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Multinomial machine learning 
identifies independent biomarkers 
by integrated metabolic analysis 
of acute coronary syndrome
Meijiao Fu 1, Ruhua He 2, Zhihan Zhang 3, Fuqing Ma 4, Libo Shen 5, Yu Zhang 1, Mingyu Duan 1, 
Yameng Zhang 6, Yifan Wang 7, Li Zhu 7* & Jun He 2*

A multi-class classification model for acute coronary syndrome (ACS) remains to be constructed 
based on multi-fluid metabolomics. Major confounders may exert spurious effects on the relationship 
between metabolism and ACS. The study aims to identify an independent biomarker panel for the 
multiclassification of HC, UA, and AMI by integrating serum and urinary metabolomics. We performed 
a liquid chromatography-tandem mass spectrometry (LC–MS/MS)-based metabolomics study on 
300 serum and urine samples from 44 patients with unstable angina (UA), 77 with acute myocardial 
infarction (AMI), and 29 healthy controls (HC). Multinomial machine learning approaches, including 
multinomial adaptive least absolute shrinkage and selection operator (LASSO) regression and random 
forest (RF), and assessment of the confounders were applied to integrate a multi-class classification 
biomarker panel for HC, UA and AMI. Different metabolic landscapes were portrayed during the 
transition from HC to UA and then to AMI. Glycerophospholipid metabolism and arginine biosynthesis 
were predominant during the progression from HC to UA and then to AMI. The multiclass metabolic 
diagnostic model (MDM) dependent on ACS, including 2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), 
argininosuccinic acid, and cyclic GMP, demarcated HC, UA, and AMI, providing a C-index of 0.84 (HC 
vs. UA), 0.98 (HC vs. AMI), and 0.89 (UA vs. AMI). The diagnostic value of MDM largely derives from the 
contribution of 2-ketobutyric acid, and LysoPC(18:2(9Z,12Z)) in serum. Higher 2-ketobutyric acid and 
cyclic GMP levels were positively correlated with ACS risk and atherosclerosis plaque burden, while 
LysoPC(18:2(9Z,12Z)) and argininosuccinic acid showed the reverse relationship. An independent 
multiclass biomarker panel for HC, UA, and AMI was constructed using the multinomial machine 
learning methods based on serum and urinary metabolite signatures.

Abbreviations
HC  Healthy controls
UA  Unstable angina
AMI  Acute myocardial ischaemia
BMI  Body mass index
WBC  White blood cell count
NEUT  Neutrophil count
LYM  Lymphocyte
RBC  Red blood cell count
HGB  Hemoglobin
PLT  Platelet count
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BUN  Blood urea nitrogen
Scr  Serum creatinine
UA  Uric acid
eGFR  Estimated glomerular filtration rate
Ccr  Endogenous creatinine clearance rate
Glu  Glucose
AST  Aspartate aminotransferase
ALT  Alanine transaminase
TG  Triglyceride
TC  Total cholesterol
HDL-C  High-density lipoprotein cholesterol
LDL-C  Low-density lipoprotein cholesterol
HCY  Homocysteine
hs-CRP  Hypersensitive C-reactive protein
cTnI  Cardiac troponin I
NT-proBNP  N-terminal pro-brain natriuretic peptide
LVEF  Left ventricular ejection fraction
CI  Confidence interval
OR per SD  Per-standard deviation odds ratio
ROC  Receiver operating characteristics curve
AUC   Area under the curve
No. of SV  Number of stenosed vessel
NRI  Net reclassification improvement
MDM  Metabolic diagnostic model

ACS, including UA and AMI, will occur as a result of a luminal thrombus or a sudden hemorrhage imposed on 
an atherosclerotic  plaque1, 2. The thrombus is usually incomplete and dynamic or even absent in UA, whereas it 
is primarily occlusive and sustained in AMI, mainly caused by plaque  rupture3. The formation and progression 
of atherosclerotic plaque is a complex process associated with atherosclerotic cardiovascular disease (ASCVD) 
 events4. Perturbations in cardiac glucose, amino acid, and fatty acid metabolism are contributors to coronary ath-
erosclerotic plaque and ACS  pathologies5. Based on the different characteristics of plaque and clinical outcomes 
in different types of ACS, we speculate that UA and AMI exhibit specific small-molecule metabolite variations.

As a metabolism-related and multifactorial disease, ACS involves a complex interplay among aging, sex, 
weight, lifestyle, comorbidities, and adverse environmental  exposures6. Metabolic phenotypes could be widely 
varied by gender, age, diet, physical activities, and other multifaceted  factors7–9. Furthermore, these exoge-
nous or endogenous confounders might exert some of their pathogenic effect on ACS via modification of the 
small  metabolites10. Ultimately, the genuine disease signatures might be obscured or even masked by these 
 confounders11. Therefore, in order to explore the genuine relationship between metabolites and ACS, some 
researchers call for adjustments for confounders that influence the host  metabolome12. However, in the real-world 
recognition and classification problems, it is a tremendous challenge or even impossible to completely isolate 
confounders and disease-related metabolic features under the complex context of the human body.

The detailed small-molecule mechanism of the formation and progression of coronary atherosclerotic plaques 
in different types of ACS has not been uniformly concluded yet. The present studies are focused on the underlying 
small molecular activities and novel metabolic biomarkers related to the progression and severity of coronary 
artery disease (CAD)13–16. For recapitulating plaque formation, growth and rupture, researchers explored the 
plasma metabolomes of individuals with normal coronary artery (NCA), nonobstructive coronary atheroscle-
rosis (NOCA), stable angina (SA), UA, and  AMI15. Using a similar study design, the later report showed that 
N-acetyl-L-neuraminic acid (Neu5Ac) acted as a trigger for myocardial injury and accumulated progressively 
as CAD  progressed13. Another two studies revealed that both the gut microbiota and metabolites changed 
significantly as CAD progressed, and a combined biomarker set may distinguish stable coronary artery disease 
(SCAD) from  ACS14, 16. These metabolome analyses paid scant attention to major confounders of study outcomes, 
such as age, gender, and co-morbid  conditions17, 18. In order to identify genuine disease-specific metabolome 
variance, the assessment and adjustment of the confounders are crucial for eliminating possible spurious effects 
on  metabolism12, 19, 20.

Additionally, the studies mentioned above are multiclassification (N > 2) metabolomics studies that require 
us to map subjects into multiple  categories13–16. Compared with binary classification (N = 2), multiclass omics 
is more intrinsically challenging in obtaining stable  biomarkers21, 22. Although machine learning (ML) is widely 
used in metabolome classification, few ML algorithms are applied to construct multiclassification metabolomics 
 models23. In order to convert the multiclassification into a binary classification, previous metabolomics studies 
on multiclassification of CAD usually conducted the multiple cross-comparisons based on hypothesis testing 
and then used binary classification ML approaches to obtain a classification  model15, 16. For instance, LASSO 
regression usually failed to be used as a multinomial classifier in previous ACS metabolomic  investigations24, 25. 
The multiclass metabolomics model for ACS and multinomial ML is lacking. A novel multiclass classification 
model for UA, AMI, and healthy controls using multinomial ML techniques is necessary.

In this study, we analyzed the serum and urine metabolic profiles from the 300 samples of the 150 participants 
through ultra-high liquid chromatography-tandem mass spectrometry (LC–MS/MS). Then, by performing the 
multinomial adaptive LASSO regression and RF classifier for multiclassification and adjusting for confounding 
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factors, we developed a multiclass metabolite-based model that demarcated individuals with HC, UA or AMI. 
Our work may provide a power assist for metabolites to achieve early clinical translational applications for ACS.

Materials and methods
Study population and design
The graphical abstract of this study is illustrated in Supplemental Fig. S1. A total of 150 suspected ACS partici-
pants were consecutively enrolled and administered coronary angiography (CAG) at the General Hospital of 
Ningxia Medical University. All patients were confirmed with ≥ 50% reduction in luminal diameter by visual 
assessment. UA is defined as myocardial ischaemia at rest or on minimal exertion in the absence of acute car-
diomyocyte injury/necrosis26. The diagnostic criteria for AMI need to be met by detecting the increase and/or 
decrease of cardiac biomarkers, preferably high sensitivity cardiac troponin (hs-cTn) T or I, with at least one 
value higher than the 99th percentile of the reference upper limit, and at least one of the following must be met: 
a. Symptoms of myocardial ischaemia; b. New ischemic ECG changes; c. Development of pathological Q waves 
on ECG; d. Imaging evidence of loss of viable myocardium or new regional wall motion abnormality in a pattern 
consistent with an ischemic etiology; e. Intracoronary thrombus detected on angiography or  autopsy26. Subjects 
who showed no stenosis were regarded as healthy controls. Those with malignant tumors, autoimmune disorders, 
infectious diseases, and severe renal dysfunction with creatinine > 3.0 mg/dl were excluded. The Ethics Review 
Committee of the General Hospital of Ningxia Medical University authorized this study, which followed the 
Declaration of Helsinki’s guidelines. Written informed consent was received from all the participants before the 
study launched.

Sample size calculation
We performed power analysis using MetaboAnalyst 5.0. The power reaches an acceptable level (0.8) at a sample 
size of approximately 120 (per group ≈ 40, Supplementary Fig. S1). If power is set at 0.75, the sample size is 
approximately 90 (per group ≈ 30, Supplementary Fig. S2). We set the sample size to 150, which meets the sample 
size standard. The detailed procedure for sample size calculation was provided in the Supplementary Fig. S1.

Quantification of plaque burden
The SYNTAX score and modified Gensini score were applied to evaluate the severity of ACS. The SYNTAX score 
was used to grade the complexity of coronary  lesions27. The modified Gensini score was used to quantify the 
atherosclerotic plaque burden of ACS, considering the location, number, and degree of  stenosis28. The SYNTAX 
score I was calculated using an online pre-defined algorithm named the SYNTAX score calculator version 2.11 
(http:// www. synta xscore. com/). The SYNTAX score II (http:// www. synta xscore. com/ calcu lator/ synta xscore/ 
frame setss2. htm) was computed by the SYNTAX score I, unprotected left main CAD; other clinical variables 
included age, sex, left ventricular ejection fraction, creatinine clearance, chronic obstructive pulmonary disease, 
and peripheral vascular disease. The modified Gensini scores take the severity score, the region multiplying fac-
tor, and the collaterals with the severity score adjustment factor into  consideration28.

Sample preparation
The metabolomics workflow complies with the published  guidelines29–31. Paired morning whole blood and urine 
samples were collected from all subjects before CAG and centrifuged at 3000 rpm for 10 min at 4 °C. Serum and 
the urine supernatant were kept and aliquoted, respectively, and then stored at − 80 °C immediately for meta-
bolic analysis. For the metabolite extraction, 50 μL of the samples were transferred to an Eppendorf tube. After 
the addition of 200 μL extract solution (acetonitrile: methanoll = 1:1, containing an isotopically labeled internal 
standard mixture), the samples were vortexed for 30 s, sonicated for 10 min in an ice-water bath, and incubated 
for 1 h at − 40 °C to precipitate proteins. Then the samples were centrifuged at 12,000 rpm (RCF = 13,800 g, 
R = 8.6 cm) for 15 min at 4 °C. The resulting supernatants were transferred to a fresh glass vial for analysis. The 
quality control (QC) samples were prepared by mixing an equal aliquot of the supernatants from all of the sam-
ples. One QC sample was inserted in every 10 test samples to monitor the repeatability of the analysis process.

Untargeted metabolomics detection by ultra high-performance liquid chromatography/quad-
rupole exactive–orbitrap mass spectrometry (UHPLC/QE–MS)
A UHPLC system (Vanquish, Thermo Fisher Scientific) with a UHPLC BEH Amide column (2.1 mm × 100 mm, 
1.7 μm) coupled to QE HFX MS (Orbitrap MS, Thermo) was performed in both positive and negative ionization 
modes. A mixture of 25 mmol/L ammonium acetate and 25 mmol/L ammonia hydroxide in water (pH = 9.75) (A) 
and acetonitrile (B) made up the mobile phase. The auto-sampler temperature was 4 °C, and the injection volume 
was 2 μL. For its capacity to acquire MS/MS spectra in information-dependent acquisition (IDA) mode under 
the supervision of the acquisition software (Xcalibur, Thermo), the QE HFX mass spectrometer was utilized. 
The acquisition software continuously assessed the full scan MS spectrum in this mode. The ESI source criteria 
were established: the capillary temperature was 350 °C, the sheath gas flow rate was 30 Arb, the auxiliary gas flow 
rate was 25 Arb, the full MS resolution was 60,000, the MS/MS resolution was 7500, the collision energy was 
10/30/60 in NCE mode, and the spray voltage was either 3.6 kV (positive) or − 3.2 kV (negative), as appropriate.

Metabolomics data preprocessing and assessment of the data quality
The criteria for assessing the quality of metabolomics data, the stability and reproducibility of the experimental 
method are as follows: the tolerance limits are set such that the measured response detected in two-thirds of 
QC samples is within 30% coefficient of  variation29, 31. In this study, the internal standard of relative standard 

http://www.syntaxscore.com/
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deviation (RSD) in QC samples was ≤ 15% (median), which represents high data quality. The raw data were 
imported to ProteoWizard and processed with R and XCMS for peak detection, extraction, alignment, and 
integration. Then, after obtaining the ion intensities for each peak, we created a matrix with the names of the 
samples, retention time-m/z pairings, and peak intensities.

The deviation value is filtered based on the RSD ≥ 30%29, 31. By eliminating peaks with missing values in more 
than 50% of samples, the matrix was further  condensed29, 31. The residual missing value was filled up by one-half 
of the minimum value. Each retained peak was normalized using an internal standard.

Metabolite identification
The molecular mass data (m/z) were aligned to identify metabolites using our in-house metabolite library, and 
public databases including the Kyoto Encyclopedia of Genes and Genomes databases (KEGG) (http:// www. 
genome. jp/ kegg/), Human Metabolome Database (HMDB) (http:// www. hmdb. ca), and Metabolite Link (MET-
LIN) (https:// metlin. scrip ps. edu). The compound matching in this study is qualitative based on the dual-core 
algorithm (the dot-product function and the Euclidean distance)32. The authentication accuracy of the algorithms 
exceeds 70%32. Known metabolites reported in this study conformed to confidence level 1 (the highest confidence 
level of identification) of the Metabolomics Standards  Initiative33, 34.

Pathway analysis
We used MetaboAnalyst 5.0 (https:// www. metab oanal yst. ca/ Metab oAnal yst/) to perform pathway topology 
analysis based on KEGG databases. The statistical significance of the changes in pathways was evaluated by the 
Hypergeometric test, the default method used by MetaboAnalyst 5.0. The topological pathway impacts were 
quantified using the published  method35. Using the K-means cluster method to observe the change trend of 
metabolites.

Feature selection
The adaptive LASSO regression was one of the most robust machine learning approaches for feature selection and 
classification. To recognize robust metabolites to simultaneously discriminate HC, UA, and AMI, the adaptive 
LASSO multinomial regression was performed using the ‘cv. glmnet’ package. The overfitting risk of classifier 
was rendered through tenfold internal cross-validation. The optimal features were captured at the minimum λ 
with adaptive multinomial LASSO regression. Then, random forest (RF), another ensemble machine-learning 
approach for classification, was applied. The ‘createDataPartition’ function in the ‘caret’ package was applied to 
randomly divide the data into a 75% traininging set and a 25% test set. The ‘randomForest’ package yielded lists of 
metabolites sorted by feature importance. The optimal number of discriminant metabolites was identified using 
tenfold cross-validation implemented with the “rfcv” function in the R package ‘randomForest’ with five repeats. 
The effectiveness of machine learning algorithms was displayed by confusion matrices and multi-group receiver 
operating characteristic (ROC) curves. Multi-group ROC curves were displayed by ‘multiclass. Roc’ in the ‘pROC’ 
package. To improve reproducibility and model robustness, the 28 shared metabolic features (15 in serum and 
13 in urine) with the two algorithms were selected as candidate metabolic biomarkers. The intersection of vari-
ables in the two machine learning approaches was visualized as a Venn diagram by the ‘VennDiagram’ package.

Simplification of features with subgroup interaction test
In order to explore the genuine relationship between metabolites and ACS, the multivariable-adjusted model and 
subgroup interaction test were used to recognize metabolites that were not roiled by confounders among the 28 
candidate metabolites. The ‘mgcv’ package was used to conduct stratified and interaction analyses for exploring 
the associations between the metabolic signatures and ACS risk in different subgroups, such as different age, sex, 
BMI, smoking status, history of hypertension or diabetes, or levels of TG, TC, HDL-C, and LDL-C. The forest 
plot of univariable and multivariable-adjusted models was visualized by the ‘ggforestplot’ package, and the forest 
plot of subgroup interaction was depicted by the ‘forestploter’ package.

Construction of the multiclass metabolic diagnostic model
The multiclass metabolic diagnostic model (MDM) was developed via multivariate generalized linear regression 
(R package ‘glm’). The contribution of each metabolite to the MDM is calculated by the ‘calc.relimp’ function 
in the ‘relaimpo’ package. The jitter plot of the cutoff is using the ‘ggsignif ’ and ‘ggplot2’ packages. Consistency 
between actual and integrated model-predicted probabilities and the overfitting risk of MDM was assessed using 
the calibration curve (1000 resampling bootstraps) in the internal validation set. Hosmer–Lemeshow p > 0.05 
reveals good consistency between actual and predicted probabilities, and MDM is not overfitted. The clinical 
application of alternative diagnostic strategies was determined with decision curve analysis (DCA) by quantify-
ing the net benefits at various threshold probabilities.

Internal validation of the multiclass metabolic diagnostic model
The discrimination ability of the integrated model was measured using the Harrell concordance index (C-index) 
with 1000 resampling bootstraps in internal validation. The Net Reclassification Index (NRI) was employed to 
compare the diagnostic value of a single metabolite with the combined metabolic panel.

Statistical analysis
R 4.2.1 was used for data analysis and visualization. The workflow of statistical analysis is presented in Fig. 1a. 
The differences among baseline characters were measured by (1) continuous normal distribution variables among 
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three groups were analyzed by a one-way analysis of variance. The Kruskal–Wallis H-test was applied for data not 
distributed normally. (2) Continuous, normally distributed variables between two groups were analyzed by the 
Student’s t-test. The Mann–Whitney U test was applied to data that was not normally distributed. (3) Categori-
cal variables were compared by the χ2 test. The Kruskal–Wallis H-test was used to compare the metabolites’ 
intensity between the three groups. The relationship between metabolites and the ACS phenotype, as well as 
the relationship between serum and urine metabolites were expressed by the Spearman correlation analysis. All 
the tests were two-sided, and p < 0.05 indicates significance unless otherwise stated. The Benjamin-Hochberg 
correction based on false discovery rate (FDR) was utilized in multiple tests to decrease false-positive rates, and 
adjusted p < 0.05 indicates significance.

Ethics approval and consent to participate
The study was approved by the Ethics Committee for the Conduct of Human Research at the General Hospital of 
Ningxia Medical University (2020-763). All participants were informed of the possible risks of the study and gave 
written informed consent. All methods were carried out in accordance with relevant guidelines and regulations.

Figure 1.  Overview of metabolome detection in serum and urine. (a) A schematic summarizing the workflow 
for statistical analysis. (b) Total count of serum metabolites and urinary metabolites. (c) Circular diagram of 
superclass composition in serum metabolites and urinary metabolites. (d) The top 10 detected classes and the 
count of compounds contained in each class of serum and urine.
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Results
General characteristics of the enrolled population
As shown in Table 1, the UA and the AMI are older than the HC (HC vs. UA, adjusted p ˂ 0.05; HC vs. AMI, 
adjusted p ˂ 0.05), and traditional cardiovascular risk factors, such as smoking, hypertension, diabetes mel-
litus, and hyperlipidemia, are much more frequently presented compared with the HC (adjusted p ˂ 0.05). 
The AMI has higher levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) than the 
UA with disease shifting (adjusted p ˂ 0.05). The UA and AMI display lower red blood cell (RBC) counts and 
hemoglobin (HGB) levels compared with the HC group (adjusted p ˂ 0.05). The white blood cell (WBC) and 
neutrophil (NEUT) counts and hypersensitive C-reactive protein (hs-CRP) levels in the AMI group are signifi-
cantly increased compared with the HC and the UA (adjusted p ˂ 0.05). With the progress of the disease, levels 
of aspartate transaminase (AST), alanine aminotransferase (ALT), and Recombinant N-terminal Pro-Brain 
Natriuretic peptide (NT-proBNP) are increased (adjusted p ˂ 0.05). The AMI exhibits higher SYNTAX I, Gensini 
scores, number of stenosed vessels (No. of SV), and cTnI levels, as well as lower LVEF compared with the UA 

Table 1.  Baseline characteristics of the enrolled population. † Mean ± SD, *median (IQR), §n (%), adjusted 
Pa < 0.05 for equality between HC vs. UA. adjusted Pb < 0.05 for equality between HC vs. AMI. adjusted 
Pc < 0.05 for equality between UA vs. AMI.

HC (n = 29) UA (n = 44) AMI (n = 77) p value

Age (years)† 49.97 ± 5.21 61.00 ± 8.15 59.05 ± 9.29  < 0.001ab

Male§ 25 (86.21) 25 (56.82) 59 (76.62) 0.01ac

BMI, kg/m2† 24.90 ± 2.62 25.17 ± 3.14 24.59 ± 2.75 0.55

Current  smoker§ 25 (86.21) 18 (40.91) 40 (51.95)  < 0.001ab

CAD family  history§ 0 (0.00) 9 (20.45) 7 (9.09) 0.02a

Hypertension§ 0 (0.00) 23 (52.27) 35 (45.45)  < 0.001ab

Diabetes  mellitus§ 0 (0.00) 17 (38.64) 19 (24.68)  < 0.001ab

Hyperlipidemia§ 0 (0.00) 7 (15.91) 35 (45.45)  < 0.001abc

Laboratory data

 WBC (*109/L)† 6.64 ± 1.57 6.68 ± 2.05 9.88 ± 2.88  < 0.001bc

 NEUT (*109/L)† 3.68 ± 1.25 3.97 ± 1.86 7.25 ± 2.79  < 0.001bc

 LYM (*109/L)† 2.17 ± 0.63 2.03 ± 0.53 1.87 ± 0.80 0.13

 RBC (*1012/L)† 5.04 ± 0.48 4.66 ± 0.41 4.69 ± 0.57  < 0.01ab

 HGB (g/L)† 159.45 ± 13.76 141.18 ± 16.52 142.86 ± 19.15  < 0.001ab

 PLT (*109/L)† 226.86 ± 55.38 229.36 ± 61.67 243.29 ± 73.59 0.39

 BUN (mmol/L)† 4.72 ± 1.07 5.23 ± 1.59 5.40 ± 1.57 0.12

 Scr (μmol/L)† 68.32 ± 9.65 62.91 ± 12.86 70.86 ± 18.32 0.03c

 UA (μmol/L)† 320.97 ± 62.35 308.16 ± 71.91 324.64 ± 86.07 0.53

 eGFR (ml/min/1.73m2)† 110.0 ± 12.7 116.5 ± 27.8 108.8 ± 27.3 0.26

 Ccr (mL/min)† 114.01 ± 20.11 105.17 ± 27.31 100.98 ± 28.13 0.08

 Glucose (mmol/L)† 4.97 ± 0.38 6.36 ± 1.68 6.99 ± 2.35  < 0.001ab

 AST (U/L)* 19.00 (16.70–21.90) 23.20 (20.80–29.07) 56.60 (32.80–131.20)  < 0.001abc

 ALT (U/L)* 21.60 (17.10–24.30) 28.00 (20.28–36.75) 37.70 (29.40–53.10) 0.02abc

 TG (mmol/L)† 1.70 ± 0.85 1.89 ± 1.10 1.71 ± 0.74 0.53

 TC (mmol/L)† 4.32 ± 0.82 3.49 ± 0.77 4.09 ± 1.01  < 0.001ac

 HDL-C (mmol/L)† 1.24 ± 0.29 0.96 ± 0.18 0.91 ± 0.23  < 0.001ab

 LDL-C (mmol/L)† 2.36 ± 0.60 1.80 ± 0.67 2.58 ± 0.83  < 0.001ac

 HCY (μmmol/L)† 20.92 ± 10.10 22.19 ± 16.72 24.33 ± 17.89 0.58

 hs-CRP (mg/L)* 0.47 (0.21–0.71) 1.34 (0.36–2.51) 6.92 (3.01–20.77)  < 0.001bc

 cTnI (ng/ml)* 0.01 (0.01–0.01) 0.01 (0.01–0.01) 6.93 (1.34–20.10)  < 0.001bc

 NT-proBNP (pg/ml)* 49.46 (36.19–115.10) 107.52(52.71–281.05) 858.00(325.59–1788.50)  < 0.001abc

 SYNTAX score I* NA 15.50 (9.75–20.00) 17.00 (12.00–26.50)  < 0.01c

 SYNTAX score II* NA 23.05 (20.12–28.93) 22.80 (19.95–30.70) 0.48

 Gensini score* NA 42.50 (28.25–69.50) 57.00 (39.50–74.50) 0.03 c

 No. of stenosed  vessels§  < 0.001abc

  None 29 (100.0) 0 (0.0) 0 (0.0)

  One 0 (0.0) 9 (20.5) 24 (31.2)

  Two 0 (0.0) 14 (31.8) 21 (27.3)

  Three 0 (0.0) 21 (47.7) 32 (41.6)

  LVEF (%)† 67.2 ± 2.7 64.3 ± 8.3 52.9 ± 8.3  < 0.001bc
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(adjusted p ˂ 0.05). Based on the above, subjects suffering from AMI experienced the most stressful inflamma-
tion, metabolomic disorders, the most severe coronary artery lesion, and left ventricular dysfunction.

Machine learning for identifying serum multiclass diagnostic metabolites
In serum samples, a total of 14,179 features were profiled in both positive and negative electrospray ionization 
 (ESI+ and  ESI−) modes. Based on KEGG and HMDB analyses, 651 metabolites were identified after peak align-
ment and data preprocessing (Fig. 1b). The lipids and lipid-like molecules were the most abundant, of which 
glycerophospholipids ranked first (Fig. 1c,d). The adaptive LASSO multinomial regression and random forest, the 
branches of artificial intelligence, were used to reduce our extensive metabolites to a small set of candidate diag-
nostic biomarkers for discriminating the multiple groups. To more comprehensively mine the metabolite infor-
mation without omission, we fed all the identified 651 serum metabolites into the adaptive LASSO multinomial 
regression classifier for variable selection. We utilized ten-fold cross-validation to select the penalty parameter 
λ. The variables included in the adaptive LASSO multinomial regression and their corresponding coefficients for 
the different values of λ are presented in Fig. 2a. As the penalty parameter λ increases, the variable coefficients are 
forced to zero. We adopted a minimum λ (λ min = 0.04) to fit the LASSO regression (Fig. 2b). Then we identified 
29 key serum metabolites with nonzero coefficients, demarcating HC, UA, and AMI (Fig. 2b). The 29 metabolites 
were considered candidate biomarkers for further analysis. The effectiveness of the LASSO classifier is presented 
by a confusion matrix in that total 142 subjects are correctly classified, and the correct classification rate is 94.7% 
(Fig. 2c). We further conducted internal cross-validation to verify whether the model is overfitted. The classifier is 
not overfitted with 85.3% of the correct classification rate, calculated via the ‘cv. glmnet’ package. Meanwhile, the 
RF algorithm was applied to select the optimal features for multiclass HC, UA, and AMI. Based on the correlation 
plot between the number of RF trees and RF model error, the number of trees against the error curve tended to 
stabilize when 500 trees were chosen as the final model’s parameter (Fig. 2d). The minimum cross-validation 
error was obtained when using 47 important metabolites in the number of signatures against the cross-validation 
error curve (Fig. 2e). The top 30 discriminant metabolites are displayed in Fig. 2e. In the training set (n = 113), a 
sum of 94 subjects was classified precisely, and the correct classification rate was 83.2% (Fig. 2f). In the internal 
test set (n = 37), the AUC of this RF classifier to distinguish the HC, UA, and AMI was calculated as 0.97, 0.86, 
and 0.97, respectively, by the multiclass ROC analysis (Fig. 2g). For more robust biomarker identification, we 
adopted the intersection of the two algorithms and obtained 15 shared candidate diagnostic signatures (Fig. 2h).

Machine learning for identifying urinary multiclass diagnostic metabolites
A total of 14,364 metabolites in urine samples were detected, and 992 metabolites were analyzed (Fig. 1b). The 
organic acids and derivatives were the most abundant (Fig. 1c). We performed the two multinomial machine 
learning algorithms to obtain key urinary metabolites for distinguishing the three groups from each other. The 
adaptive LASSO multinomial regression captured 45 urinary candidate metabolites when λ min = 0.03 (Supple-
mental Fig. S3a,b). The fitted LASSO classifier displayed a 95.3% correct rate overall (Supplemental Fig. S3c) 
and an 81.3% correct rate in the internal cross-validation. This proves that the multinomial LASSO classifier is 
not overfitted. Based on 500 trees, the RF classifier was constructed, and the number of signatures against the 
cross-validation error curve reached the nadir inflection point when using 35 important metabolites (Supple-
mental Fig. S3e). The top 30 discriminant metabolites are ranked by importance (Supplemental Fig. S3e). In the 
training set (n = 113), the correct classification rate of this RF algorithm was 72.6% (Supplemental Fig. S3f). In 
the internal test set (n = 37), the AUCs of this RF classifier were 0.81, 0.78, and 0.83 for distinguishing the HC, 
UA, and AMI, respectively (Supplemental Fig. S3g). Then, thirteen shared metabolites were identified by the 
two algorithms in a Veen diagram (Supplemental Fig. S3h).

Altered serum and urine metabolic signatures and pathways as ACS progressed
We have obtained 15 and 13 candidate metabolic diagnostic signatures to multiclass HC, UA, and AMI in serum 
and urine samples. To explore metabolic alterations during ACS development, we examined metabolic trends 
applying the K-means clustering method to the candidate metabolic diagnostic signatures. The 15 serum dis-
criminate metabolites were divided into four types of clusters. Specifically, cluster 3 and cluster 4 showed regular 
changes (Fig. 3a). Three metabolites, such as 2-ketobutyric acid in cluster 4 displayed a sharp increase in the tran-
sition of HC → UA → AMI (Figs. 3a, 4). The topological pathway analysis revealed that valine, leucine and iso-
leucine biosynthesis, cysteine and methionine metabolism were disturbed in cluster 4 during HC → UA → AMI 
(Fig. 3a,b). Cluster 3 including LysoPC(18:2(9Z,12Z)), LysoPC(22:0), and PE(P-18:1(9Z)/18:1(9Z)) were dropped 
step by step as ACS progressed (Figs. 3a, 4). Glycerophospholipid metabolism was the most significant disturbed 
pathway in cluster 3 during HC → UA → AMI (Fig. 3a,b). In urine samples, the 13 discriminate metabolites were 
clustered into 4 groups, cluster 3 and 4 showed regular alterations (Fig. 3c). The six metabolites, such as arginino-
succinic acid in cluster 3 displayed a downward trend during HC → UA → AMI. The topological pathway analysis 
revealed that arginine biosynthesis was the most important pathway mapping cluster 3 during HC → UA → AMI 
(Fig. 3c,d). Cluster 4 including cyclic GMP demonstrated an upward trend from the HC to UA and then to the 
AMI and was enriched in purine metabolism (Figs. 3c,d, 4).

Identification of independent metabolic signatures
In order to discover robust biomarkers that are independent of conventional cardiovascular risk factors, we con-
ducted logistic regression analyses and interaction tests. The odds ratio (OR) per standard deviation (SD) of the 
15 candidates in serum and the 13 candidates in urine are depicted in Fig. 4 and Supplemental Table S1, including 
the crude model (i.e., the unadjusted model), the parsimonious model (i.e., Adjust I, a minimally adjusted model 
that includes the covariates age, sex, and BMI), and the fully adjusted model (i.e., Adjust II, a model that includes 
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Figure 2.  The 15 candidate serum metabolic biomarkers selected by adaptive LASSO multinomial regression 
and random forest algorithms. (a) Plots for adaptive LASSO multinomial regression coefficients over different 
values of the penalty parameter λ. (b) Cross-validation plots for the penalty parameter λ. The dashed line 
left represents the minimum λ. The 29 candidate metabolic signatures mapping the minimum λ (0.0.4) were 
subjected to the next analysis. (c) The confusion matrix of the internal cross-validation set shows 29 HC, 38 
UA, and 75 AMI are correctly classified by the adaptive LASSO multinomial algorithm. The darker the color 
represents, the more correctly it is classified. (d) The correlation plots between the number of random forest 
trees and the model classification error. The error stabilized when using 500 trees. (e) The top 30 discriminant 
metabolic signatures are ranked in descending order of importance to the accuracy of the RF classifier for HC, 
UA, and AMI. The bar lengths indicate the importance of the signature. The insert represents a tenfold cross-
validation error as a function of the optimal number of input signatures used to fit the RF classifier. The number 
of signatures against the cross-validation error curve reaches the inflection point when using 47 signatures. (f) 
The confusion matrix of the training set (n = 113) based RF classifier shows 94 subjects are correctly classified. 
(g) The multinomial receiver-operating characteristic (ROC) curves are used to distinguish HC, UA, and AMI 
in the internal test set (n = 37) based RF classifier. (h) The Venn diagram shows the shared 15 candidate serum 
biomarkers selected by adaptive LASSO multinomial regression and RF algorithms.
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the covariates age, sex, BMI, triglyceride [TG], total cholesterol [TC], high-density lipoprotein cholesterol [HDL-
C], low-density lipoprotein cholesterol [LDL-C], hypertension, diabetes, and smoking). In the crude model, 11 
metabolites in serum and 11 metabolites in urine are associated with ACS. After adjusting for various variables, 
a total of 5 serum metabolites, including 1 metabolite in serum cluster 1, serum cluster 3, and 1 metabolite in 
serum cluster 4, remained statistically significant (p < 0.05). Eight urine metabolites remained statistically sig-
nificant after adjusting for various variables (p < 0.05). Each SD of LysoPC(18:3(6Z,9Z,12Z)), 2-ketobutyric acid, 
N6-Acetyl-l-lysine, and cyclic GMP was associated with a 3.89-fold (95% CI 1.57–15.23), 12.44-fold (95% CI 
2.56–70.69), 8.77-fold (95% CI 1.19–80.26), and 11.22-fold (95% CI 2.00–74.71) increment in the OR for incident 
ACS. The risk of suffering from ACS was reduced by 0.89-fold (95% CI 0.03–0.45), 0.79-fold (95% CI 0.08–0.57), 
0.89-fold (95% CI 0.03–0.42), 0.64-fold (95% CI 0.16–0.80), 0.79-fold (95% CI 0.07–0.59), 0.95-fold (95% CI 
0.01–0.31), 0.73-fold (95% CI 0.10–0.76), 0.59-fold (95% CI 0.21–0.81), and 0.69-fold (95% CI 0.13–0.74) for each 

Figure 3.  Altered metabolites and metabolic pathways as ACS progresses. (a,c) K-means clustering of the 
15 serum and 13 urine metabolic signatures during HC, UA, and AMI. Different changing trends and major 
pathways of serum or urine metabolites are summarized in cluster 1–4. (b,d) Metabolic pathways undergo 
significant changes during HC, UA, and AMI in serum and urine.
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SD increase of metabolites in LysoPC(18:2(9Z,12Z)), LysoPC(22:0), PE(P-18:1(9Z)/18:1(9Z)), corticosterone, 
erythronic acid, uracil, argininosuccinic acid, xanthurenic acid, and N4-Acetylcytidine, respectively.

Then subgroup analysis and interaction tests were carried out for the selected thirteen metabolites (Fig. 5, 
Supplemental Figs. S4–S6). Subgroup analysis revealed that the relationship between 2-ketobutyric acid and ACS 
remained consistent across subgroups of BMI, TG, and HDL-C (p for interaction > 0.05, Fig. 5). Although the 
same relationship was not observed in the ≥ 60 y, females, non-smokers, subjects with hypertension or diabetes, 
or subjects with different levels of TC and LDL-C, the interaction term indicated insignificant effect modification 
by subgroup variables for the association between 2-ketobutyric acid and ACS (p for interaction > 0.05, Fig. 5). 
Meanwhile, we noticed that subgroup variables played no interactive role in the relationship between the other 
six metabolites: LysoPC(18:2(9Z,12Z)), argininosuccinic acid, cyclic GMP, xanthurenic acid, erythronic acid, 
and N6-Acetyl-L-lysine and ACS (p for interaction > 0.05, Fig. 5, Supplemental Figs. S4–S6). Seven molecules 
out of the thirteen metabolites were not affected by those confounding factors and had the potential to be used 
to characterize ACS.

Correlations between metabolic signatures and ACS phenotype
To explore the correlation between the seven metabolic signatures and the ACS phenotype, we performed 
Spearman correlation analysis (Fig. 6). As shown in Fig. 6a,e, there was a progressive increase in 2-ketobutyric 
acid, and cyclic GMP as the disease progressed (rho = 0.51, p < 0.05; rho = 0.29, p < 0.05). LysoPC(18:2(9Z,12Z)), 
argininosuccinic acid, and xanthurenic acid showed a progressive decline as the disease progressed (rho = − 0.57, 
p < 0.05; rho = − 0.46, p < 0.05; rho = − 0.28, p < 0.05, Fig. 6b–d). The same pattern was not observed in N6-Acetyl-
L-lysine and erythronic acid (rho = 0.05, p = 0.57; rho = − 0.13, p = 0.11, Fig. 6f,g). Unsupervised clustering analysis 
showed that 2-ketobutyric acid and cyclic GMP are more abundant in the AMI, while LysoPC(18:2(9Z,12Z)) 
and argininosuccinic acid are low-abundance in the AMI (Fig. 6h).

In order to further explore the relationship between the four metabolites and ACS phenotype, hs-CRP, cTnI, 
NT-proBNP, LVEF, SYNTAX score I, SYNTAX score II, Gensini score, and No. of SV were considered as indi-
cators mirroring ACS severity. Spearman correlation analysis indicated that 2-ketobutyric acid was positively 
correlated with hs-CRP, cTnI, NT-proBNP, SYNTAX score I, SYNTAX score II, Gensini score, and the number 
of stenosed vessels (Fig. 6i, Supplemental Table S2). LysoPC(18:2(9Z,12Z)) and argininosuccinic acid were 

Figure 4.  Univariable and multivariable analysis of the association between the candidate metabolic signatures 
and ACS. Crude (unadjusted OR); Adjust I (age, sex, BMI); Adjust II (age, sex, BMI, TG, TC, HDL-C, LDL-C, 
hypertension, diabetes, and smoking). The non-significant entries were drawn as hollow points. p < 0.05 was 
considered statistically significant.
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positively correlated with LVEF and negatively correlated with other indicators. Cyclic GMP was correlated with 
these indicators except for the SYNTAX score II.

Integration of optimal diagnostic model
From the pathway analysis and the correlation with the ACS phenotype, we regarded the four metabolites, includ-
ing 2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), argininosuccinic acid, and cyclic GMP as candidate biomarkers of 
ACS and applied them to develop MDM. A ROC analysis was conducted to observe the diagnostic value of the 
four molecules. The area under the curve (AUC) of 2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), argininosuccinic 
acid, and Cyclic GMP was 0.64, 0.80, 0.66, and 0.56, for distinguishing UA from HC (Fig. 7a). Encouragingly, 
the biomarkers panel MDM combined with the 4 metabolites displayed a more excellent effect on distinguishing 
UA from HC with an increased AUC of 0.84, and LysoPC(18:2(9Z,12Z)) contributed the most to UA diagnosis 
in the integrated model (Fig. 7a,g). The optimal cut-off value of MDM was 0.63 with a predictive accuracy of 
81% (Fig. 7d). To recognize the AMI from the HC, the AUC of 2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), 
argininosuccinic acid, and Cyclic GMP was 0.83, 0.91, 0.81, and 0.71 (Fig. 7b). The MDM was more excellent at 
distinguishing AMI (AUC = 0.98), and LysoPC(18:2(9Z,12Z)) contributed the most to AMI diagnosis (Fig. 7b,g). 
The optimal cut-off value was 0.39, with a predictive accuracy of 96% (Fig. 7e). The AUC of the above 4 molecules 
was 0.76, 0.72, 0.71, and 0.62 for identifying AMI from UA (Fig. 7c). The MDM exhibited significantly higher 
diagnostic performance (AUC = 0.89), and 2-ketobutyric acid contributed the most to distinguishing AMI from 
UA (Fig. 7c,g). The optimal cut-off value was 0.54, with a predictive accuracy of 84% (Fig. 7f).

To assess the consistency of the MDM, we performed the calibration curve by bootstrapping with 1000 resam-
plings in the internal validation. For the UA discrimination, the calibration curve presented excellent consistency 
between the actual and predicted probabilities of the MDM (mean absolute error = 0.039, Hosmer–Lemeshow 
p = 0.413, Fig. 7h). For the AMI discrimination, the simulated curve was consistent with the actual curve trajec-
tory by performing 1000 resampling bootstraps (Hosmer–Lemeshow p = 0.998; Hosmer–Lemeshow p = 0.953; 
Fig. 7i,j). The calibration curves prove that the multiclass model MDM is not overfitted.

The DCA curves obtained for 2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), argininosuccinic acid, cyclic GMP, 
and MDM for HC vs. UA, HC vs. AMI, and UA vs. AMI are presented in Fig. 7k–m. Compared with the single 

Figure 5.  Subgroup analysis of 2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), argininosuccinic acid, and cyclic 
GMP. The p for interaction revealed that age, gender, BMI, smoking history, hypertension, diabetes, TG, TC, 
HDL-C, and LDL-C played no interactive role in the association between the four metabolites and ACS. The p 
for interaction were drawn as bold in p entries. p < 0.05 was considered statistically significant. OR per SD per-
standard deviation odds ratio.
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Figure 6.  The potential metabolic biomarkers for the discrimination of the different ACS stages and 
correlations with ACS phenotypes. (a–g) The violin plot shows the distribution of 2-ketobutyric acid, 
LysoPC(18:2(9Z,12Z)), argininosuccinic acid, xanthurenic acid, cyclic GMP, N6-Acetyl-L-lysine, and erythronic 
acid in HC and different ACS stages. Spearman correlation analysis was used to reveal the relationship between 
metabolic signatures and the three progressive groups. The Kruskal–Wallis test was used to compare the three 
groups. (h) Heatmap and unsupervised cluster constructed using the seven metabolites. The blue color was of 
low abundance, and the red color was of high abundance. (i) According to Spearman correlation analysis, the 
alluvial plot shows the correlations between metabolic signatures and the ACS phenotype. The thickness of the 
connecting line indicates the magnitude of the correlation. The red stratums represent serum metabolites, and 
the blue stratums represent urine metabolites. Blue: positive correlation (p < 0.05); Red: negative correlation 
(p < 0.05).
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metabolite alone, the combination of four metabolites showed significantly higher net benefits, indicating that 
MDM has a potential clinical application value.

Figure 7.  The diagnostic performance of the four potential metabolic biomarkers. (a–c) The diagnostic 
performance of 2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), argininosuccinic acid, cyclic GMP, and metabolic 
diagnostic model (MDM) is shown via ROC curves for cross-comparisons among HC vs. UA, HC vs. AMI, 
and UA vs. AMI. (d–f) The optimal cut-off value for cross-comparisons among HC vs. UA, HC vs. AMI, and 
UA vs. AMI. The numbers above the red dashed line indicate the percentage of cases predicted as UA, or AMI. 
(g) Contribution of the four metabolites to MDM. (h–j) The calibration curves and Hosmer–Lemeshow test 
demonstrate good consistency between the predicted probability of MDM and the actual probability for HC 
vs.UA, HC vs. AMI, and UA vs. AMI in the internal validation with 1000 bootstrap repetitions. (k–m) Decision 
curve analysis for 2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), argininosuccinic acid, cyclic GMP, and MDM in 
the comparisons of HC vs. UA, HC vs. AMI, and UA vs. AMI. The MDM was calculated by the combination of 
2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), argininosuccinic acid, cyclic GMP.
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Validation of the integrated model
We performed the bootstrapping with 1000 resamplings in the internal validation. The C-index with 1000 resa-
mpling was 0.83 (95% CI 0.73–0.91), 0.97 (95% CI 0.92–0.99), and 0.89 (95% CI 0.83–0.94) for HC vs. UA, HC 
vs. AMI, and UA vs. AMI (Supplemental Fig. S7a–c). Then we compared the single metabolite with the MDM 
by using 1000 resampling bootstraps in the internal validation (Table 2). NRI shows the diagnostic performance 
is improved by the MDM.

The relationship between serum and urine metabolites
We employed the correlation network to reveal the relationship between the 15 serum and 13 urine discriminate 
metabolic signatures (Supplemental Fig. S8). Uracil and caprylic acid in urine exhibit significant centralization, 
and this means that more serum metabolites are associated with them. N6-Methyladenosine and Phenylalanyl-
Tryptophan were the most centralized serum metabolites. Proline betaine in serum shows the strongest positive 
correlation with vinylacetylglycine in urine (rho = 0.71, p < 0.05, Supplemental Fig. S8, Supplemental Table S3).

In addition, we observed that 7 out of the 28 potential discriminate metabolic signatures were detected in 
both blood and urine (Supplemental Fig. S9). Specifically, proline betaine in serum was positively correlated with 
it in urine, and exhibited similar upward trends from the HC to the AMI (R = 0.56, p = 2.2e−16, Supplemental 
Fig. S9c,j). N4-Acetylcytidine showed opposite trends in blood and urine (R = − 0.18, p = 0.026, Supplemental 
Fig. S9f,m).

2-Ketobutyric acid was the only one detected both in serum and urine among the four diagnostic biomarkers. 
The Spearman correlation analysis revealed that 2-ketobutyric acid in serum was not correlated with it in urine, 
and there was no regular change trend in serum and urine (R = 0.079, p = 0.34, Supplemental Fig. S9a,h). However, 
we noticed that the four diagnostic biomarkers were associated with other metabolites. Such as 2-ketobutyric 
acid was negatively correlated with uracil and caprylic acid, while LysoPC(18:2(9Z,12Z)) showed a positive 
correlation (Supplemental Fig. S8, Supplemental Table S3). Argininosuccinic acid was negatively related to 
N6-Methyladenosine, and positively related to Phenylalanyl-Tryptophan. Cyclic GMP was negatively related to 
LysoPC(22:0) (rho = − 0.30, p = 2.53E−04, Supplemental Fig. S8, Supplemental Table S3).

Discussion
We applied UHPLC/QE-MS in an untargeted approach to measure metabolites in paired serum and urine 
samples from 150 participants. Then we performed unbiased machine-learning variable reduction techniques 
and adjusted for confounders to generate a novel multiclassification model that can play an essential role in 
stratifying ACS patients. By integrating 2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), argininosuccinic acid, and 
cyclic GMP, we established the multiclassification model MDM that approached a strong C-index, outperforming 
single metabolite alone. Furthermore, we discovered that the four metabolites changed dynamically as plaque 
burden increased. In addition, 2-ketobutyric acid is identified both in serum and urine, but they are not cor-
related. These results lend credence to the idea that the combination of serum and urine metabolites exhibits 
powerful efficiency in classifying subjects into HC, UA, or AMI, which may have the clinical effect of improving 
risk stratification relatively noninvasively.

Table 2.  Comparisons between single metabolite and MDM in the internal validation with 1000 bootstrap 
repetitions. NRI net reclassification improvement, MDM metabolic diagnostic model, calculated by 
2-ketobutyric acid, LysoPC(18:2(9Z,12Z)) argininosuccinic acid, and cyclic GMP.

Exposure AUC 95% CI Specificity Sensitivity Accuracy NRI

HC vs. UA

 2-Ketobutyric acid 0.65 0.50–0.75 0.48 0.84 0.70 0.31

 LysoPC(18:2(9Z,12Z)) 0.79 0.68–0.89 0.79 0.70 0.74 0.14

 Argininosuccinic acid 0.66 0.53–0.77 0.69 0.68 0.68 0.26

 Cyclic GMP 0.56 0.43–0.69 0.83 0.43 0.59 0.38

 MDM 0.83 0.73–0.91 0.86 0.77 0.81

HC vs. AMI

 2-Ketobutyric acid 0.82 0.73–0.89 0.97 0.57 0.68 0.37

 LysoPC(18:2(9Z,12Z)) 0.91 0.83–0.95 0.97 0.74 0.80 0.20

 Argininosuccinic acid 0.80 0.70–0.88 0.72 0.83 0.80 0.35

 Cyclic GMP 0.71 0.62–0.80 0.83 0.58 0.65 0.49

 MDM 0.97 0.92–0.99 0.93 0.97 0.96

UA vs. AMI

 2-Ketobutyric acid 0.76 0.68–0.83 0.91 0.52 0.66 0.24

 LysoPC(18:2(9Z,12Z)) 0.72 0.62–0.81 0.73 0.65 0.68 0.29

 Argininosuccinic acid 0.71 0.61–0.80 0.93 0.44 0.62 0.29

 Cyclic GMP 0.63 0.52–0.73 0.34 0.88 0.69 0.44

 MDM 0.89 0.83–0.94 0.80 0.87 0.84
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The multinomial classifiers named adaptive LASSO multinomial regression and RF for feature selection 
employed in our research are differentiated from previous  research36–38. The aim of this study is to establish 
a multiclassification metabolic model to classify subjects into HC, UA, or AMI. Obviously, this is a multiclas-
sification problem (N > 2) rather than a simple binary classification problem. Multiclass metabolic models are 
scarce in the field of CAD. As the complexity of determining accurate class decision boundaries increases, it is 
more difficult to obtain stable and reliable classification models for  multiclassification21, 22. Therefore, compared 
with binary classification, machine learning algorithms suitable for multiclassification are greatly  reduced23. A 
report claimed that fewer than fourteen ML methods can be applied to multiclass  metabolomics23. The premise 
of applying machine learning algorithms in the past multiclassification metabolic research of CAD is to convert 
the multiclassification into a dichotomous problem through cross comparison and traditional hypothesis testing, 
such as the Student’s t-test16, 24. These studies used RF, binominal LASSO, and support vector machine (SVM) to 
construct binary classification so as to overlook the establishment of multiclassification  models16, 24. Traditional 
hypothesis testing will narrow the prior range of differential metabolites, and multiple pairwise comparisons 
will increase the risk of type I  error39. In view of this, this study does not use traditional hypothesis testing and 
multiple pairwise comparisons in the modeling process. Adaptive LASSO is an upgraded version of LASSO 
that can overcome the shortcomings of LASSO, as it obtains initial weights using ordinary least squares estima-
tion, which results in higher penalties for zero coefficients and lower penalties for nonzero  coefficients36, 40. We 
ameliorated adaptive LASSO into multinomial adaptive LASSO, and combined it with RF to build a multiclass 
metabolic model to classify HC, UA, and AMI. We plugged all identified metabolites into the multinomial classi-
fiers for feature selection, which was conducive to making comprehensive use of metabolites and eliminating type 
I error. Finally, 2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), argininosuccinic acid, and cyclic GMP stood out as 
representatives of ACS after controlling confounders and the interaction test, potentially mirroring ACS severity.

The selected metabolic small molecules based on different machine learning algorithms require reproduc-
ibility. Previous studies have found that one of the reasons for the low reproducibility of biomarkers is due to 
the inappropriate methods of identifying  biomarkers41. The reproducibility of biomarkers in different popula-
tions, subgroups, or subsets is the fundamental criterion for measuring the performance of machine learning 
algorithms  used42, 43. Based on the reproducibility criteria, this study obtained candidate diagnostic metabolic 
small molecules by taking intersections based on multinomial adaptive LASSO regression and RF and then 
conducting confounding factor evaluation and interaction testing. In a real-world setting, it is almost impossible 
to completely remove the influence of confounding factors on host metabolism. Our study identified independ-
ent metabolites that are not modified by age, sex, BMI, smoking status, history of hypertension or diabetes, or 
levels of TG, TC, HDL-C, and LDL-C to the maximum extent. Whether these metabolites are affected by other 
potential confounders was not evaluated in this study. The representativeness of the study population is another 
important factor affecting reproducibility. The importance of sample size for the generalizability of results to a 
broader population is widely acknowledged. The sample size of this study meets the sample size requirement for 
identifying differences in metabolites between groups. This indicates that the study population is representative 
at the sample size level. In addition, the baseline characteristics of the population in this study are consistent 
with the epidemiological characteristics of ACS, which proves that the study population is representative to some 
 extent44. Meanwhile, model overfitting is one of the difficulties in applying machine learning to small  datasets45. 
Although this multiclassification model did not undergo external dataset validation for reproducibility, internal 
validation, including cross-validation and 1,000 resampling bootstraps, demonstrated that it has considerable 
reproducibility and there is no overfitting of the model.

We mapped biochemical metabolic pathways based on the four metabolic signatures (Fig. 8). Glycerophos-
pholipid metabolism in serum and arginine biosynthesis in urine were the two most significantly altered pathways 
in the transition of HC → UA → AMI. This demonstrated that a significant disorder emerged in glycerophos-
pholipid metabolism and arginine biosynthesis as ACS progressed. Our findings were supported by previous 
 research15, 46, 47. These previous studies showed that glycerophospholipid metabolism was found to be the most 
significantly altered metabolic pathway in all paired comparisons, such as UA versus SA, AMI versus  UA15, 48. 
Consistent with our results, glycerophospholipids in SA and AMI patients were significantly lower than those 
in healthy  individuals49. Glycerophospholipid metabolism is closely related to the inflammatory response of 
CAD, and glycerophospholipids may act as potential inflammatory  mediators47, 50. The arginine biosynthesis 
pathway represents the source of nitric oxide (NO)  production51. Reduced arginine uptake can cause a decrease 
in NO  bioavailability51. NO exerts anti atherosclerotic cardioprotective effects by vasodilation, inhibiting plate-
let aggregation, and adhesion, inhibiting inflammation produced by leukocyte adhesion to blood vessels, and 
inhibiting vascular smooth muscle  proliferation52. Previous studies have confirmed that the arginine metabolic 
pathway in CAD is impaired, which supports our  findings15, 47. Some scholars claim that exogenous arginine 
supplementation can restore NO bioavailability, increase coronary blood flow, dilate blood vessels, and relieve 
angina pectoris in patients with CAD, while others hold negative  results51, 53. Therefore, the benefit of arginine 
for CAD is controversial.

As Fig. 8 depicts, the tricarboxylic acid (TCA) cycle distributed in the mitochondria is like a critical hub 
linking the metabolic disturbances of 2-ketobutyric acid and arginosuccinic acid. Compared with the other three 
metabolites, 2-ketobutyric acid contributed the most to the MDM for differentiating AMI from UA, and was 
positively correlated with plaque burden and myocardial injury indicators. This implies that 2-ketobutyric acid 
is of the highest value in the diagnosis of UA and AMI. 2-Ketobutyric acid may be an agonist of atherosclerosis 
and myocardial injury or may be a consequence. As a kind of α-keto acid, 2-ketobutyric acid can be converted 
into succinyl CoA and then enter the TCA cycle 54. A magnitude of studies identified the impaired TCA cycle in 
myocardial ischaemia, which is similar to our  results5, 55, 56. Previous studies reported a decrease in intermediate 
metabolites of the TCA cycle during AMI, such as fumaric acid, succinate, and oxaloacetic  acid57, 58. However, 
some scholars are opposed to this. They believe that succinate is elevated during myocardial ischaemia and drives 
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reactive oxygen species (ROS) to cause ischaemia–reperfusion  injury56, 59, 60. In line with the previous study, 
our result demonstrated that the levels of 2-ketobutyric acid were upregulated in  ACS13. Researchers specu-
lated that accumulations of 2-ketobutyric acid, the TCA cycle intermediate, signified perturbations of oxidative 
 phosphorylation61. Activating 2-ketobutyric acid production was sufficient to promote glucose oxidation and 
mitochondrial  respiration62. The accumulation of 2-ketobutyric acid in ACS, especially in AMI, may be due to 
the feedback increases caused by the impaired TCA cycle activity.

In this work, higher levels of argininosuccinic acid were associated with a lower risk of ACS. We showed that 
argininosuccinic acid was negatively correlated with ACS phenotype indices. This indicates that the deficiency 
of argininosuccinic acid might have a deleterious effect on ACS. Thus, our findings suggest that argininosuccinic 
acid is beneficial for ACS and it may contribute to the etiology of ACS as part of the cause or a consequence. 
The specific causality needs further verification. Arginosuccinic acid can be synthesized from citrulline and is 
used as a precursor of arginine in arginine biosynthesis. This study clarifies that arginosuccinic acid is involved 
in the progression of HC → UA → AMI via dysregulated arginine biosynthesis. The previous study supported 
our view by showing that a higher arginine/asymmetric dimethylarginine ratio was associated with lower CVD 
 incidence63. It was reported that a supplement of L-citrulline, a precursor of argininosuccinic acid, showed ben-
efits for cardiovascular and metabolic health  outcomes64. This report supports our findings. As a precursor of 
fumarate, the downregulation of argininosuccinic acid in the ACS might indirectly affect fumarate production 
and further signify abnormal activities of the TCA cycle.

LysoPC(18:2(9Z,12Z)), an unsaturated LPC (lysophosphatidylcholine), participates in the progression of 
HC → UA → AMI via the dysregulated glycerophospholipid metabolism, which is supported by the previous 
 research46. We find that LysoPC(18:2(9Z,12Z)) contributes the greatest diagnostic value in distinguishing whether 
an individual suffers from ACS or not with the maximum contribution ratio. Interestingly, we observed that 

Figure 8.  Disturbed metabolic pathways implicated in ACS pathogenesis. Five metabolic pathways relating to 
MDM during the progression from HC to UA and then to AMI are altered: glycerophospholipid metabolism, 
cysteine and methionine metabolism, valine, leucine and isoleucine biosynthesis, arginine biosynthesis, purine 
metabolism. Red font indicates the two-serum potential diagnostic metabolites, and the blue indicates the 
two-urine potential diagnostic metabolites. NP pathway natriuretic peptide pathway, NO pathway nitric oxide 
pathway.
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LysoPC(18:2(9Z,12Z)) was in low abundance in AMI and was negatively associated with atherosclerosis plaque 
burden and hs-CRP. This analysis provides insight into the anti-atherosclerotic and anti-inflammatory proper-
ties of LysoPC(18:2(9Z,12Z)) in the setting of  ACS65. Consistent with our findings, previous studies showed that 
LysoPC(18:2) was downregulated in the ACS or in the  AMI15, 66. Large-scale cohort studies suggested a negative 
association between LysoPC(18:2) and MACE risk or hs-CRP, which supported our  findings46, 67. A previous 
study demonstrated that LPC can bind C-reactive protein (CRP), thereby inhibiting its pro-atherogenic effect on 
macrophages and delaying the progression of  atherosclerosis68. These discoveries demonstrate that LysoPC(18:2) 
could stabilize atherosclerotic plaque. This contradicts LPC could significantly induce the uptake of oxLDL by 
macrophages, thereby transforming into foam cells and aggravate the deterioration of atherosclerotic  plaques69. 
The following reasons can explain: LPC may play an antiatherosclerosis role by inhibiting cholesterol biosynthe-
sis and reducing cellular cholesterol accumulation in liver  cells70 and  macrophages71. Another explanation for 
this discrepancy result is attributed to that the acyl chain length and saturation of different LPC species affect 
their activity and  function72, 73. Saturated LPC, such as LPC (16:0), can promote the release of inflammatory 
 cytokines74. Unsaturated LPC, such as LPC (20:4), can inhibit the production of inflammatory mediators and 
exert anti-inflammatory effects, which supports our  findings74. Recent evidence elucidates that the more the 
number of double bonds of phosphatidylcholine, the lower the risk of death from  CAD46. This supports the view 
of this study that polyunsaturated LPC, such as LysoPC(18:2(9Z,12Z)), have beneficial effects on ACS.

Another intriguing discovery is that higher urinary cyclic GMP (cGMP) levels were associated with an 
increased risk of incident ACS and positively related to atherosclerosis plaque burden. Consistent with our result, 
a case-cohort analysis nested study with 875 participants showed that higher levels of cGMP were independent 
risk factors for heart failure, cardiovascular events, and coronary heart disease after 9.9 years of follow-up75. 
Activating the NO/cGMP/cGMP-dependent protein kinase type I (cGKI)-signaling pathway can facilitate throm-
bus  dissolution76. Elevating cGMP provides protection against ischaemia and reperfusion injury by increasing 
 Ca2+-activated  K+ channels of the BK-type activity (BK)77. These protective effects of cGMP seem to contradict 
the positive association between urinary cGMP and CVD risk. Some reasons can explain this relationship. Direct 
activation of the respective guanylate cyclase by nitric oxide (NO) or natriuretic peptide (NP)-triggered pathways 
can upregulate  cGMP78. The increase of cGMP in urine was largely triggered by the NP pathway rather than NO 
 pools79. We observed that cGMP was positively correlated with NT-proBNP, a natural ligand for membrane-
bound guanylate cyclase receptors to stimulate the synthesis of cGMP. This result supports the idea that urinary 
upregulated cGMP in ACS is more likely to originate from the NP pathway. Although the cardioprotective effects 
of cGMP, cGMP levels are upregulated in ACS pathological conditions, like NT-proBNP. The elevated urinary 
cGMP reflects inadequate compensatory mechanisms of ACS. In addition, by analyzing the relationship between 
serum and urine metabolites, we found that cGMP was detected only in urine and not in serum. This is due to 
the fact that cGMP produced by the NO pathway is intracellular compartmentalized and difficult to measure in 
blood, while cGMP produced by the NP pathway resides at the membrane and is secreted to the  extracellular80. 
This is another explanation for our detection of elevated urine cGMP levels in ACS. This paradox highlights the 
complexity of the relationship between cGMP and ACS.

One of the strengths of the study is that the detailed contribution proportions of the four metabolites to MDM 
are helpful for clinical decision-making. These metabolites have the potential to be made into reagents to monitor 
the occurrence of ACS. Their clinical application value is reflected in that when an individual’s 2-ketobutyric acid 
is the most significantly upregulated among the four signatures, they are at high risk of AMI rather than UA, and 
when LysoPC(18:2(9Z,12Z)) is most significantly downregulated, they are more inclined to UA or AMI diagnosis 
rather than healthy status. Our results fill a gap in the establishment of a multiclassification metabolomics model 
with multinomial ML approaches, especially multinomial adaptive LASSO regression. Furthermore, the MDM 
is a robust independent biomarker panel of ACS and atherosclerosis plaque burden, as the spurious effects of 
some confounding factors were dismissed.

Further investigations are essential. This is a cross-sectional study, and only the metabolites at a certain 
moment were observed. Long-term dynamic metabolite changes or metabolic flux using tracer technology is 
needed to determine whether there is a causal relationship between the four metabolic signatures and ACS. 
Besides, a large number of metabolites used to prepare diagnostic test reagents do not have reference material. 
At present, one of the biggest challenges and limitations of metabolome disease diagnostics is the generalizability 
of target metabolites, which can be affected by the diversity of the population, genetics, environment, and vari-
ous potential  confounders7. This study serves as an exploratory analysis, a larger-scale cohort study for external 
validation in real-world medicine is essential to proving the generalizability and reproducibility of our findings.

Conclusion
In conclusion, glycerophospholipid metabolism and arginine biosynthesis act on predominant roles as ACS and 
atherosclerosis plaque progression. This study provides a new metabolic multiclassification model and multino-
mial machine learning algorithm for ACS. The MDM integrated by 2-ketobutyric acid, LysoPC(18:2(9Z,12Z)), 
argininosuccinic acid, and cyclic GMP have emerged as robust, independent hallmarks of ACS and atheroscle-
rosis plaque. Our finding provides new insights for revealing novel potential etiologies for ACS.

Data availability
The original data presented in the study are included in the article/Supplementary Materials.
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