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Assessment of green 
technology innovation 
on energy‑environmental efficiency 
in China under the influence 
of environmental regulation 
considering spatial effects
Wei Li 1, Xiaomin Xu 1*, Shengzhong Huang 1, Tong Cheng 2, Mengkai Liu 1 & Can Zhang 1

Enhancing energy-environmental efficiency (EEE) is crucial for achieving energy conservation and 
emission reduction goals. Investigating the mechanism through which green technology innovation 
(GTI) affects EEE and understanding the role of environmental regulation (ER) in this process provides 
a theoretical basis for efficient utilization of GTI and ER. This study employs a Dynamic Spatial Durbin 
Model and utilizes panel data from 2003 to 2017 for 30 Chinese provinces to examine the impact of 
GTI on EEE in the presence of ER. The empirical results reveal: (1) GTI has a U-shaped impact on EEE, 
primarily driven by SubGI. (2) GTI’s influence on EEE is predominantly reflected in PTE, also stemming 
from SubGI. (3) The interaction term between ER and GTI is 0.0022, while the GTI coefficient is 
− 0.0741, and the GTI quadratic term coefficient is 0.0007, all statistically significant. This implies that 
ER mitigates the negative impact of GTI on EEE while strengthening its positive effect. These findings 
provide empirical evidence and policy insights for more effectively utilizing GTI and ER to enhance EEE 
and achieve energy conservation and emissions reduction goals.

Since the initiation of economic reforms and opening-up policies, China’s rapid economic development has 
led to a growing contradiction between economic growth, energy consumption, and environmental pollution1. 
According to BP Statistical Review of World Energy, in 2019, China’s primary energy consumption reached 
141.7 EJ, representing a 4.4% increase compared to the previous year, marking 19 consecutive years of being 
the fastest-growing energy consumer2. High levels of primary energy consumption imply a faster depletion of 
limited natural energy resources, posing not only a resource depletion issue but also an energy security concern. 
Furthermore, as an indicator reflecting a nation or region’s sustainable economic development, in 2019, China’s 
carbon intensity was 48.1% lower than in 2005, but it still exceeded the global average during the period from 
1990 to 20193. This underscores the necessity of controlling carbon emission intensity. Therefore, within the 
context of energy conservation and emissions reduction, exploring ways to enhance EEE becomes a critical 
measure for reducing energy consumption and elevating carbon intensity, serving as a key driver for achieving 
sustainable economic development in China.

Green technology innovation (GTI) has garnered significant attention as a crucial means of ecological and 
environmental protection in various regions. It has shown promising results in controlling industrial energy 
consumption, reducing energy intensity4,5, incentivizing businesses to develop green technologies, lowering the 
consumption of non-renewable energy sources6, and balancing ecological conservation with economic growth7. 
However, a study by Wang and Chen found that the relationship between resource dependency and haze pol-
lution in 263 Chinese prefecture-level cities is complex. While GTI can reduce haze pollution when resource 
dependency is low or moderate, it may lead to the disappearance of optimization effects when resource depend-
ency is high8. Similarly, research by Mongo et al. analyzing environmental innovation data from 15 European 
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countries over 23 years revealed that environmental innovation typically reduces carbon emissions in the long 
term but may have opposite effects in the short term9. This suggests that there may be rebound effects associated 
with GTI, potentially leading to increased resource consumption and carbon emissions10. Therefore, it is crucial 
to ascertain the impact of GTI on EEE. Furthermore, Zhang et al. pointed out that genuine green technology 
innovation represents the long-term choices of innovation entities, while strategic green technology innovation 
reflects their short-term preferences. Environmental regulations were found to exert a greater influence on stra-
tegic green innovation11. In a study by Xing and Dong, it was revealed that outward foreign direct investment 
primarily drives reverse green technology innovation in non-invention strategic green innovation categories. 
Strengthening research and development capabilities and implementing improved environmental regulations can 
enhance the influence of foreign direct investment on reverse substantive green innovation12. This suggests that 
due to varying innovation motivations, green technology innovation can be categorized into two distinct types: 
creative substantive green technology innovation and policy-responsive symbolic green innovation. However, 
current assessments of the impact of GTI on EEE mainly focus on GTI itself, without considering the influence 
of its components on EEE. In other words, whether the impact of GTI on EEE arises from the development and 
dissemination of new clean energy technologies or from improvements in technologies related to ecological 
environmental protection and resource recycling remains unclear.

Furthermore, since 1970, China has formulated and implemented a series of environmental policies13 aimed 
at improving the environment through legal and market mechanisms, such as pollution fees and carbon trading 
markets14,15. The interaction between environmental regulation (ER) and value-added tax motivates enterprises 
to further reduce the intensity of SO2 emissions16,17 and promotes innovation in pollution reduction18. Therefore, 
when researching how to enhance Energy-Environmental Efficiency (EEE), considering ER is indispensable. 
However, current research primarily focuses on the impact of ER on EEE, without considering the role of ER in 
the mechanism through which GTI affects EEE. In other words, how GTI’s influence on EEE changes due to the 
implementation of ER is currently unclear.

To address this research gap, this study integrates the definition of GTI, decomposes GTI into Substantial 
green innovation (SubGI) and Symbolic green innovation (SymGI), and elucidates the underlying mechanisms 
through which GTI affects EEE. Specifically, it clarifies whether the impact of GTI on EEE is driven by the 
development and promotion of new clean energy technologies or by improvements in ecological environmental 
protection and resource recycling technologies. Secondly, it introduces the interaction effects of ER with GTI, 
SubGI, and SymGI, elucidating the role of ER in the mechanisms through which GTI, SubGI, and SymGI influ-
ence EEE. Lastly, it incorporates spatial factors by employing spatial econometric models to explore the impact 
of GTI on EEE under the influence of ER, resulting in more realistic and reliable outcomes.

This study makes several potential contributions to the existing literature. Firstly, by decomposing GTI, the 
study delves deeper into the mechanisms of GTI, enriching the research on the impact of GTI on EEE and shed-
ding light on the black box of how GTI operates. Secondly, by simultaneously considering the moderating role 
of ER and spatial spillover effects, the study aligns with the real-world context, providing a theoretical basis and 
reference for China and other developing countries to more accurately utilize GTI and ER for energy conserva-
tion and emissions reduction.

The remaining sections of this paper are organized as follows: Section "Literature review" provides a review 
of relevant literature. Section "Data and methodology" describes the data, models, and methods used in the 
study. Section "Results and discussion" presents the analysis and results. Finally, Section "Conclusion and policy 
implications" summarizes the research findings and offers policy recommendations.

Literature review
Technology shapes the future of energy, and technological innovation creates the future of energy. Under the 
constraints of China’s dual carbon targets, achieving energy conservation, emission reduction, and improv-
ing EEE has become an urgent priority. In the analysis of energy and the environment, EEE is considered 
the most promising tool for establishing a harmonious relationship between economic growth and resource 
consumption19. Therefore, the driving mechanisms of EEE have garnered widespread attention. The structure 
of the literature review is outlined in Table 1.

Table 1.   Literature review structure.

Indicators Dimension Summary References

GTI
GTI has a positive impact Improved environmental performance, profitability, core competitiveness of enterprises, total factor carbon 

productivity in high-income economies and carbon performance
20–24

Non-linear variation in the impact of GTI A critical point is reached prior to a boost in green productivity and green economic efficiency, with an 
inverted U-shaped effect on regional carbon emissions

28–30

ER
ER has a positive effect Promoting green transformation of enterprises, fostering long-term economic growth, increasing green 

innovation outputs, improving energy efficiency in the environment and green technological efficiency
11,14,33–36

ER has a moderating effect Enhancing the impact of green knowledge innovation on CO2 emissions 11,26

EEE

EEE has a positive effect
Reducing pollution emissions, enhancing the sustainability of resource utilization and stimulating 
technological innovation to effectively counter environmental problems and promote sustainable 
development

38–41

EEE is affected by multiple factors Influenced by technological innovation, policies and regulations, FDI absorptive capacity, level of 
economic development, industrial and energy structure, etc

42–46

EEE consists of SE, PTE EEE is the multiplication of SE and PTE 47–49
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GTI, as a major driver of sustainable development, has garnered widespread attention from scholars 
across various fields. Firstly, green innovation not only enhances a company’s environmental performance20, 
profitability21, and core competitiveness of enterprises22, but also contributes to total factor carbon productivity 
in high-income economies23, and carbon performance24. The main reason behind this is that green innovation 
propels companies to adopt more environmentally friendly production and operational methods, reducing 
resource waste and pollution emissions, thus improving environmental performance. Although GTI brings 
various beneficial impacts, the specific part of this impact generated by GTI may vary depending on the industry 
or context25. For instance, ER increase the effect of green knowledge innovation on CO2 reduction26, further 
encouraging heavy-polluting enterprises to preferentially focus on substantial green technology innovation dur-
ing their green transformation27. However, the fundamental reasons behind the generation of these impacts by 
GTI have not been thoroughly explored. Secondly, there are also some contrasting research findings suggesting 
that technological innovation only exerts a driving effect on green productivity28 and green economic efficiency29 
after reaching critical points, displaying non-linear changes. Similarly, the impact of GTI on regional carbon 
emissions30 exhibits an inverted U-shaped change of initially increasing and then decreasing. Hence, the impact 
of GTI is not constant, and this phenomenon may be related to the intrinsic drivers of GTI, wherein different 
intrinsic factors may be at work during different periods. Nevertheless, some similar studies overlook these 
intrinsic driving factors of GTI.31,32.

ER, as a political tool, can drive corporate green transformation11, promote long-term economic growth14, 
enhance green innovation output33, improve EEE34,35, and green technological efficiency36. The main rationale 
behind this is that moderate ER can partially or fully offset enterprise innovation costs through the compensating 
effects of green innovation, thus increasing enterprise innovation output. However, the implementation of ER can 
also have an impact on other factors11. For example, ER can significantly increase the impact of green knowledge 
innovation on CO2 emissions, but the impact on green process innovation is not as pronounced26. Therefore, 
ER is a crucial consideration in exploring the mechanism of impact. Additionally, environmental policies and 
carbon emissions also have spatial spillover effects37, and studying spatial factors is more realistic.

EEE is a vital concept in the fields of green economy and sustainable development. On one hand, improving 
EEE can reduce pollution emissions38, enhance sustainable resource utilization39, stimulate of technological 
innovation, effectively address environmental issues40 and promoting sustainable development41. On the other 
hand, EEE is influenced by various factors such as technological innovation42, policy regulations43, absorptive 
capacity of foreign direct investment44, economic development level45, industrial structure45, and energy 
structure46. EEE is a complex indicator that requires in-depth research and comprehensive consideration. 
Furthermore, EEE consists of scale efficiency (SE) and pure technical efficiency (PTE). In simple terms, EEE is 
the product of these two efficiencies47. SE is the production efficiency influenced by scale factors48, while PTE is 
the production efficiency affected by management and technological factors49. Therefore, it is essential to explore 
which part of EEE is affected by various influencing factors.

In summary, despite extensive research in the field of energy-environment management on EEE, GTI and 
ER, there exists a research gap regarding the underlying mechanisms of GTI and the moderating role of ER in 
this context. China’s energy structure necessitates higher energy utilization efficiency to achieve macro-level 
energy-saving goals, making it crucial to consider how to enhance energy utilization efficiency through GTI, 
which serves as a cornerstone in achieving dual carbon objectives. Addressing the limitations in evaluating GTI’s 
impact on EEE, this study decomposes GTI into SubGI and SymGI, introduces the interaction terms of ER with 
GTI, SubGI, and SymGI to explore the sources of GTI’s impact on EEE and the moderating effects of ER on 
this impact and its sources. Empirical analysis is conducted using spatial Durbin models, incorporating spatial 
spillover effects, which better align with real-world development scenarios.

Data and methodology
Given that the 16th National Congress of the Communist Party of China was held in November 2002, it was 
emphasized that “development is an unyielding principle, and every opportunity must be seized to accelerate 
progress”. This prompted provincial governments to vigorously promote regional industrialization and 
urbanization. However, the accelerated process of industrialization and urbanization has led to a significant 
increase in energy demand and consumption, exacerbating the conflict between energy and the environment. 
Therefore, this study takes the year 2003 as its starting point and first calculates the EEE of each province in 
China. Subsequently, it investigates the impact of GTI on EEE under the influence of ER. However, the calculation 
of EEE requires the input indicator of capital stock, which is measured by gross fixed capital formation in this 
research. Unfortunately, this data is not available in the China Statistical Yearbook after 2017. To ensure data 
availability, the study ultimately selects data from 30 provinces and regions in China (excluding Tibet, Hong 
Kong, Macao, and Taiwan) from 2003 to 2017 for analysis.

A two-step approach was used to investigate the impact of GTI on EEE under the influence of ER from 2003 
to 2017. Firstly, EEE in 30 provinces was measured. Secondly, the impact of GTI on EEE under the influence of 
ER was analyzed. It is shown in Fig. 1. This article considers EEE, SE, and PTE as explanatory variables, GTI, 
SubGI, and SymGI as explanatory variables, and ER as a moderating variable. Besides, gross domestic product 
per capita (PGDP), industrial structure (IS), foreign direct investment (FDI), energy consumption structure 
(ECStruc), urbanization level (Urban), R&D investment intensity (RDI), energy intensity (EI), fixed asset invest-
ment (Fix), R&D personnel input (RDP) are used as control variables.

Data description
Green technology innovation (GTI). GTI refers to the development and application of new products and technol-
ogies aimed at environmental protection, pollution reduction, energy and resource conservation, and promoting 
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sustainable development1,50. On the other hand, green patents are inventions, utility models, and design patents 
with the subject of invention related to resource conservation, energy efficiency, and pollution prevention. 
Considering the alignment with the definition of GTI, design patents only cover product shapes and patterns, 
hence this study adopts the total number of green invention patents and green utility model patents to measure 
GTI51. As the patent granting process in China is known to be time-consuming, using the total number of pat-
ent applications can promptly and accurately reflect the willingness and motivation of enterprises to engage in 
GTI. Additionally, based on the essence of GTI definition, which includes both the development and promotion 
of new clean energy technologies, as well as improvements in ecological environment protection and resource 
recycling technologies, this research attempts to decompose GTI into SubGI and SymGI.

Substantive green innovation (SubGI). Substantive green technology innovation is focused on the 
development and adoption of environmentally beneficial technologies that result in significant reductions in 
resource consumption and carbon emissions. Green invention patents exhibit creativity, novelty, and energy-
efficient features, aligning with the fundamental principles of substantive green innovation52. As a result, this 
study utilizes the quantity of green invention patent applications as a metric to assess SubGI11,53.

Symbolic green innovation (SymGI). Symbolic green innovation is aimed at responding to government 
environmental policies, emphasizing improvements to existing technologies but typically lacking significant 
positive environmental impacts. Green utility model patents refer to product or process improvements that 
feature energy-saving and emission reduction characteristics, aligning with the core principles of symbolic green 
technology innovation52,54. Hence, this study employs the quantity of green utility model patent applications as 
a metric to assess SymGI11,53.

Environmental regulation (ER). Based on the polluter-pays principle, China began to levy emission charges 
in 198255 By imposing charges on enterprises and individuals that emit pollutants, it can incentivize them 
to adopt more environmentally-friendly measures, reduce emissions of pollutants, and consequently mitigate 
environmental pollution and resource wastage. In light of this, the emission charges to GDP is used as a measure 
of ER.

This study integrates the exercises of several scholars to take the PGDP56, IS12, FDI44, ECStruc52, Urban56, 
RDI57, EI58, Fix59, RDP as control variable, the definition of each variables is shown in Table 10.

Non‑radial direction distance function
In this section, the study concentrates on the computation of the dependent variable, EEE. Due to the flexibility 
of DEA in not requiring a specific functional form, it can effectively measure the EEE of DMU60,61. In this context, 
DMU refers to the 30 provinces from 2003 to 2017.

Non-radial Directional Distance Function (NDDF) is a variant of the DEA method that offers several 
advantages in assessing EEE. Firstly, it allows for the simultaneous consideration of multiple input and output 
indicators, enabling a more comprehensive evaluation of regional efficiency. Secondly, it introduces directionality, 
which determines the optimization direction, leading to more precise assessment results. Additionally, it permits 
the assignment of different weights to different input and output indicators when calculating the distance 

Figure 1.   Flowchart of the method.
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function, reflecting their importance in the evaluation process. In summary, NDDF demonstrates broader 
applicability when assessing EEE as it comprehensively accounts for multiple indicators and their respective 
weights, contributing to a more accurate assessment of the efficiency levels of businesses or regions.

The NDDF function is defined based on the principle of output expansion while minimizing pollutant 
emissions as follows62:

where K, L, E are input variables, Y is desired output and C is undesired output. The input and output variables 
are shown as follows:

Input indicator: Capital (K). Estimate the capital stock using the perpetual inventory method34. Labor (L). 
Measures labor through the number of people employed at the end of each year in each region. Energy (E). 
Measured using the consumption of tons of standard coal in each region.

Expected output: Total output value of each province (Y). Converted from nominal GDP to 2003 constant 
price GDP through a price index.

Unintended output: CO2 emissions (C). CO2 emissions are calculated from the calorific value of consumption 
of nine energy sources: raw coal, coking coal, crude oil, gasoline, kerosene, diesel fuel, fuel oil, natural gas, and 
electricity.

Additionally, wT = (wK ,wL,wE ,wY ,wC) denotes the vector of weights for each input–output variable; 
βT = (βK ,βL,βE ,βY ,βC) denotes the slack vector of the proportion in which each input–output variable can 
be expanded or contracted; gT =

(

gK , gL, gE , gY , gC
)

 denotes the direction vector of the direction of input and 
output changes (i.e., expansion or contraction), and diag(β) denotes the diagonalization of the β vector.

EEE examines the maximum shrinkage ratio of energy inputs, undesired outputs, and the maximum 
expansion ratio of desired outputs with constant capital and labor inputs. Therefore, the weight vector is set to 
wT =

(

0, 0, 13 ,
1
3 ,

1
3

)

 , and the respective direction vector is g = (0, 0,−E, Y,−C) , and the corresponding linear 
programming problem is as follows:

Similarly, the optimal solution for the relaxation variable β∗
it =

(

β∗
it,K ,β

∗
it,L,β

∗
it,E ,β

∗
it,Y ,β

∗
it,C

)T and thus the 
EEE for each province and region is:

Dynamic spatial Durbin model
The literature review mentions that ER has spatial spillover effects and that CO2 generates spatial spillover due 
to geographic boundaries or natural winds, among other issues. In order to further illustrate the existence of 
spatial effects among the research variables, this article firstly analyzes the explanatory and interpreted variables 
by using Moran’s I index. As in Eq. (4):

where xt = 1
30

∑30
i=1 xit , and xit are the variable to be spatially autocorrelated tested. Wij are the spatial weight 

matrix. To improve the accuracy of the results, three spatial weight matrices are considered in this study: the 
geographic neighborhood weight matrix ( Wa ), the geographic distance weight matrix ( Wb ), and the economic 
geographic distance weight matrix ( Wc).

Next, except for the spatial effect, there is also a time lag in CO2 emissions63,64. Thus, in order to make the 
empirical results more reliable, the dynamic spatial Durbin model (DSDM), which takes time and space into 
consideration, is adopted as the empirical model in this paper. As shown in Eqs. (5) to (10). Where, in order 
to have a more in-depth understanding of the effect of GTI on EEE, this article adds the quadratic term of 
GTI ((GTIit)2) into the model, the 

∑30
j=1 WijlnEEEit , 

∑30
j=1 WijlnGTIit , 

∑30
j=1 WijlnERit , 

∑30
j=1 WijlnSubGIit , 

∑30
j=1 WijlnSymGIit , 

∑30
j=1 WijlnPTEit and 

∑30
j=1 WijlnSEit are spatial variables, lnControlsit is a control variables.

(1)
−→
D
(

K , L,E,Y ,C; g
)

= sup
{

wTβ :
(

(K , L,E,Y ,C)+ g · diag(β)
)

∈ P
}

(2)
−→
D (K , L,E,Y ,C) = max

{

1

3
βE +

1

3
βY +

1

3
βC

}

(3)EEEit =
1

6

(

Yit/Eit
(

Yit + β∗
it,YYit

)

/
(

Eit + β∗
it,EEit

) +
Yit/Cit

(

Yit + β∗
it,YYit

)

/
(

Cit + β∗
it,YCit

)

)

(4)Moran
′

sI =
n
∑30

i=1

∑30
j=1 Wij(xit − xt)

(

xjt − xt
)

∑30
i=1 (xit − xt)

2 ∑30
i=1

∑30
j=1 Wij
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(5)
lnEEEit = α0 + �0lnEEEit−1 + ρ0

30
∑

j=1

WijlnEEEjt + ι0

30
∑

j=1

WijlnGTIjt

+̟1lnGTIit +̟2(lnGTIit)
2
+̟ lnControlsit + µi + εit

(6)

lnEEEit = α0 + �1lnEEEit−1 + ρ1

30
∑

j=1

WijlnEEEjt + ι1

30
∑

j=1

WijlnGTIjt + α1lnGTIit

+ α2(lnGTIit)
2
+ ϑ1

30
∑

j=1

WijlnERjt+α3lnERit + κ1

30
∑

j=1

Wijln(GTIER)jt

+ α4ln(GTIER)it + αlnControlsit + µi + εit

(7)

lnEEEit = α0 + �2lnEEEit−1 + ρ2

30
∑

j=1

WijlnEEEjt + ν1

30
∑

j=1

WijlnSubGIjt + β1lnSubGIit

+ π1

30
∑

j=1

WijlnSymGIjt + β2lnSymGIit + ϑ2

30
∑

j=1

WijlnERjt+β3lnERit

+ ξ1

30
∑

j=1

Wijln(SubGIER)jt + β4ln(SubGIER)it

+ ζ1

30
∑

j=1

Wijln
(

SymGIER
)

jt
+ β5ln

(

SymGIER
)

it
+ βlnControlsit + µi + εit

(8)

lnPTEit = α0 + �3lnPTEit−1 + ϕ1

30
∑

j=1

WijlnPTEjt + ι2

30
∑

j=1

WijlnGTIjt + γ1lnGTIit

+ γ2(lnGTIit)
2
+ ϑ3

30
∑

j=1

WijlnERjt+γ 3lnERit + κ2

30
∑

j=1

Wijln(GTIER)jt

+ γ4ln(GTIER)it + γ lnControlsit + µi + εit

Figure 2.   research framework.
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(9)

lnPTEit = α0 + �4lnPTEit−1 + ϕ2

30
∑

j=1

WijlnPTEjt + ν2

30
∑

j=1

WijlnSubGIjt + δ1lnSubGIit

+ π1

30
∑

j=1

WijlnSymGIjt + δ2lnSymGIit + ϑ4

30
∑

j=1

WijlnERjt

+δ3lnERit + ξ2

30
∑

j=1

Wijln(SubGIER)jt + δ4ln(SubGIER)it

+ ζ2

30
∑

j=1

Wijln
(

SymGIER
)

jt
+ δ5ln

(

SymGIER
)

it
+ δlnControlsit + µi + εit

(10)

lnSEit = α0 + �5lnSEit−1 + φ1

30
∑

j=1

WijlnSEjt + ι3

30
∑

j=1

WijlnGTIjt + η1lnGTIit + η2(lnGTIit)
2

+ ϑ5

30
∑

j=1

WijlnERjt+η3lnERit + κ3

30
∑

j=1

Wijln(GTIER)jt + η4ln(GTIER)it + ηlnControlsit + µi + εit

Table 2.   The global Moran’s I values of variables from 2003 to 2017. ***, **, * indicate significance at the level 
of 1%, 5%, 10%.

EEE PTE SE ER

Wa Wb Wc Wa Wb Wc Wa Wb Wc Wa Wb

2003 0.341*** 0.107*** 0.270*** 0.012 − 0.013 0.067 0.012 − 0.013 0.067 0.121* 0.121

2004 0.376*** 0.118*** 0.288*** 0.038 − 0.020 0.194*** 0.038 − 0.020 0.194*** 0.165* 0.165

2005 0.392*** 0.121*** 0.237*** 0.083 − 0.010 0.206*** 0.083 − 0.010 0.206*** 0.145* 0.145

2006 0.422*** 0.127*** 0.225*** 0.182** 0.013* 0.155** 0.182** 0.013* 0.155** 0.149* 0.149

2007 0.412*** 0.120*** 0.203*** 0.215** 0.021* 0.171** 0.215** 0.021* 0.171** 0.131* 0.131*

2008 0.408*** 0.117*** 0.198*** 0.170** 0.012* 0.240*** 0.170** 0.012* 0.240*** 0.174** 0.174**

2009 0.391*** 0.109*** 0.198*** 0.252** 0.032** 0.122** 0.252** 0.032** 0.122** 0.205** 0.205**

2010 0.383*** 0.102*** 0.197*** 0.235** 0.028** 0.178*** 0.235** 0.028** 0.178*** 0.210** 0.210**

2011 0.377*** 0.097*** 0.209*** 0.233** 0.026** 0.158** 0.233** 0.026** 0.158** 0.192** 0.192**

2012 0.398*** 0.101*** 0.219*** 0.236** 0.028** 0.167** 0.236** 0.028** 0.167** 0.198** 0.198**

2013 0.399*** 0.099*** 0.240*** 0.214** 0.023** 0.163** 0.214** 0.023** 0.163** 0.177** 0.177**

2014 0.400*** 0.102*** 0.240*** 0.214** 0.026** 0.166** 0.214** 0.026** 0.166** 0.166** 0.166**

2015 0.373*** 0.097*** 0.244*** 0.193** 0.022** 0.154** 0.193** 0.022** 0.154** 0.233** 0.233***

2016 0.395*** 0.104*** 0.247*** 0.234** 0.034** 0.173*** 0.234** 0.034** 0.173*** 0.244*** 0.244***

2017 0.412*** 0.110*** 0.259*** 0.260*** 0.043** 0.178*** 0.260*** 0.043** 0.178*** 0.273*** 0.273***

ER GTI SubGI SymGI

Wc Wa Wb Wc Wa Wb Wc Wa Wb Wc

2003 0.263*** 0.150* 0.036** 0.227*** 0.140* 0.029** 0.163*** 0.136* 0.023** 0.261***

2004 0.207*** 0.157* 0.025** 0.215*** 0.139* 0.020** 0.136** 0.154* 0.019* 0.266***

2005 0.156** 0.176** 0.033** 0.195*** 0.169** 0.030** 0.118** 0.170** 0.026** 0.254***

2006 0.128** 0.170** 0.033** 0.207*** 0.169** 0.028** 0.136** 0.146* 0.026** 0.269***

2007 0.005 0.194** 0.037** 0.199*** 0.180** 0.026** 0.128** 0.173** 0.032** 0.258***

2008 0.003 0.202** 0.033** 0.214*** 0.139* 0.008* 0.132** 0.235** 0.047*** 0.285***

2009 0.053 0.236** 0.041** 0.233*** 0.177** 0.015* 0.155** 0.263*** 0.057*** 0.292***

2010 0.074 0.254*** 0.042** 0.239*** 0.171** 0.008* 0.154** 0.307*** 0.064*** 0.302***

2011 0.049 0.277*** 0.049*** 0.230*** 0.191** 0.015* 0.151** 0.327*** 0.071*** 0.288***

2012 0.087* 0.277*** 0.052*** 0.232*** 0.200** 0.018** 0.167*** 0.322*** 0.074*** 0.273***

2013 0.054 0.231** 0.039** 0.215*** 0.187** 0.017* 0.164*** 0.261*** 0.058*** 0.257***

2014 0.105* 0.242*** 0.041** 0.213*** 0.196** 0.021** 0.166*** 0.272*** 0.057*** 0.254***

2015 0.141** 0.291*** 0.058*** 0.236*** 0.238*** 0.037** 0.193*** 0.307*** 0.067*** 0.258***

2016 0.136** 0.292*** 0.060*** 0.256*** 0.256*** 0.051*** 0.233*** 0.300*** 0.058*** 0.264***

2017 0.098* 0.225** 0.036** 0.250*** 0.197** 0.051*** 0.236** 0.225** 0.037** 0.248***
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Model (5) is the model of the impact of GTI on EEE without considering ER. Model (6) is the impact of 
GTI on EEE under the influence of ER, corresponding to RF1 in Fig. 2 of the research framework. Model (7) 
is the impact of SubGI and SymGI on EEE under the influence of ER, corresponding to RF2 in Fig. 2 of the 
research framework. Model (8) and model (10) are the effects of GTI on PTE and SE under the influence of 
ER, corresponding to RF3 in Fig. 2 of the research framework. Model (9) is the effects of SubGI and SymGI on 
PTE under the influence of ER, corresponding to RF4 in Fig. 2 of the research framework. Where α0 denote the 
constant term; �i is the time-lag effects of the explained variables; ̟ i , αi , βi , γi , δi , and ηi are the coefficients of 
the independent and control variables; µi is the individual fixed effect; εit refers to the error term. ρ , ϕ , φ , ι , ν , 
π , ϑ , κ , represent the coefficients of spatial spillover effects of the explained variables, explanatory variables and 
interaction terms, respectively.

Due to the panel nature of the data, involving both time series and cross-sectional dimensions, using Ordinary 
Least Squares (OLS) for estimation would result in biased and inconsistent estimates19. Furthermore, Generalized 
Least Squares (GLS) can be applied to panel data but does not account for spatial effects, leading to biased 
estimates as well. Finally, spatial autoregressive model (SAR), spatial error model (SEM) and spatial Durbin’s 
model (SDM) all consider the influence of spatial factors. However, SAR neglects cross-variable autocorrelation, 
while SEM overlooks spatial dependency among variables. Hence, this study opted for SDM as the base model, 
extending it to incorporate lag effects, thereby forming a DSDM.

Results and discussion
The spatial autocorrelation analysis
The spatial correlations for EEE, PTE, SE, ER, GTI, SubGI, and SymGI were calculated under three spatial weight 
matrices, and the results are presented in Table 2.

Table 2 reveals that from 2003 to 2017, the Moran’s I values for EEE, GTI, SubGI, and SymGI were all sig-
nificantly positive, indicating spatial clustering and substantial positive spatial correlation among provinces. 
Additionally, it was observed that, except for the years 2003, 2004, and 2005 under conditions Wa and Wb , where 
Moran’s I values for PTE and SE were positive but not significant, all other periods exhibited significantly positive 
Moran’s I values, signifying a strong positive spatial correlation between PTE and SE. Finally, the Moran’s I results 
for ER demonstrated that under condition Wa all Moran’s I values were significantly positive, suggesting a robust 
positive spatial correlation among ER. Under condition Wb , apart from the years 2003 to 2006 with positive but 
insignificant Moran’s I values, all other results were significantly positive. Under condition Wc , Moran’s I values 
for the years 2007 to 2012 were positive but insignificant, while all other results were significantly positive. In 
summary, the majority of Moran’s I values for ER were significantly positive, indicating a pronounced spatial 
dependence among ER. Overall, there is substantial spatial correlation between explanatory and dependent 

Table 3.   Results of the impact of GTI on EEE. z-statistics in parentheses, ***, **, * indicate significance at the 
level of 1%, 5%, 10%.

Model (5) (6)

Weight Wa Wb Wc Wa Wb Wc

L.lnEEE
0.7690***
(40.53)

0.7740***
(46.03)

0.7608***
(43.60)

0.7741***
(41.95)

0.7734***
(46.25)

0.7689***
(43.51)

L.WlnEEE
− 0.0787
(− 1.31)

0.3383*
(1.81)

0.0941
(1.16)

− 0.0761
(− 1.28)

0.2852
(1.52)

0.1110
(1.32)

lnGTI
0.0077
(1.35)

0.0048
(0.93)

0.0027
(0.50)

0.0084
(1.48)

0.0021
(0.39)

− 0.0020
(− 0.36)

lnGTI2
0.0017***
(3.90)

0.0014***
(3.50)

0.0013***
(2.78)

0.0016***
(3.60)

0.0010***
(2.60)

0.0008
(1.60)

W*lnGTI − 0.0162***
(− 3.07)

− 0.1272***
(− 4.99)

− 0.0135
(− 1.16)

− 0.0223***
(− 4.24)

− 0.1083***
(− 4.28)

− 0.0122
(− 1.05)

lnER
− 0.0105**
(− 2.67)

− 0.0075**
(− 2.06)

− 0.0055
(− 1.46)

W*lnER 0.0231***
(3.18)

0.0609***
(3.08)

− 0.0086
(− 0.69)

lnGTI*lnER − 0.0000
(− 0.22)

0.0001
(0.63)

0.0003*
(1.80)

W*lnGTI*lnER 0.0014***
(6.09)

0.0031***
(3.13)

0.0006
(1.19)

lnControls Yes Yes Yes Yes Yes Yes

Province/Year Yes Yes Yes Yes Yes Yes

Spatial rho 0.0482
(0.69)

0.4532**
(2.33)

0.1268
(1.50)

0.0080
(0.11)

0.4498**
(2.29)

0.1548*
(1.78)

Sigma2_e 0.0004***
(15.50)

0.0003***
(15.74)

0.0004***
(15.62)

0.0003***
(15.51)

0.0003***
(15.73)

0.0004***
(15.64)

R-squared 0.980 0.854 0.971 0.974 0.933 0.961

Observations 420 420 420 420 420 420
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variables, underscoring the necessity to account for spatial effects in the study, which aligns with real-world 
dynamics.

Estimated results of the effect of GTI on EEE under the impact of ER
This section employs the DSDM to estimate the impact of GTI on EEE without considering the influence of ER 
(model 5) and the impact of GTI on EEE under the influence of ER (model 6), as presented in Table 3. Results 
from Table 3 indicate that under all three spatial weight matrices, the coefficients for the variables are generally 
significant. Under the Wb weight matrix, the spatial correlation coefficients and sigma coefficients are also 
significant, suggesting the suitability of the DSDM model for this estimation. The lagged term coefficient of EEE 
( L.lnEEE ) and the spatial spillover term coefficient of EEE under weight Wb ( L.WlnEEE ) are both significantly 
positive, indicating a clear pattern of continuity, accumulation, and high interdependence among EEE in various 
provinces of China. In addition, under all three weight matrices, the coefficient for the quadratic term of GTI is 
significantly positive, indicating a U-shaped relationship between GTI and EEE. One possible explanation for this 
pattern is that the transformation of GTI takes time and requires significant initial investments in research and 
improvement, leading to relatively stable energy consumption and CO2 emissions, resulting in a decline in EEE. 
However, once the GTI are widely adopted, energy consumption and CO2 emissions are substantially reduced, 
leading to improved EEE. Furthermore, the study finds that the direct effect coefficients of ER on EEE and the 

Table 4.   Results of direct, indirect, and total effects of GTI on EEE under ER in the short-term. z-statistics in 
parentheses, ***, **, * indicate significance at the level of 1%, 5%, 10%.

Weight Wa Wb Wc

Effect Direct Indirect Total Direct Indirect Total Direct Indirect Total

lnGTI
0.0089
(1.60)

− 0.0219***
(− 4.11)

− 0.0130**
(− 2.02)

0.0045
(0.88)

− 0.0786***
(− 3.83)

− 0.0741***
(− 3.62)

− 0.0013
(− 0.24)

− 0.0106
(− 0.99)

− 0.0119
(− 1.03)

lnGTI2
0.0016***
(3.58)

0.0000
(0.19)

0.0016***
(3.52)

0.0010***
(2.60)

− 0.0003*
(− 1.82)

0.0007**
(2.39)

0.0008
(1.61)

− 0.0001
(− 1.10)

0.0007
(1.61)

lnER
− 0.0104***
(− 2.75)

0.0230***
(3.11)

0.0126*
(1.84)

− 0.0087**
(− 2.41)

0.0479***
(2.92)

0.0392**
(2.49)

− 0.0053
(− 1.47)

− 0.0057
(− 0.52)

− 0.0110
(− 0.93)

lnGTI*lnER − 0.0000
(− 0.17)

0.0014***
(5.78)

0.0014***
(5.23)

0.0000
(0.28)

0.0021***
(2.76)

0.0022***
(2.87)

0.0003*
(1.81)

0.0005
(1.07)

0.0008
(1.49)

lnControls Yes Yes Yes

Province/Year Yes Yes Yes

Spatial rho 0.0080
(0.11)

0.4498**
(2.29)

0.1548*
(1.78)

sigma2_e 0.0003***
(15.51)

0.0003***
(15.73)

0.0004***
(15.64)

R-squared 0.974 0.933 0.961

Observations 420 420 420

Table 5.   Results of direct, indirect, and total effects of SubGI, SymGI on EEE under ER in the short-term. 
z-statistics in parentheses, ***, **, * indicate significance at the level of 1%, 5%, 10%.

Weight Wa Wb Wc

Effect Direct Indirect Total Direct Indirect Total Direct Indirect Total

lnSubGI
0.0128**
(2.44)

− 0.0304***
(− 2.78)

− 0.0176
(− 1.43)

0.0106**
(2.09)

− 0.1151***
(− 3.91)

− 0.1045***
(− 3.44)

0.0143***
(2.69)

− 0.0270**
(− 2.19)

− 0.0127
(− 0.94)

lnSymGI
− 0.0200***
(− 3.50)

0.0179
(1.56)

− 0.0021
(− 0.17)

− 0.0191***
(− 3.42)

0.0578*
(1.90)

0.0387
(1.29)

− 0.0266***
(− 4.43)

0.0216
(1.50)

− 0.0050
(− 0.34)

lnER
− 0.0087**
(− 2.20)

0.0266***
(3.49)

0.0179**
(2.54)

− 0.0067*
(− 1.80)

0.0519***
(3.11)

0.0452***
(2.85)

− 0.0017
(− 0.44)

− 0.0084
(− 0.70)

− 0.0101
(− 0.78)

lnSubGI*lnER − 0.0011
(− 1.46)

0.0030*
(1.88)

0.0019
(1.07)

− 0.0007
(− 0.96)

0.0087**
(2.01)

0.0080*
(1.83)

− 0.0013*
(− 1.70)

− 0.0003
(− 0.10)

− 0.0016
(− 0.62)

lnSymGI*lnER 0.0013
(1.56)

− 0.0020
(− 1.19)

− 0.0007
(− 0.39)

0.0009
(1.07)

− 0.0072
(− 1.53)

− 0.0063
(− 1.34)

0.0018**
(2.06)

0.0009
(0.33)

0.0027
(0.94)

lnContrils Yes Yes Yes

Province/Year Yes Yes Yes

Spatial rho 0.0248
(0.34)

0.4067**
(2.09)

0.0863
(1.02)

sigma2_e 0.0003***
(15.51)

0.0003***
(15.70)

0.0004***
(15.63)

R-squared 0.972 0.952 0.964

Observations 420 420 420
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spatial spillover effect coefficients are opposite in sign. The direct interaction effect coefficients between ER and 
GTI, as well as the spatial interaction effect coefficients between ER and GTI, are also opposite in sign. This makes 
it challenging to directly assess the impact of ER on EEE and the role of ER in this impact. Therefore, the study 
decomposed the model results. Since short-term estimates are particularly valuable for informing national energy 
controls and energy policies, this study focuses on analyzing short-term effect results, as shown in Tables 4 and 5.

Table 4 presents the results of the direct, spatial, and total effects of GTI on EEE considering the impact of 
ER. The coefficients of the total effect of GTI are significantly negative under the weighting matrices Wa and Wb 
65. Furthermore, the total effect follows the same trend as the spatial effect, indicating that the inhibitory effect 
of GTI on neighboring regions is greater than its promoting effect on the local region66. One possible reason 
for this is that the promotion of GTI leads to resource competition in neighboring areas. What sets this study 
apart from others is the consideration of the quadratic term of GTI26,47. The study finds that the coefficient for 
the quadratic term of GTI is significantly positive30 and consistent with the trend of direct effects. This suggests 
that there is a critical point in the impact of GTI on EEE. Before reaching this critical point, the negative spatial 
spillover effect of GTI on EEE is greater than the positive direct effect, leading to a decrease in EEE. However, after 
reaching the critical point, the positive direct effect of GTI on EEE outweighs the negative spatial spillover effect, 
thereby improving EEE. The main reason for this is that as GTI progresses, its required conditions become more 
refined, and good cooperative relationships develop among neighboring regions, accelerating the development 
of green technology in various regions.

Similarly, under matrices Wa and Wb , the total effect coefficient of ER on EEE is significantly positive, indi-
cating that the implementation of ER can enhance EEE19.One possible reason for this result is that this study 
uses the ratio of emission fees to GDP as the measurement indicator for ER. Excessive emissions by enterprises 
lead to higher emission costs, increased operating costs for businesses, thereby prompting companies to update 
production equipment35, reduce pollutant emissions, and result in a decrease in EEE. Furthermore, the coefficient 
for the interaction term between ER and GTI is significantly positive, but the impact of GTI on EEE follows a 
U-shaped curve. This suggests that before GTI reaches its critical point, the implementation of ER mitigates the 
negative impact of GTI on EEE. The reason for this could be that in the early stages of GTI implementation, 
businesses face high sunk costs, and the implementation of environmental policies encourages businesses and 
individuals to invest in the research and application of green technology, thereby increasing financial support 
for green technology development. After GTI reaches its critical point, the implementation of ER strengthens 
the promoting effect of GTI on EEE. The primary reason is that the conditions required for green technology 
innovation are already mature, and businesses have developed awareness of green technology innovation. At this 
point, the implementation of ER can stimulate long-term investment and collaboration by businesses, accelerat-
ing the development and application of green technology. As illustrated in Fig. 3.

While we have gained further insights into the impact of GTI on EEE and the role of ER in this effect, the spe-
cific source of GTI’s influence on EEE remains unknown. This is because GTI encompasses both the development 
of new energy technologies and improvement of environmental protection and resource recycling technologies. 
To unravel this mystery, the study decomposed GTI into SubGI and SymGI and conducted a new empirical analy-
sis, as shown in Table 5. Under the weight matrix Wb , the coefficient of SubGI is significantly negative in the total 
effect, consistent with the trend observed in the GTI coefficient in Table 4. However, the coefficient of SymGI is 
not significant. This indicates that the effect of GTI on EEE is primarily driven by SubGI31. Which means GTI 
affects EEE mainly through the development and expansion of new clean energy technologies11. The possible 
reason is that new clean energy technologies not only reduce resource wastage but also reduce dependence on 
traditional fossil fuels, further reducing greenhouse gas emissions66. Furthermore, the role of ER and its effect 
on SubGI’s impact on EEE remain consistent with the results before the decomposition of GTI.

Figure 3.   Moderating effect of ER on the relationship between GTI and EEE.
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Table 6.   Results of the impact of GTI on PTE and SE under ER. z-statistics in parentheses, ***, **, * indicate 
significance at the level of 1%, 5%, 10%.

Model (8) (10)

Weight Wa Wb Wc Wa Wb Wc

L.lnPTE
0.7760***
(35.32)

0.7699***
(38.09)

0.7456***
(35.50)

L.WlnPTE
− 0.1044
(− 1.54)

0.2874
(1.37)

0.1553**
(2.08)

L.lnSE
0.7770***
(20.20)

0.7737***
(18.84)

0.7737***
(18.84)

L.WlnSE
− 0.1924*
(− 1.80)

0.2212
(0.63)

0.2212
(0.63)

lnGTI
− 0.0005
(− 0.06)

− 0.0010
(− 0.14)

0.0015
(0.19)

0.0019
(0.35)

− 0.0017
(− 0.32)

− 0.0017
(− 0.32)

lnGTI2
0.0006
(1.03)

0.0005
(0.85)

0.0011
(1.51)

0.0001
(0.23)

0.0000
(0.10)

0.0000
(0.10)

W*lnGTI − 0.0194***
(− 2.71)

− 0.0990***
(− 2.88)

0.0202
(1.30)

− 0.0065
(− 1.17)

− 0.0193
(− 0.74)

− 0.0193
(− 0.74)

lnER
− 0.0070
(− 1.32)

− 0.0026
(− 0.53)

0.0010
(0.19)

− 0.0057
(− 1.44)

− 0.0062*
(− 1.70)

− 0.0062*
(− 1.70)

W*lnER 0.0208**
(2.26)

0.0654**
(2.55)

0.0083
(0.53)

− 0.0017
(− 0.26)

− 0.0069
(− 0.35)

− 0.0069
(− 0.35)

lnGTI*lnER 0.0005*
(1.94)

0.0007***
(2.74)

0.0005**
(2.14)

− 0.0003
(− 1.41)

− 0.0002
(− 1.24)

− 0.0002
(− 1.24)

W*lnGTI*lnER 0.0021***
(4.54)

0.0025*
(1.77)

0.0006
(0.82)

− 0.0002
(− 0.45)

0.0007
(0.71)

0.0007
(0.71)

lnControls Yes Yes Yes Yes Yes Yes

Province/Year Yes Yes Yes Yes Yes Yes

Spatial rho 0.0352
(0.45)

0.5703***
(2.66)

0.2225***
(2.91)

0.0618
(0.74)

0.7113***
(3.05)

0.7113***
(3.05)

sigma2_e 0.0006***
(15.46)

0.0006***
(15.60)

0.0006***
(15.52)

0.0003***
(15.52)

0.0003***
(15.26)

0.0003***
(15.26)

R-squared 0.954 0.924 0.917 0.957 0.968 0.968

Observations 420 420 420 420 420 420

Table 7.   Results of direct, indirect, and total effects of SubGI, SymGI on PTE under ER in the short-term. 
z-statistics in parentheses, ***, **, * indicate significance at the level of 1%, 5%, 10%.

Weight Wa Wb Wc

Effect Direct Indirect Total Direct Indirect Total Direct Indirect Total

lnSubGI
0.0102*
(1.66)

− 0.0211*
(− 1.79)

− 0.0109
(− 0.83)

0.0121**
(2.02)

− 0.0812***
(− 2.64)

− 0.0691**
(− 2.21)

0.0126**
(2.01)

− 0.0237*
(− 1.67)

− 0.0111
(− 0.72)

lnSymGI
− 0.0219***
(− 3.19)

0.0079
(0.60)

− 0.0140
(− 0.99)

− 0.0200***
(− 2.86)

0.0233
(0.71)

0.0033
(0.10)

− 0.0247***
(− 3.52)

0.0526***
(3.03)

0.0280
(1.60)

lnER
− 0.0069
(− 1.21)

0.0253***
(2.67)

0.0184**
(2.14)

− 0.0035
(− 0.65)

0.0516**
(2.56)

0.0481***
(2.59)

0.0040
(0.77)

0.0035
(0.24)

0.0075
(0.49)

lnSubGI*lnER − 0.0009*
(− 1.93)

0.0014
(1.36)

0.0005
(0.41)

− 0.0009*
(− 1.87)

0.0053*
(1.90)

0.0044
(1.48)

− 0.0007
(− 1.53)

0.0034
(1.49)

0.0027
(1.14)

lnSymGI*lnER 0.0014***
(2.73)

0.0006
(0.58)

0.0020
(1.64)

0.0015***
(2.91)

− 0.0035
(− 1.31)

− 0.0020
(− 0.73)

0.0013***
(2.63)

− 0.0028
(− 1.14)

− 0.0015
(− 0.60)

lnControls Yes Yes Yes

Province/Year Yes Yes Yes

Spatial rho 0.0199
(0.26)

0.5156**
(2.42)

0.1762**
(2.36)

sigma2_e 0.0006***
(15.48)

0.0005***
(15.60)

0.0006***
(15.52)

R-squared 0.959 0.923 0.901

Observations 420 420 420
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Table 8.   Results of robustness tests for replacement variables. z-statistics in parentheses, ***, **, * indicate 
significance at the level of 1%, 5%, 10%.

Model (6) (7) (8) (9)

Effect Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total

lnGTI
0.0065
(1.25)

− 0.0753***
(− 3.75)

− 0.0687***
(− 3.41)

0.0023
(0.32)

− 0.0659***
(− 2.64)

− 0.0637**
(− 2.56)

lnGTI2
0.0009**
(2.36)

− 0.0003*
(− 1.74)

0.0007**
(2.19)

0.0005
(0.85)

− 0.0002
(− 0.79)

0.0003
(0.84)

lnSubGI
0.0107**
(2.12)

− 0.1175***
(− 3.98)

− 0.1068***
(− 3.51)

0.0121**
(2.01)

− 0.0819***
(− 2.66)

− 0.0698**
(− 2.23)

lnSymGI
− 0.0166***
(− 2.98)

0.0641**
(2.06)

0.0475
(1.53)

− 0.0197***
(− 2.83)

0.0217
(0.66)

0.0019
(0.06)

lnER
− 0.0101***
(− 2.79)

0.0492***
(3.03)

0.0391**
(2.51)

− 0.0084**
(− 2.26)

0.0539***
(3.24)

0.0455***
(2.88)

− 0.0045
(− 0.90)

0.0471**
(2.45)

0.0426**
(2.36)

− 0.0038
(− 0.69)

0.0520***
(2.58)

0.0482***
(2.59)

lnGTI*lnER − 0.0000
(− 0.11)

0.0028***
(3.28)

0.0028***
(3.36)

0.0006**
(2.52)

0.0016
(1.47)

0.0022**
(2.07)

lnSubGI

*lnER
− 0.0006
(− 0.80)

0.0091**
(2.09)

0.0085*
(1.94)

− 0.0009*
(− 1.88)

0.0052*
(1.88)

0.0042
(1.46)

lnSymGI
*lnER

0.0007
(0.85)

− 0.0070
(− 1.51)

− 0.0063
(− 1.35)

0.0015***
(2.91)

− 0.0034
(− 1.27)

− 0.0019
(− 0.68)

lnControls Yes Yes Yes Yes

Province/
Year Yes Yes Yes Yes

Spatial rho 0.4592**
(2.33)

0.4166**
(2.13)

0.5709***
(2.66)

0.5157**
(2.42)

sigma2_e 0.0003***
(15.73)

0.0003***
(15.71)

0.0006***
(15.60)

0.0005***
(15.60)

R-squared 0.943 0.958 0.924 0.918

Table 9.   Results of lagged one-period robustness tests for the explanatory variables. z-statistics in parentheses, 
***, **, * indicate significance at the level of 1%, 5%, 10%.

Model (6) (7) (8) (9)

Effect Direct Indirect Total Direct Indirect Total Direct Indirect Total Direct Indirect Total

lnGTI
0.0647***
(5.47)

0.1073
(1.50)

0.1720**
(2.38)

0.0002
(0.03)

− 0.0579**
(− 2.29)

− 0.0577**
(− 2.30)

lnGTI2
0.0032***
(3.64)

− 0.0003
(− 0.38)

0.0030***
(2.78)

0.0005
(0.88)

− 0.0001
(− 0.83)

0.0003
(0.88)

lnSubGI
0.0092*
(1.78)

− 0.1280***
(− 4.00)

− 0.1187***
(− 3.58)

0.0109*
(1.80)

− 0.0796**
(− 2.43)

− 0.0686**
(− 2.05)

lnSymGI
− 0.0178***
(− 3.04)

0.0742**
(2.24)

0.0564*
(1.71)

− 0.0194***
(− 2.72)

0.0321
(0.91)

0.0127
(0.36)

lnER
− 0.0133
(− 1.59)

0.1045**
(2.16)

0.0912*
(1.91)

− 0.0071*
(− 1.93)

0.0589***
(3.27)

0.0518***
(2.97)

− 0.0049
(− 0.99)

0.0499**
(2.57)

0.0450**
(2.46)

− 0.0042
(− 0.78)

0.0564***
(2.66)

0.0522***
(2.63)

lnGTI*lnER − 0.0012***
(− 3.68)

0.0054**
(2.22)

0.0042*
(1.74)

0.0006***
(2.76)

0.0019*
(1.82)

0.0025**
(2.42)

lnSubGI
*lnER

− 0.0006
(− 0.80)

0.0101**
(2.12)

0.0095**
(1.97)

− 0.0009*
(− 1.75)

0.0047
(1.61)

0.0038
(1.22)

lnSymGI
*lnER

0.0008
(0.95)

− 0.0083
(− 1.60)

− 0.0075
(− 1.44)

0.0015***
(2.95)

− 0.0026
(− 0.94)

− 0.0011
(− 0.38)

lnControls Yes Yes Yes Yes

Province/
Year Yes Yes Yes Yes

Spatial rho 0.1323
(0.60)

0.2108**
(2.16)

0.4364***
(3.44)

0.3690***
(2.85)

sigma2_e 0.0019***
(15.52)

0.0003***
(15.46)

0.0006***
(15.65)

0.0006***
(15.67)

R-squared 0.265 0.967 0.952 0.953
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Estimated results after EEE decomposition
To further estimate which component of EEE is influenced by GTI, as EEE is composed of PTE and SE, this 
study decomposed EEE into PTE and SE and conducted new empirical analysis, as shown in Table 6. Under the 
three spatial weight matrices, the coefficients of the explanatory variables corresponding to SE are almost non-
significant, indicating that the impact of GTI on EEE is primarily manifested in PTE. Therefore, this research 
takes PTE as the dependent variable and decomposes GTI into SubGI and SymGI for re-estimation, with results 
shown in Table 7.

Under the spatial weight matrix Wb , the total effect of SubGI on PTE is significantly negative, consistent with 
the direction of the spatial effect, indicating that SubGI’s impact on the PTE of neighboring areas is greater than 
on the local area. Additionally, the total effect of SymGI on PTE is not significant, suggesting that GTI’s impact 
on PTE is also driven by SymGI47,49. The possible reason is that the development of SubGI requires a significant 
capital and labor input, and as neighboring areas, some of the capital and labor within the province will also be 
partially absorbed, leading to a decrease in PTE given the allocated resources. In contrast, under the interaction 
of direct and indirect effects, ER did not play a role in the impact of SymGI on PTE. The possible reason for this 
is that the implementation of ER increases the emission costs for local businesses, reduces the incentive for local 
businesses to develop GTI, and subsequently slows down the competition for capital and labor in neighboring 
areas, leading to a mutual offset between the two effects.

The robustness test
To ensure the reliability and accuracy of the methodology adopted and the conclusions obtained in this article, a 
robustness test was conducted by replacing the control variables and the explanatory variable with a one-period 
lag.

Firstly, in the robustness test involving the replacement of control variables, fiscal technology expenditure 
(FST) was substituted for R&D investment intensity. The effects of GTI, SubGI, SymGI, ER and the interaction 
term of ER with GTI, SubGI and SymGI on EEE as well as PTE are re-evaluated in this study under short-term 
effects based on the DSDM and the geographical distance weight matrix ( Wb ), respectively. The results presented 
in Table 8 show that all outcomes after the replacement of control variables maintain the same positive or 
negative signs and levels of significance as the original results. The coefficients exhibit only minor changes when 
comparing before and after the substitution. This suggests a high degree of robustness in the findings, thereby 
confirming the reliability of our estimates.

Secondly, in the short-term effects, the explanatory variables’ spatial Durbin lag one-period models were 
employed, along with the geographical distance weight matrix ( Wb ), to reassess the impact of GTI, SubGI, 
SymGI, ER, as well as the interactions between ER and GTI, SubGI, and SymGI on EEE and PTE. Similarly, the 
results in Table 9 demonstrate that all outcomes using lagged one-period explanatory variables maintain the 
same positive or negative signs and levels of significance as the dynamic Durbin model’s results. Coefficients 
exhibit only minor changes, reaffirming the strong robustness of the findings and the reliability of our estimates.

Conclusion and policy implications
Conclusion
This study utilized data spanning from 2003 to 2017 from 30 Chinese provinces and employed the NDDF method 
to calculate EEE for each province. Furthermore, considering the inherent nature of GTI, we decomposed it 
into two sub-indices, SubGI and SymGI. Through the use of DSDM, we investigated the impact of GTI on EEE, 
the sources of this impact, and the role of ER in influencing this relationship. The key findings are as follows:

(1)	 The impact of GTI on EEE follows a U-shaped pattern, initially leading to a decrease in EEE, followed by 
an increase. Furthermore, this effect is primarily attributed to the influence of SubGI on EEE.

(2)	 SubGI reduces EEE, with this effect being more pronounced in neighboring regions. Specifically, the 
promotion of EEE by SubGI within the local area is less significant than its inhibitory effect on EEE in 
neighboring regions.

(3)	 While ER can enhance EEE, due to the U-shaped impact of GTI on EEE, it leads to ER weakening the 
negative effect of GTI on EEE before reaching the critical point. However, after reaching the critical point, 
ER strengthens the promotion effect of GTI on EEE.

(4)	 The impact of GTI on EEE is primarily manifested in the PTE component, and this effect is primarily driven 
by SubGI.

Policy implications
Currently, China is in a period of rapid economic development, and this process is characterized by a high level 
of energy dependence. This phenomenon has placed significant pressure on achieving “peak carbon emissions” 
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and “carbon neutrality”. To ensure that the development of green technology innovation and environmental 
policies can better improve energy-environmental efficiency in China and other developing countries, this study 
proposes the following policy implications:

(1)	 Enhancing green technology innovation should prioritize the development and utilization of clean 
energy. Establishing a comprehensive incentive mechanism for green technology innovation is essential 
to encourage the transformation and upgrading of existing technologies, leading to reduced energy 
consumption and decreased carbon emissions.

(2)	 Prudent control over the intensity of environmental regulations is essential. Tailoring environmental 
regulation policies to the development status of different regions, such as command-based environmental 
regulatory policies, market-based environmental regulatory policies, and voluntary-based environmental 
regulatory policies.

(3)	 Governments at all levels should prioritize regional collaborative governance with the aim of enhancing 
energy-environmental efficiency. Seeking breakthroughs in addressing environmental and greenhouse gas 
emission governance issues.

However, this study has some limitations that should be addressed in future research to enrich this field. 
Firstly, this study used provincial-level data as research samples, making the conclusions relatively macroscopic. 
Therefore, future evaluations of GTI and ER should aim to be conducted at the city or enterprise level to delve 
deeper into the practical realities of GTI and ER. Secondly, due to limitations in statistical data, the study data 
covers the period from 2003 to 2017, lacking insights into recent years. Future work can improve this by using 
alternative indicators or changing calculation methods. Additionally, this study measured ER using pollution 
fees. In future research, different measures can be explored to classify ER into market-based ER, command-and-
control ER, and more, to investigate the varied roles of different types of ER.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Appendix
See Table 10.

Table 10.   Variable type and definitions.

Type Variable Symbol Definition

Explained variables

Energy-environmental efficiency EEE Measured by non-radial directional distance function

Scale efficiency SE Measured by non-radial directional distance function

Pure technical efficiency PTE Measured by non-radial directional distance function

Explanatory variables

Green technology innovation GTI The sum of the number of green invention patent applications and the number of green utility patent 
applications

Substantive green innovation SubGI Number of green invention patent applications

Symbolic green innovation SymGI Number of green utility patent applications

environmental regulation ER The proportion of the total emission fee to GDP

Control variables

Gross domestic product per capita PGDP The ratio of GDP to total population

Industrial structure IS The value added to GDP ratio of secondary industry

Foreign direct investment FDI The ratio of foreign direct investment to GDP

Energy consumption structure ECStruc The ratio of coal usage to total energy consumption

Urbanization level Urban The ratio of urban living population to total population

R&D investment intensity RDI R&D expenditure

Energy intensity EI Energy consumption per unit of GDP

Fixed asset investment Fix Total investment in fixed assets

R&D personnel input RDP R&D full time equivalent
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