurs most often in infants and children under 2 years of age. Moreover, it is the most common 
extracranial solid tumour in children. Increasing studies suggest that intercellular communication 
within the tumour microenvironment is closely related to tumour development. This study aimed 
to construct a prognosis‑related intercellular communication‑associated genes model by single‑cell 
sequencing and transcriptome sequencing to predict the prognosis of patients with NB for precise 
management. Single‑cell data from patients with NB were downloaded from the gene expression 
omnibus database for comprehensive analysis. Furthermore, prognosis‑related genes were screened 
in the TARGET database based on epithelial cell marker genes through a combination of Cox 
regression and Lasso regression analyses, using GSE62564 and GSE85047 for external validation. 
The patients’ risk scores were calculated, followed by immune infiltration analysis, drug sensitivity 
analysis, and enrichment analysis of risk scores, which were conducted for the prognostic model. 
I used the Lasso regression feature selection algorithm to screen characteristic genes in NB and 
developed a 21‑gene prognostic model. The risk scores were highly correlated with multiple immune 
cells and common anti‑tumour drugs. Furthermore, the risk score was identified as an independent 
prognostic factor for NB. In this study, I constructed and validated a prognostic signature based on 
epithelial marker genes, which may provide useful information on the development and prognosis of 
NB.

Neuroblastoma (NB) is the most common paediatric solid tumour located extracranially, accounting for up to 8% 
of paediatric  malignancies1. This malignant tumour manifests anywhere along the sympathetic nervous system 
and is most often located in the abdomen along the sympathetic chain and the adrenal gland medullary  region2. 
More than half of the affected patients are under 2 years of age at the time of diagnosis. The clinical course of 
NB is highly heterogeneous, including everything from spontaneous regression or differentiation to treatment-
refractory progression despite intensive therapy. The survival rate of high-risk NB is less than 40% despite 
multimodal therapy, including surgery, highly intensive chemotherapy, radiation therapy, and  immunotherapy3. 
Therefore, it is crucial to identify a novel gene signature for the prognosis of patients with NB and to explore 
novel therapeutic targets for NB.

Intercellular communication, also known as cell–cell interaction, is an essential feature of multicellular 
organisms. Dynamic communication networks, formed through communication and cooperation between 
cells, play crucial roles in numerous biological  processes4. One of the most important forms of intercellular 
communication are the ligand-receptor interactions (LRIs). The ligand can either be secreted and bind to the 
receptor in a soluble form, or be membrane-bound and require physical proximity to the two interacting cell 
 types5. The tumor microenvironment (TME) contains many cell types, including malignant, stromal, and immune 
cells. The identification of communication between cancer cells, and between cancer and normal cells via LRIs 
in the TME, helps us to understand the mechanisms of tumorigenesis, tumor progression, therapy resistance, 

OPEN

Department of Pathology, Anhui Provincial Children’s Hospital, 39 Wangjiang East Road, Hefei 230051, Anhui, China. 
email: chujing198603@163.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-47796-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20406  | https://doi.org/10.1038/s41598-023-47796-0

www.nature.com/scientificreports/

immune infiltration, and  inflammation6. Given the importance of LRIs in the treatment and clinical prognosis 
of patients with malignant tumors, therapies targeting intercellular communication have become valuable tools 
in clinical practice. For example, immune checkpoint inhibitors, such as ipilimumab, target CD28 or CTLA4, 
while pembrolizumab and nivolumab target PD1 or  PDL16. In recent years, the combined use of dinutuximab and 
immune modulators (granulocyte–macrophage colony-stimulating factor and interleukin-2) has been introduced 
in high-risk NB maintenance  therapy7. Dinutuximab (ch14.18) is a chimeric monoclonal antibody targeting 
GD2, which is widely expressed on tumor cells derived from neuroectodermal origins, including NBs. Although 
anti-GD2 therapy has shown some success in the clinical treatment of NB, more than 40% of patients with NB 
do not respond to this targeted therapy, and some experience severe, uncontrollable neuropathic pain as a major 
side effect. Furthermore, while anti-GD2 immunotherapy is highly effective against small residual lesions, its 
efficacy against primary solid tumors is  limited7. This limitation may be due to the complex network of cell–cell 
interactions in the TME and our incomplete understanding of this network. To better provide individualized 
treatment for patients with malignant tumors and identify suitable and effective treatment targets, we need a 
more comprehensive understanding of the spectrum of cell–cell interactions that occur in the TME and how 
these interactions impact the tumor development process and patient outcomes.

Data obtained from single-cell RNA sequencing (scRNA-seq) technology provide strong support for the 
analysis of human tumor heterogeneity and different subpopulations, and has proven to be key to elucidating 
tumor development and progression  mechanisms8. With the maturation of single-cell isolation techniques in 
the TME, the availability of high-quality scRNA-seq data, and new computational models for bioinformatics 
analyses, a deeper exploration of the complexity of the NB microenvironment and intercellular communication 
has become possible. However, the prognostic value of intercellular communication-associated genes (ICAGs) 
in children with NB has not been evaluated. This study evaluated these ICAGs and prognosis in NB, and a 
prognostic model was constructed. I believe that my findings will provide information on the prognostic value 
of genes related to intercellular communication and preliminarily uncover the complex biological functions and 
immunoregulatory effects of these genes and their regulatory networks.

Results
Pre‑processing of single‑cell expression profile data and Subtype clustering analysis
A schematic representation of the study protocol has been shown in Fig. 1. My current analysis used expression 
profiles containing five NB-related tissue samples, with 3,169 cells examined for expression levels (Fig. 2A, B). 

Figure 1.  The flow chart describes the research idea and content of this study.
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Only cells with nFeature_RNA > 100 and percent.mt < 15 in the expression profile were retained for this analysis. 
Exactly 2,594 cells were included for subsequent analysis of expression levels of the feature (Fig. 2C, D).

The RunPCA function was used to reduce the dimensionality of cells with NCPs set to 20, which specifies how 
many principal components should be selected in the data set. The correlation between the genes characterized 
on each principal component and the respective principal component was plotted using the VizDimLoadings 
function, thereby indicating the relationship between 20 genes and the principal components. Through PCA 
dimensionality reduction analysis on 20 genes, I found that they had different scores in various dimensions 
(Fig. 3A, B). However, the PCA dimensionality reduction analysis between samples did not show significant 
overall differences (Fig. 3C). By observing the ElbowPlot, the optimal number of PCs was found to be 17 
(Fig. 3D), The t-SNE algorithm was used to cluster cells and visualize the similarity between cells, similar cells 
were closer in the t-SNE plot, while dissimilar cells were further apart. Finally, 14 subtypes were obtained through 
t-SNE (Fig. 3E). I found many genes with widely varying expression levels between these subtypes and showed 
the expression levels of the 10 genes with the largest differences in expression levels between subtypes (Fig. 3F).

Annotation of cluster subtypes and Analysis of receptor‑ligand pairs
I used BlueprintEncodeData as the annotation data to annotate each subtype using the R package SingleR. 
Fourteen clusters were assigned to six categories of cells: neurones, epithelial cells, fibroblasts, macrophages, 
monocytes, and CD8 + T-cells (Fig. 4). NB is a neurological tumor that arises from neural crest (NC) cells. NC 
cells delaminate from the dorsal neural tube (NT) and migrate toward their  destination9. Therefore, NB exhibits 
neuroepithelial properties. Neurons and epithelial cells maybe represent the tumor cell population; CD8 + T cells, 
macrophages, and monocytes represent the immune cell population; and fibroblasts represent the stromal cell 
population in NB. Finally, I extracted 3276 cell subtype marker genes from single-cell expression profiles using 
FindAllMarkers (Additional file 1).

I used the software package CellphoneDB to analyse ligand-receptor relationships in single-cell 
expression profiles. Finally, I selected some ligand and receptor pairs for display. I found that macrophages, 
CD8 + T-cells, monocytes, and epithelial cells had high interaction scores with CD74_MIF and CD74_COPA 
(Fig. 5A). CD74(major histocompatibility complex [MHC] lass II invariant chain, II) is a non-polymorphic 
type II transmembrane glycoprotein. In addition to being a MHC class II chaperone, CD74 is a high-affinity 
cell membrane receptor for macrophage migration inhibitory factor (MIF) that regulates T-cell- and B-cell 
development, dendritic cell (DC) motility, macrophage inflammation, and thymic  selection10. These results show 

Figure 2.  Pre-processing of single-cell expression profile data. (A, B) Five NB-related tissue samples, with 3169 
cells examined for expression levels. (C, D) After quality control of scRNA-seq, 2594 core cells were identified.
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Figure 3.  Subtype clustering analysis of single-cell samples. (A) PCA dimensionality reduction analysis on 
20 genes. (B) PCA-heatmap. (C) The PCA was used to identify the significantly available dimensions of data 
sets. (D) The optimal number of PCs was 17. (E) Basing on the available significant components from PCA, I 
performed t-SNE algorithm and classified 14 cell clusters. (F) Heat map showing the expression levels of specific 
marker genes in each cluster.
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that CD74 is closely related to epithelial cells, neurons, and immune cells in NB, suggesting that CD74 plays an 
important role in the occurrence and development of NB.

The number of potential ligand-receptor pairs between macrophages, fibroblasts, epithelial cells, and other 
cells was also extremely high (Fig. 5B). Finally, I counted the number of ligand-receptor gene pairs corresponding 
to each cell group. I found that the subtype of epithelial cells had the highest number of potential interactions 
with other cell subtypes (Fig. 5C).

Functional analysis of marker genes for key subtypes
To further identify key genes in the subtype marker gene set for epithelial cells, I collected clinical information 
on patients with NB and screened 154 prognosis-related genes using Cox univariate regression. Further analysis 
of the prognostic genes pathways with the Metascape database showed that these marker genes were primarily 
enriched for mitochondrial electron transport, ribonucleoprotein complex biogenesis, DNA metabolic processes, 
regulation of chromosome organization, DNA replication, and other pathways (Fig. 6A). These pathways are 
involved in the cell cycle and proliferation process. Furthermore, mitochondrial electron transport is required 
for tumor initiation, growth, and  metastasis11.

I also performed a protein interaction network analysis of genes in the prognostic gene set by Cytoscape 
software (Fig. 6B). Most genes in the network diagram such as BIRC5 (survivin), cyclin-dependent kinase 
inhibitor 3 (CDKN3), CCNB1, AURKA, and eukaryotic translation initiation factor 4E-binding protein 1 
(EIF4EBP1) play important roles in the development and metastasis of  NB12–14.

Obtaining prognosis‑related genes and constructing a predictive model
To further identify key genes in the prognostic gene set, we used the feature selection algorithm of Lasso 
regression to screen for characteristic genes in the NB (Fig. 7A–C). I randomly divided the TARGET patients 
into training and internal validation sets in a 2:1 ratio. After the Lasso regression analysis, I obtained the best 
risk score value for each sample for subsequent analyses (risk score = C12orf60 × (−0.236733770190884) + LEF
TY1 × (−0.208282329754236) + HNRNPM × (−0.169755802627903) + FGL2 × (−0.151331192024352) + CDC12
3 × (−0.127307193600985) + AATF × (−0.0267384340199854) + CNBP × 0.00146836752628189 + DPY30 × 0.011
4982992406702 + HSPE1 × 0.0115376558208352 + FADS2 × 0.012440259330444 + CNIH4 × 0.02400708498250
49 + ABHD8 × 0.0742322217111553 + CRABP1 × 0.106066696134723 + CCDC124 × 0.116166397537017 + PIN
1 × 0.136354334440786 + ASB6 × 0.192414976174186 + FOXO3 × (0.214884239283954 + ALG3 × 0.2436424840
2027 + EIF2S1 × 0.287257489058717 + IFI6 × 0.290358384842998 + ELOF1 × 0.292519860625507). The patients 
were divided into high- and low-risk groups based on the median risk score and analysed using Kaplan − Meier 
curves. The overall survival (OS) of the high-risk group was significantly lower than that of the low-risk group 
in both the training and test sets (Fig. 7D–E). Furthermore, the results of the ROC curves in both the training 
and test sets indicated that the model had good validation performance (Fig. 7F, G).

I downloaded processed data with survival information from public databases for patients with NB (GSE62564 
and GSE85047) and predicted the clinical classification of the patients in the GEO database using the model. I 
evaluated the survival differences between the two groups using Kaplan − Meier analysis to investigate the stability 
of the predictive model. The results showed that the OS of the two GEO external validation sets was significantly 
lower in the high-risk group than in the low-risk group (Fig. 8A, B). To validate the accuracy of the model, I 

Figure 4.  Fourteen clusters were assigned to six categories of cells: neurons, epithelial cells, fibroblasts, 
macrophages, monocytes, and CD8 + T-cells.
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Figure 5.  Analysis of receptor-ligand pairs. (A) Some ligand and receptor pairs for display. Macrophages, 
CD8 + T-cells, monocytes, and epithelial cells had high interaction scores with CD74_MIF and CD74_COPA. 
(B) The number of potential ligand-receptor pairs between macrophages, fibroblasts, epithelial cells, and other 
cells was found to be extremely high. (C) The subtype of epithelial cells had the highest number of potential 
interactions with other cell subtypes.

Figure 6.  Functional analysis of marker genes for key subtypes. (A) Pathway analysis of prognostic genes with 
the Metascape database. (B) Protein interaction network analysis of genes in the prognostic gene set by the 
Cytoscape software.
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performed a ROC curve analysis on the model using an external dataset. The results showed that the model had 
strong predictive power to predict the prognosis of patients (Fig. 8C, D).

Multi‑omics study to explore the clinical predictive value of the model
The tumour microenvironment (TME) consists primarily of tumour-associated fibroblasts, immune cells, 
extracellular matrix, various growth factors, inflammatory factors, specific physicochemical characteristics, and 
cancer cells. The TME significantly influences the diagnosis, survival outcome, and chemotherapy sensitivity of 
tumours. The relationship between risk score and tumour immune infiltration was analysed to further explore 
the potential molecular mechanisms by which risk scores affect NB progression. My results showed that the 
distribution of the immune levels of the different immune factors in the samples was not entirely consistent 
(Fig. 9A). There were multiple significantly correlated pairs of immune factors (Fig. 9B). The aggregation of 
CD4 + T cells and CD8 + T cells enhanced immune capacity and anti-tumor activity in NB. NK cells are a type 
of lymphocyte that possess cytotoxic activity and can effectively respond to the presence of a variety of tumor 
cells 15. Compared to the high-risk group, the levels of immune factors, such as resting memory CD4 T cells, 
were significantly higher in the low-risk group, while the levels of immune factors, such as plasma cells and CD8 
T cells, were significantly lower (Fig. 9C). The risk scores were positively correlated with plasma and activated 
NK cells and negatively correlated with resting memory CD4 T cells (Fig. 9D).

The effects of early-stage NB surgery combined with chemotherapy are well established. I used the R package 
‘pRRophetic’ to predict the chemo-sensitivity of each tumour sample based on drug sensitivity data from the 
GDSC database to further explore the risk scores and sensitivity of commonly used chemotherapy drugs. My 
results showed that high-risk scores were significantly correlated with the sensitivity of patients to drugs such as 
bexarotene, camptothecin, docetaxel, metformin, mitomycin C, and viNBastine (Fig. 9E).

I extracted multiple sets of immune-related genes from the tumour-immune system interaction database 
(TISIDB), including immunomodulators, chemokines, and cellular receptors. I found that the expression levels 
of many immune-related genes were significantly different between the high-risk and low-risk groups. The 
expression levels of chemokines, immune modulators, MHC molecules, and cell receptor molecules were lower 
in the high-risk group than in the low-risk group (Fig. 9F–J).

Furthermore, the analysis of tumour immune dysfunction and exclusion revealed differences between the 
high-risk and low-risk groups, with dysfunction and exclusion significantly different. Dysfunction scores are 
generally used to assess the degree of cellular or organ functional abnormality, which is often associated with 
disease progression and  prognosis16. Generally speaking, the higher the Dysfunction score, the poorer is the 
prognosis. Interestingly, however, we found that the high-risk group had a lower Dysfunction score than the 
low-risk group (Fig. 9K). We suspect that this unexpected finding could be attributed to the fact that prognostic 
assessments are often influenced by a combination of factors. The Dysfunction score is just one of a number of 
potential indicators of prognosis, and other factors, including disease stage, molecular subtype, and treatment 
regimen, may also have a significant influence on prognosis. Consequently, although Dysfunction scores were 
lower in the high-risk group, other factors may have played a more important role in the prognostic model.

Figure 7.  Lasso analysis and model construction. (A) A coefficient profile plot was generated against the log 
(lambda) sequence. Selection of the optimal parameter (lambda) in the LASSO model for TARGET. (B) LASSO 
coefficient profiles of the 21 IRGs in TARGET-NB. (C) Lasso Coefficient HR. (D) Kaplan–Meier survival curve 
analysis in the high-risk and low-risk NB patients in the training subset. (E) Kaplan–Meier survival curve 
analysis in the high-risk and low-risk NB patients in the testing subset. (F) Time-dependent ROC curve for 
1-year, 3-years, and 5-years prediction (training subset). (G) Time-dependent ROC curve for 1-year, 3-years, 
and 5-years prediction (testing subset).
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The Exclusion score is generally associated with the role of T cells (or other immune cells) in the immune 
system in mediating anti-tumor or anti-pathogen immunity. A high Exclusion score indicates that immune cells 
are excluded from the vicinity of a tumor or pathogen, or have difficulty in entering a lesioned area. This could 
indicate that the capacity of the immune system to attack tumor cells or pathogens is limited or suppressed, 
thereby resulting in a potential attenuation of the immunological inhibition of tumor growth and proliferation, 
thus contributing to a poorer prognosis 17. For certain types of tumor, high Exclusion scores are associated with 
immune escape and evasion of immune surveillance. Tumor cells may evade immune system attack by inhibiting 
the entry of T cells or by preventing T cells from functioning within the tumor. This may in turn promote tumor 
growth and progression, thereby increasing the difficulty of treatment. Consequently, high Exclusion scores are 
typically correlated a poorer  prognosis17. Our model revealed that the high-risk group had higher Exclusion 
scores than the low-risk group (Fig. 9L).

Collectively, the findings of the afore-mentioned immunoassays reveal that the high-risk group in our model 
has a limited effect on immunotherapy.

Correlation analysis between the risk of onset with independent prognosis and multiple 
clinical indicators
I examined the specific signalling pathways involved in high-risk and low-risk related models and explored the 
potential molecular mechanisms by which risk scores influence tumour progression. GO analysis showed that 
“ribosome assembly,” “NADH dehydrogenase complex assembly,” “mitochondrial respiratory chain complex 
assembly,” and “spliceosomal snRNP assembly” were significantly enriched in the high-risk group, whereas 
“calcium dependent cell adhesion via plasma membrane cell adhesion molecules” and “response to prostaglandin” 
were significantly enriched in the low-risk group (Fig. 10A). According the KEGG pathway, “RNA polymerase” 
and “oxidative phosphorylation” were significantly enriched in the high-risk group, whereas “dorso-ventral 

Figure 8.  Validation of the robustness of the prognostic model using external datasets. (A) KM for validation 
set1; (B) KM for validation set2; (C) Survival ROC for external validation dataset1; (D) Survival ROC for 
external validation dataset2.
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axis formation” and “phosphatidylinositol signaling system” were significantly enriched in the low-risk group 
(Fig. 10B). I presented some of the highly significant pathways in a focused manner, suggesting that perturbations 
of these signalling pathways in patients in the high-risk and low-risk groups affect the prognosis of patients with 
NB.

I integrated the clinical information as well as the risk scores of patients in the high-risk and low-risk 
groups and displayed the results of the regression analysis in the form of a nomogram, where the results of 
the logistic regression analysis showed that in all my samples, the distribution of the values of the different 
clinical indicators of NB and the risk score values contributed to several scoring processes (0, undifferentiated 
or poorly differentiated; 1, differentiating in the grade indicator). Of these, only the distribution of the risk score 
values derived from the model analysis contributed throughout the scoring process of the predictive analysis 

Figure 9.  Multi-omics analysis of the clinical predictive value of the model. (A) Stacked bar chart of the 
distribution of 22 immune cells in each NB sample of the TARGET cohort. (B) Pearson correlation between 
immune cells, red for positive correlation, purple for negative correlation. (C) Differences in immune cell counts 
between the high-risk and low-risk groups. (D) The correlation between the risk score and the immune cells, 
the circle size indicates the strength of the correlation, and the color indicates the p-value. (E) The difference 
on the therapeutic sensitivities of six chemotherapy drugs. (F) Chemokine association. (G) Immuno-inhibitor 
association. (H) Immuno-stimulator association. (I) MHC association. (J) Receptor association. In the analysis 
of Dysfunction (K) and Exclusion (L), the H-score group refers to samples with scores higher than the median 
score; the L-score group refers to samples with scores not higher than the median score.

Figure 10.  GSEA analysis of risk scores. (A) GO pathways showed that “ribosome assembly,” “NADH 
dehydrogenase complex assembly,” “mitochondrial respiratory chain complex assembly,” and “spliceosomal 
snRNP assembly” were significantly enriched in the high-risk group. (B) KEGG pathways showed that “RNA 
polymerase” and “oxidative phosphorylation” were significantly enriched in the high-risk group.
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(Fig. 11A). We also performed a predictive analysis of OS for the 3-year and 5-year periods of NB, the results of 
the calibration curve and ROC curve of the nomogram showed a reliable performance, with an AUC of 0.8378, 
0.8875, and 0.8851 at 1, 3, and 5 years, respectively (Fig. 11B, C). As shown in Fig. 11D, compared with the age, 
gender, grade and stage indexes, the new riskscore provided greater net benefits both in the derivation and 
validation cohorts. Simultaneously, through univariate and multivariate analyses, I found that the risk score was 
an independent prognostic factor for patients with NB (Fig. 11E, F).

I grouped the risk score values of all samples by different clinical indicators, including gender, grade, stage, 
and fustat, and presented them as box plots (Fig. 12A–D). Through the rank-sum test, I found that these risk 
scores were significantly different between the groups for the two clinical indicators, stage and fustat (P < 0.05). 
High-risk scores were positively correlated with high tumor staging and patient mortality in NB.

Study of gene expression levels in diseases and Analysis of regulatory networks of model 
genes
I used the GeneCards database (https:// www. genec ards. org/) to obtain NB-related disease genes in 5294 children 
and analysed the expression levels of the 21 model genes and the top 20 genes in the relevance score. I found 
that the expression levels of the model genes were significantly correlated with the expression levels of several 
disease-related genes. For example, in a prognostic model, ALG3 expression was positively correlated with TP53 
and MYCN, whereas FGL2 expression was negatively correlated with ALK, MYCN, PHOX2B, and LIN28B. 
HNRNPM expression was positively correlated with ALK, MYCN, PHOX2B, LIN28B, TOP2A, and TP53 (Fig. 13).

I used 21 model genes as the gene set for this analysis and found that they were regulated by multiple 
transcription factors and other common mechanisms. Therefore, an enrichment analysis was performed on 
these transcription factors using cumulative recovery curves (Fig. 14A). Motif-TF annotation and selection of 
important genes were carried out. The analysis showed that the motif annotation with the highest NES: 5.02) was 
cisbp__M2248. Five genes were enriched in this motif, i.e., AATF, FGL2, FOXO3, IFI6, and LEFTY1. I further 
assessed the expression of AATF, FGL2, FOXO3, IFI6, and LEFTY1 in the NB cell line (SK-N-AS) and the healthy 
liver cell line (QSG-7701) by qPCR. As shown in Fig. 14B, four were differentially expressed in NB cells among 
the five model genes and normal live cells, i.e., AATF, FGL2, FOXO3, and LEFTY1. The expression levels of these 
four genes were upregulated in NB and the expression level of IFI6 was very low. I displayed all enriched motifs 
and corresponding transcription factors from the model genes (Fig. 15).

Figure 11.  Risk of onset and independent prognosis analysis. (A) The nomogram for predicting the 3- and 
5- years OS of NB patients. (B) The calibration curve of the nomogram for predicting 3- and 5-years OS of 
NB patients. (C) Time-dependent ROC curve for 1-year, 3-years, and 5-years prediction. (D) Decision curve 
analysis (DCA). (E) Univariate Cox regression analysis. (F) Multifactorial Cox regression analysis.

https://www.genecards.org/
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Figure 12.  Correlation analysis of risk scores with clinical characteristics. (A) Relationship between gender 
with risk scores. (B) Relationship between grade with risk scores. (C) Relationship between stage with risk 
scores. (D) Relationship between fustat with risk scores.

Figure 13.  The expression levels of the model genes were significantly correlated with the expression levels of 
several NB-related genes.
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Discussion
The TME is a complex network system comprised of seven parts: the hypoxia niche, immune microenvironment, 
metabolic microenvironment, acidic niche, innervated niche, mechanical microenvironment, and microbial 
 microenvironment18. Intercellular communication is divided into direct and indirect communication. Direct 
contact communication involves gap junctions, tunneling nanotubes, and LRIs, whereas indirect communication 
involves exosomes, apoptotic vesicles, and soluble  factors19. Intercellular communication mediates the crosstalk 
between the TME and the host, as well as between cells and cell-free components, causing changes in the tumor 
hallmarks of the TME. This includes changes in tumor cell proliferation, invasion, apoptosis, angiogenesis, 
metastasis, inflammatory response, gene mutation, immune escape, metabolic reprogramming, and therapeutic 
 resistance19. LRIs are the most important form of intercellular communication. It is reported that most cells 
express from tens to hundreds of ligands and receptors, forming a highly connected signal network through 
multiple ligand receptor  pairs20. The biological importance and druggable properties of receptors and their 
corresponding ligands have designated them as especially useful clinical targets for  cancer21. Checkpoint 
inhibitors that operate based on the ligand—receptor interaction have become powerful tools for clinical 
 therapy21. Therefore, there are broad prospects for the research of intercellular communication inference and 
receptor-ligand pairs in the field of molecular oncology.

To improve therapeutic strategies for malignant tumors, the communication between various cell types in 
the TME must be quantified. Intercellular communication inference methods primarily include network-based, 
machine learning-based, and spatial information-based  approaches22. Network-based methods explore network 
algorithms for decoding intercellular communication. Hou et al.23 developed the Network Analysis Toolkit 
for Multicellular Interactions to score intercellular communication. Machine-learning-based methods exploit 
machine-learning models and algorithms to measure the communication specificity between two cell types. Cillo 
et al.24 developed a deterministic annealing Gaussian mixture model-based clustering algorithm to assess the 
communication between immune cells and carcinogen- and virus-induced cancers. Spatial information-based 
methods use scRNA-seq data, LRIs, and spatial information to infer intercellular communication. Li et al.25 
presented a bivariant Moran’s statistical model (SpatialDM) to detect spatially co-expressed ligand and receptor 
pairs, their local interacting spots (single-spot resolution), and communication patterns. Recently, a Boosting-
based LRI prediction method (CellEnBoost) was developed for intercellular communication elucidation based 
on an Ensemble of Light gradient boosting machine (Light GBM) and AdaBoost, combined with a Convolutional 
Neural Network (AdaBoost-CNN)26. Peng et al.27 developed an ensemble deep-learning framework, CellComNet, 
to decipher ligand receptor-mediated intercellular communication using single-cell transcriptomic data. 
CellComNet was compared with other four competing protein–protein interaction prediction models to obtain 
the best area under the curve (AUC) and area under the precision-recall curve (AUPR) on the four LRI datasets, 
elucidating the optimal LRIs classification ability. In this study, after evaluating a few software packages and 
considering their benchmark performances, the CellphoneDB software package was used to analyze the LRIs 
in single-cell expression profiles.

Figure 14.  Analysis of regulatory networks of model genes. (A) Enrichment analysis was performed on these 
transcription factors using cumulative recovery curves. Motif-TF annotation and selection of important genes 
were carried out. (B) The expression of AATF, FGL2, FOXO3, IFI6 and LEFTY1 in SK-N-AS and QSG-7701 by 
qPCR.
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Figure 15.  All the enriched motifs and corresponding transcription factors of the model genes.
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In this study, I used scRNA-seq data to analyze cell–cell LRIs in the TME of NB to identify key ICAGs genes. 
scRNA-seq data from 3169 cells of five NB samples were analysed to explore the intratumor heterogeneity of 
NB by exploring cell clusters. Analysis of the scRNA-seq data from the 2594 cells obtained revealed that 14 cell 
clusters belonged to six cell types, involving broad cell types such as CD8 + T-cells, epithelial cells, fibroblasts, 
macrophages, monocytes, and neurones.

In recent years, the spatial transcriptome technique has been one of the major breakthroughs in the field 
of bioinformatics. This technique makes up for the defect that single-cell sequencing technology is difficult to 
measure the positional relation between individual cells by simultaneously measuring the spatial position and 
intracellular transcriptome data of a great number of cells, thus providing a new data basis for understanding the 
interactions between multiple cells. In 2022, Li et al.28 proposed cell clustering for spatial transcriptomics (CCST) 
based on graph neural networks (GNNs). CCST can determine the cell cycle stage of different cells within the 
same cell population and identify cell subtypes with new functions. The authors found that mice neuroblasts 
contain two clusters of cells: C0 and C1. Compared with C0, the C1 neuroblasts are spatially closer to mitral 
valve/cluster cells, endothelial cells and olfactory ensheathing cells (OECs). The analysis of the GO pathway 
showed that the C0 cells are associated with neural functions, such as the modulation across synaptic signaling 
pathways, suggesting that C0 calls represent functionally mature nerve cells, while C1 cells are immature cells. 
GO analysis showed that C1 cells are associated with cell adhesion. Their study had some implications for the 
occurrence of NB. It was also found in my study that some cells are likely to be the two groups of cell types of 
NB tumor cells: neurons and epithelial cells.

When analyzing the receptor–ligand relationship pairs, it was revealed that CD74 was closely related to 
neurons and epithelial cells. CD74 (MHC class II invariant chain, II) is a non-polymorphic type II transmembrane 
glycoprotein. Cell surface proteins play crucial roles in regulating cell-to-cell communication and interactions 
with the extracellular  environment29. Hu et al.29 recently introduced a novel analytical framework called the 
gene function and protein association (GFPA) to explore the relationship between cell surface proteins and gene 
function. GFPA can also be used as an analytical tool to further explore whether the membrane protein CD74 
can be used as a new potential therapeutic target and biomarker for predicting NB prognosis.

Interaction networks were created for the 12 cell types using CellphoneDB, the most widely used tool for 
studying intercellular interactions. I then performed a statistical analysis of the number of ligand-receptor gene 
pairs corresponding to each cell group and found that the epithelial cell subtype had the highest potential 
interactions with other subtypes. To further identify key genes in the epithelial cell subtype marker gene set, 
I collected clinical information from patients with NB and screened 154 prognosis-related genes using Cox 
univariate regression. I also performed a protein–protein interaction network analysis of genes in the prognostic 
gene set using Cytoscape software. Subsequently, I used the feature selection algorithm with Lasso regression 
to find characteristic genes in NB and developed a 21-gene prognostic model. Then, I analysed the relationship 
between the model and clinical characteristics, validated its clinical predictive value, and analysed the overall 
survival (OS) of each group based on the score calculated by the 21-gene prognostic model. Survival analysis 
using the Kaplan − Meier method showed that the OS of the high-risk group in both training and test sets 
was significantly lower than that of the low-risk group. Furthermore, the ROC curve analysis showed a strong 
predictive power of the model for the prognosis of the patient. Univariate and multivariate analyses revealed 
that the model’s risk score was an independent prognostic factor for patients with NB, and the rank-sum test 
found significant differences in the model’s risk score between clinical indicators, stage, and clinical status. 
Sun et al.30 established a new deep learning algorithm based on a graph convolutional network (GCN) with a 
graph attention network (GAT) (GCNAT) to predict metabolite–disease associations. A fivefold cross-validation 
shows outstanding AUC (0.950) and AUPR (0.405) of GCNAT when compared to previous methods and similar 
approaches. Compared to existing state-of-the-art methods, the proposed method achieves a higher predictive 
accuracy. In future studies, GCNAT will be used to test the predictive performance of tumor-related prognostic 
models.

By analysing the relationship between risk scores and tumour immune infiltration, I found that the 
distribution of immune levels of different immune factors in the samples was inconsistent. Compared to 
significantly higher levels of immune factors, such as resting CD4 T cells in the low-risk group samples, the 
high-risk group was associated with high levels of plasma cells, CD8 T cells, and activated NK cells, indicating 
an activated immune state. Increasing evidence suggests that activation of immune cells (e.g., CD4, CD8, and 
NK cells) can kill tumour cells through mechanisms at the molecular  level31. NKG2D.ζ–NK cell, a gene-modified 
type of NK cell that targets myeloid-derived suppressor cells, enhances CAR-T cell activity in  NB32. Similarly, 
increased uptake of cancer-derived neo-antigens by dendritic cells can stimulate the antitumor effect of CD8 + T 
cells, indicating the vital role of antigen processing in cancer  immunity33. This study showed that the 21-gene 
model was highly involved in regulating the tumour immune microenvironment, and the findings of the afore-
mentioned immunoassays reveal that the high-risk group in our model has a limited effect on immunotherapy.

Drug sensitivity analysis showed that the 21-gene model risk score was significantly correlated with patient 
sensitivity to bexarotene, camptothecin, docetaxel, metformin, mitomycin C, and viNBastine. Bexarotene, 
camptothecin, mitomycin C, and viNBastine are conventional chemotherapeutic drugs for NB treatment, and 
early studies have reported that the camptothecin analogue, gimatecan, is active in vitro in human  NB34. Recently, 
it was found that the combination of nano-formulated docetaxel and curcumin in injectable nanoparticles 
significantly improved the efficacy in orthotopic models of  NB35. In addition to being an anti-diabetic drug, 
metformin also has anti-proliferation and anti-growth properties in several tumours. In vitro cell experiments 
have shown that metformin may inhibit the growth and proliferation of NB SH-SY5Y cells through the Erk1/2 
and Cdk5  pathways36. Since there are more than 10,000 small-molecular compounds in the early stages of 
drug discovery and development, evaluating the activity of all these small-molecular compounds is technically 
challenging, and the relevant procedures are expensive and time-consuming37. Wang et al.37 developed a novel 
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deep learning predictive model, called DMFGAM, to predict hERG blockers. Validation experiments were 
conducted to evaluate the performance of DMFGAM. The results showed that DMFGAM is a useful tool for 
classifying small-molecule drugs into hERG blockers and hERG non-blockers. This tool can also be used to verify 
the effectiveness and related side effects of newly discovered small-molecule compounds for the treatment of NB.

By studying the specific signalling pathways involved in high-risk and low-risk models, I found that 
the GO-enriched pathways include CALCIUM DEPENDENT CELL–CELL ADHESION VIA PLASMA 
MEMBRANE CELL ADHESION MOLECULES and MITOCHONDRIAL RESPIRATORY CHAIN COMPLEX 
ASSEMBLY; KEGG-enriched pathways include DORSO-VENTRAL AXIS FORMATION and HUNTINGTON’S 
DISEASE, suggesting that the disturbance of these signalling pathways in the high-risk and low-risk groups 
affected prognosis in NB. Signal transduction networks are largely composed of proteins that can be modified 
or degraded, as well as interact with and move to specific cellular locations. Liquid–liquid phase separation 
(LLPS) is a crucial mechanism for regulating biological functions by controlling the spatiotemporal distribution 
of intracellular  biomacromolecules38. To explore how different mRNAs compete to bind to the same protein 
partner in biological cells, Xu et al.38 proposed a Cahn-Hillard phase-field model paired with a Ginzburg–Landau 
free-energy scheme to describe high-valence mRNA-protein interactions to form distinct complexes capable 
of phase separation and perform different biological functions. They also found that the gradient-interfacial 
energy coefficients, initial mRNAs levels, and mRNA-protein binding rates could efficiently shift the spatial 
patterns of the two specific droplets from segregation to shared interface or enclosed patterns. This study sheds 
light on the molecular mechanisms underlying agglutinant assembly in LLPS and provides potential clues for 
the development of more rational disease treatment strategies. An advantage of ordinary differential equation 
(ODE) models is that they describe the rate of change of continuous variables used to model dynamic systems 
in several  areas39. ODE modeling can be used to study the effects of multifunctional antitumor drugs on human 
tumor cells and normal cells and the specific signaling pathways involved, as well as to explore the conversion 
mechanism between various death modes (ferroptosis and apoptosis) in single cells, providing potential clues to 
guide the development of more rational control strategies for  diseases40. Wang et al.41 established a model built 
using a GCN with a conditional random field, called GCNCRF, to predict potential relationships between lncRNA 
and miRNA. The GCNCRF utilizes an attention mechanism to update the node weights so that each node can 
reassign weights according to the difference between neighboring nodes. Compared to existing state-of-the-art 
methods, the proposed method achieves a higher predictive accuracy. We can also use GCNCRF to predict the 
potential relationships between miRNAs and mRNA in future biological information research.

Finally, I used the 21 model genes as the gene set for this analysis and found that they were regulated by 
multiple transcription factors and other common mechanisms. The analysis showed that the motif annotation 
with the highest normalized enrichment score (NES: 5.02) was cisbp__M2248. Five genes were enriched in this 
motif, which were (in order): AATF, FGL2, FOXO3, IFI6 and LEFTY1.Studies have shown that the apoptosis-
antagonising transcription factor (AATF) acts through the p38/MK2/AATF signalling pathway as a critical 
repressor of p53-driven apoptosis in tumour cells, implicating this signalling cascade as a novel target for 
chemotherapy-sensitising therapeutic  efforts42. FGL2, a member of the thrombospondin family, is essential 
to regulate the activity of immune and tumour cells in glioblastoma (GBM). FGL2 has immunosuppressive 
effects in the GBM tumour microenvironment and the ability to promote the progression of malignant tumours, 
making it a potential new target gene for GBM  immunotherapy43. Previous studies have shown that FOXO3, a 
member of the fork-head box O (FOXO) family, regulates autophagy in various cells. FOXO3 inhibits human 
gastric adenocarcinoma cell growth by promoting autophagy in an acidic  microenvironment44. In ovarian cancer 
(OC), it was found that interferon-α inducible protein 6 (IFI6) was found to promote the proliferation of OC 
cells by activating the NF-κB pathway and induces cisplatin  resistance45. In addition, the left–right determination 
factor (LEFTY) is a novel member of the transforming growth factor-β superfamily. LEFTY expression has been 
recognised as a stemness marker because LEFTY is enriched both in undifferentiated embryonic stem cells and 
 blastocysts46. The results of qRT-PCR showed that AATF, FGL2, FOXO3, and LEFTY1 were upregulated in the 
NB cell line, compared to the healthy liver cell line (QSG-7701).

Conclusion
By integrating scRNA-seq and RNA-seq data, I performed multiple machine-learning methods and established 
a novel prognostic model for OS prediction in patients with NB that could be applied to predict the survival 
probability of these patients. Furthermore, the risk score is a promising independent prognostic factor closely 
correlated with the immune microenvironment and clinicopathological characteristics. Overall, this study 
provides information on reliable predictors of NB treatment efficacy, opening up new avenues for the targeted 
treatment of NB in the future.

Materials and methods
Data acquisition
The TCGA database (https:// portal. gdc. cancer. gov/), the largest database of cancer gene information available, 
holds data including gene expression data, miRNA expression data, copy number variants, DNA methylation, 
single nucleotide polymorphisms, and more. We downloaded the original mRNA expression data from processed 
TARGET-NB for 160 samples. The Gene Expression Omnibus (GEO) database (https:// www. ncbi. nlm. nih. gov/ 
geo/ info/ datas ets. html) is a gene expression database created and maintained by the US National Centre of 
Biotechnology Information (NCBI). We downloaded NB-related data, GSE192906, from the NCBI GEO public 
database for single-cell correlation analysis, totalling five samples. We also downloaded the series matrix file 
data for GSE62564 from the NCBI GEO public database, which was annotated on the platform GPL11154. 
Then, we extracted data for 498 patients with NB with complete expression profiles and survival information. 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/info/datasets.html
https://www.ncbi.nlm.nih.gov/geo/info/datasets.html
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Additionally, we downloaded the series matrix file data for GSE85047 from the NCBI GEO public database, which 
was annotated on the platform GPL5175. Then, we extracted data from 269 patients with NB with complete 
expression profiles and survival information.

Single‑cell analysis
The expression profile was first read through the Seurat  package47 and screened for low expression genes 
(nFeature_RNA > 100 & percent.mt < 15). Data were sequentially normalised, homogenised, and subjected to 
principal component analysis (PCA). The optimal number of principal components (PCs) was determined using 
ElbowPlot(17), and t-SNE (t-distributed stochastic neighbour embedding)  analysis48 was used to obtain the 
positional relationships between each cluster. Clusters were annotated using the BlueprintEncodeData annotation 
file provided by the Celldex  package49 and assigned separately to cells with important relationships to the onset 
of the disease. Finally, we extracted the marker genes for each subtype of the cells from the single-cell expression 
profile by setting the logfc.threshold parameter of FindAllMarkers at 0.585 and the min.pct parameter at 0.25. 
Genes where p_val_adj was < 0.05 and |avg_log2FC| was > 0.585 were selected as marker genes specific for each 
subtype.

Analysis of ligand‑receptor interactions
CellPhoneDB (database version. 4.0)50 is a publicly available repository of selected receptors, ligands, and 
their interactions. Both ligands and receptors contain subunit structures that accurately represent heteromeric 
complexes. The CellPhoneDB ligand-receptor database integrates data from UniProt, Ensembl, PDB, IUPHAR, 
and others. It stores 1,885 protein interactions, allowing for a comprehensive and systematic analysis of 
intercellular communication molecules and the study of intercommunication between different cell types and 
communication networks. We performed a significant analysis of ligand-receptor relationships by calling the 
statistical analysis function of the software package CellphoneDB on the features in the single-cell expression 
profiles. We set the cluster labels of all cells to be randomly arranged 1,000 times. We determined the mean 
expression levels of receptors in the clusters and their interacting ligands in the interacting clusters. For each 
receptor-ligand pair in each comparison between the two cell types, this generated a null distribution (also known 
as the Bernoulli distribution or the binomial distribution). Finally, we selected some ligand-receptor pairs of 
interest for the presentation of relationship pairs.

Functional enrichment analysis of the genes
Functional annotation of important gene sets was performed through the Metascape database (www. metas 
cape. org) to thoroughly explore the functional relevance of the gene sets. Gene ontology (GO) analysis and 
Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway  analysis51–53 were performed for specific genes. 
A minimum overlap of ≥ 3 & p ≤ 0.01 was considered statistically significant.

Model construction and prognosis
Prognosis-associated genes were selected, and a prognostic model was further constructed using Lasso 
 regression54. After incorporating the expression values for each specific gene, a risk score formula was constructed 
for each patient and weighted by their estimated regression coefficients in Lasso regression analysis. Patients 
were divided into low-risk and high-risk groups according to the risk score formula using the median risk score 
as the cut-off. The difference in survival between the two groups was assessed using Kaplan − Meier analysis 
and compared using log-rank statistics. The role of risk scores in the prediction of the patient’s prognosis was 
examined using Lasso regression analysis and stratified analysis. In addition, receiver operating characteristic 
(ROC) curves were used to investigate the accuracy of the model predictions.

Drug sensitivity analysis
Based on the largest pharmacogenomics database (Genomics of Drug Sensitivity in Cancer (GDSC), https:// 
www. cance rrxge ne. org/), we used the R package ‘pRRophetic’55 to predict the chemotherapy sensitivity of each 
tumour sample. Regression was used to determine the IC50 estimates for each specific chemotherapy drug 
treatment, and the regression and prediction accuracy were tested with 10 cross-validations using the GDSC 
training set. All parameters were set at default values, including during the removal of batch effects by ‘combats’ 
and the average of duplicate gene expression.

Immune cell infiltration analysis
RNA-seq data from different subgroups of patients with NB were analysed using the CIBERSORT  algorithm56 
to infer the relative proportions of the 22 immune infiltrating cell types. Pearson’s correlation analysis was 
performed on the level of gene expression, as well as on the immune cell content. A P-value of less than 0.05 was 
considered statistically significant.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA; http:// www. broad insti tute. org/ gsea)57 was performed on the expression 
profile of NB to identify genes differentially expressed between high- and low-risk groups. Gene sets were filtered 
using maximum and minimum gene sets of the size of 500 and 15 genes, respectively. After 1,000 permutations, 
an enriched gene set was obtained based on a P-value of less than 0.05 and a false discovery rate value of 0.25. 
Finally, the significantly enriched pathways from GO and KEGG  enrichments51–53 were separately presented in 
a concentrated display.

http://www.metascape.org
http://www.metascape.org
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
http://www.broadinstitute.org/gsea
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Regulatory network analysis of important genes
In this study, transcription factors were predicted using the R package ‘RcisTarget’58. All calculations performed 
using RcisTarget are based on motifs. The normalised enrichment score (NES) of a motif depends on the 
total number of motifs in the database. In addition to the motifs annotated by the source data, we inferred 
further annotation into a file based on motif similarities and gene sequences. The first step in estimating the 
overexpression of each motif in a gene set was to calculate the area under the curve (AUC) for each pair of motif-
motif sets. This was based on the calculation of the recovery curve of the motif ranking by gene sets. The NES 
for each motif was calculated from the AUC distribution of all motifs in the gene set. We used rcistarget.hg19.
motifdb.cisbpont.500 bp for the Gene-motif rankings database.

Cell culture and quantitative real‑time PCR (qRT‑PCR)
The NB cell line SK-N-AS was obtained from Wuhan Pricella. The healthy human liver cell line QSG-7701 
was obtained from Cellverse. Cells were kept in Dulbecco’s modified Eagle’s medium supplemented with 10% 
foetal bovine serum (Wisent, Ottawa, ON, Canada) and 1% penicillin in humid conditions at 37 °C with a 5% 
 CO2 atmosphere. The RNA from the cell lines, QSG-7701 and SK-N-AS, was extracted using TRIzol reagent 
(Invitrogen), and the RevertAid First-Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Inc.) was used to 
synthesise cDNA. qRT-PCR analysis was performed using SYBR Green (Takara). The primer sequences are 
summarised in Table 1.

Statistical analysis
Survival curves were generated using the Kaplan–Meier method and compared using the log-rank test. 
Multivariable analysis was performed using the Cox proportional hazards model. All analyses in this study 
were performed using R (version 4.0). All statistical tests were two-sided and P < 0.05 was considered statistically 
significant.

Data availability
Publicly available datasets were analyzed in this study. This data can be found here: GSE192906 (https:// www. 
ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE19 2906) TARGET-NBL (https:// portal. gdc. cancer. gov/). GSE62564 
(https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE62 564). GSE85047 (https:// www. ncbi. nlm. nih. gov/ 
geo/ query/ acc. cgi? acc= GSE85 047).
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