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Beam management optimization 
for V2V communications based 
on deep reinforcement learning
Junliang Ye  & Xiaohu Ge *

Intelligent connected vehicles have garnered significant attention from both academia and 
industry in recent years as they form the backbone of intelligent transportation and smart cities. 
Vehicular networks now exchange a range of mixed information types, including safety, sensing, 
and multimedia, due to advancements in communication and vehicle technology. Accordingly, 
performance requirements have also evolved, prioritizing higher spectral efficiencies while 
maintaining low latency and high communication reliability. To address the trade-off between 
communication spectral efficiency, delay, and reliability, the 3rd Generation Partnership Project 
(3GPP) recommends the 5G NR FR2 frequency band (24 GHz to 71 GHz) for vehicle-to-everything 
communications (V2X) in the Release 17 standard. However, wireless transmissions at such high 
frequencies pose challenges such as high path loss, signal processing complexity, long pre-access 
phase, unstable network structure, and fluctuating channel conditions. To overcome these issues, 
this paper proposes a deep reinforcement learning (DRL)-assisted intelligent beam management 
method for vehicle-to-vehicle (V2V) communication. By utilizing DRL, the optimal control of beam 
management (i.e., beam alignment and tracking) is achieved, enabling a trade-off among spectral 
efficiency, delay, and reliability in complex and fluctuating communication scenarios at the 5G NR FR2 
band. Simulation results demonstrate the superiority of our method over the 5G standard-based beam 
management method in communication delay, and the extended Kalman Filter (EKF)-based beam 
management method in reliability and spectral efficiency.

Vehicular communications, which connect vehicles, infrastructures, networks, and pedestrians, are facing sig-
nificant challenges due to the superior performance requirements brought by the development of intelligent 
transportation systems and smart  cities1,2. Specifically, future vehicular networks are required to handle a series 
of critical tasks, including data collection, traffic coordination, autonomous driving, and energy  consumption3,4. 
On the contrary, only four dedicated sub-bands are allocated for V2X communication in the 5G NR FR1 fre-
quency band. To solve this issue, 3GPP has recommended the 5G NR FR2 frequency band for V2X in the 
Release 17 standard. Although higher frequency bands bring more spectrum resources, it is still a daunting task 
to efficiently utilize these spectrum resources to achieve low latency, high reliability, and high spectral efficiency 
communication in V2X communications, especially in the V2V communication  scenarios5, according to the 
following reasons. 

1. High path loss: The transmissions on the 5G NR FR2 band suffer from higher path loss compared with 5G 
NR FR1, i.e., sub-6GHz. Thus, larger antenna arrays with massive multiple inputs multiple outputs (MIMO) 
systems and narrower beam patterns are required by both transmitters and receivers to compensate for the 
high path loss of the wireless  links6. However, larger antenna arrays lead to higher signal processing com-
plexity. Moreover, the narrow beam patterns result in higher time costs and smaller beam coverage in beam 
alignment, beam training, and beam  tracking7. These facts further affect the end-to-end transmission delay 
and reliability of V2V communications.

2. High mobility: High mobility is a distinctive feature of vehicle-to-vehicle (V2V) communication, where both 
the transmitter and the receiver are in motion at high velocity. This makes a V2V communication channel 
more unpredictable, variable, and unstable in comparison to vehicle-to-infrastructure (V2I) and vehicle-to-
pedestrian (V2P)  communications8. The goal of beam management is to select the most appropriate beam 
pattern that can optimize communication performance based on the transmission environment. However, 
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beam management becomes significantly more challenging due to the unique characteristics of V2V com-
munication, such as high mobility.

3. Partial observation: Partial observation is a key characteristic that distinguishes vehicle-to-vehicle (V2V) 
communication from vehicle-to-infrastructure (V2I) communication. Unlike V2I, the positions of roadside 
infrastructures (RSIs) in V2V communication are stationary, and they regularly gather information from all 
nearby vehicles, resulting in more comprehensive observation information than other vehicles can provide. 
In optimization and control problems, such as beam management, global observation information plays a 
vital role. Vehicles, on the other hand, can only access a partial set of environmental information (such as 
channel information, the positions of other vehicles, and the location of RSIs) through their own  sensors9. 
If observation information is insufficient, the vehicle may not accurately manage the beam pattern, leading 
to a decline in performance.

In V2V (vehicle-to-vehicle) scenarios, it is necessary to employ a beam management approach that can achieve 
low latency, high reliability, and high spectral efficiency communications, even in situations where the channel 
state is unstable, the transmitting and receiving nodes are in motion at high velocity, and only partial observa-
tion information is available. The 5G standard mandates that the transmitter/receiver selects a suitable beam for 
beam alignment and performs beam training on the selected beam to enhance its directionality, thus achieving 
a stronger beamforming gain during the initial connection setup between  nodes10. Assuming four beam patterns 
are available for both the transmitter and receiver to select during the beam alignment phase, 16 (4×4) pairing 
operations are required to identify the optimal beam pattern. Subsequently, the transmitter/receiver needs to 
refine the selected beam using channel state information (CSI) obtained through a complex channel estimation 
method. However, the complexity of the 5G standard-based beam management approach renders it impractical 
for achieving low-latency V2V communications. The deep reinforcement learning (DRL) method presents a 
potential solution for V2V beam management.

By formulating the beam management problem as a Markov decision process, a reinforcement learning (RL) 
agent can be used to select the optimal beam pattern directly, without the need for an exhaustive search. Addi-
tionally, extending the conventional DRL approach to the multi-agent case allows for the sharing of observation 
information between vehicles, and even joint training, thereby improving the training efficiency and overall 
algorithm performance. In this paper, we propose a DRL-based beam management method for V2V communi-
cations. We first generated traffic flow data for a typical highway scenario using Anylogic simulation software, 
which was then used to train the DRL agent. Subsequently, we analyzed the statistical characteristics of the traffic 
flow data and identified self-similarity in the time domain. Finally, we adapted the DRL framework to lever-
age the self-similarity of the traffic flow data, resulting in improved algorithm performance. We also compared 
various DRL frameworks and found that the independent proximal policy optimization (IPPO) method is more 
effective for beam management in V2V scenarios. We provide a detailed discussion of this finding in the paper.

Related work
In recent years, as 5G systems have been extensively adopted for commercial use, research on beam management 
for 5G NR FR2 frequency bands has gained significant attention from academia and industry. For instance, Ref.10 
proposes a beam management algorithm that uses spatially distributed antenna subarrays, instead of a single 
co-located antenna array, to reduce beam alignment errors. This is achieved by minimizing the sum of squared 
errors between the estimated beam direction after the beam training process and the refined beam direction 
obtained from measured position and velocity data. In Ref.11, the authors propose a tractable mmWave com-
munication model that considers both the distance and heading of vehicles, enabling low-complexity beam 
design. To optimize relay selection and beam management with minimal overhead, D.-Kim et al. formulate a 
sequential decision problem in Ref.12. Moreover, a machine learning (ML) approach is introduced in Ref.13 to 
achieve fast analog beam selection for mmWave V2V communications, thereby achieving higher data rates with 
significantly lower computational complexity. Ashraf et al. focus on feedback-based autonomous reconfigura-
tion of the hypersurface controller states to establish a reliable communication channel between a transmitter 
and a receiver using programmable reflection on the hypersurface, specifically when there is no Line-of-sight 
(LoS) path between  them14.

On the other hand, in order to overcome the limitations of regular beam management methods in terms of 
latency and reliability, some researchers have attempted to apply artificial intelligence methods in the field of 
beam management, and have achieved a series of significant  results15. In Ref.16, a learning-based cost-efficient 
resource allocation algorithm using deep neural networks is proposed to ensure system performance while 
achieving cost-efficiency. Ref.17 proposes a deep reinforcement learning (DRL) based method to select unblocked 
UAV relays and perform beam management jointly. Hu et al. introduce a system for radio resource allocation 
in V2V communications that rely on the proximal strategy optimization  method18. Tang et al. explores the 
channel model in high mobility and heterogeneous networks and puts forth a novel approach for radio resource 
 allocation19. Specifically, a deep reinforcement learning-based intelligent time-division duplexing (TDD) con-
figuration algorithm is proposed to allocate radio resources dynamically.

Although there has been a considerable amount of research focused on beam management in V2V sce-
narios in recent years, these studies often remain confined within the communication domain, neglecting the 
impact of vehicles’ mobility on beam management or, in cases where such an impact is acknowledged, relying 
on relatively simplistic mobility models to simulate vehicle movement. Furthermore, despite some efforts to 
employ AI techniques to address beam management in V2V scenarios, there has been insufficient research on 
the distribution of vehicle mobility or traffic data. Data distribution, as the foundation of AI data, determines 
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the appropriate AI methods for problem-solving. Therefore, based on the above reasons, this paper makes the 
following contributions: 

1. We presented a novel approach to addressing the beam management issue in V2V communication scenarios 
by utilizing a traffic flow dataset-based DRL framework. By carefully selecting the appropriate state, action, 
and reward structures, we significantly improved the algorithm’s effectiveness and enhanced the network’s 
overall performance in terms of spectral efficiency and reliability.

2. We analyzed the statistical characteristics of the traffic flow data and found that the data set has high self-
similarity in the temporal dimension. Based on this observation, we introduced an RNN structure to the DRL 
framework to address this self-similarity, resulting in improved network performance in terms of spectral 
efficiency and reliability.

3. By analyzing the characteristics of the V2V communication scenario, we introduced the twin delayed deep 
deterministic policy gradient (TD3) model into the proposed DRL framework and found that the TD3 model 
is more suitable for V2V communication scenarios compared to the IPPO model. Combining the insights 
gained from points 2 and 3, we proposed the ITD3 with RNN framework. This framework optimizes beam 
management control to achieve spectral efficiency optimization in V2V scenarios while ensuring commu-
nication latency and reliability.

The rest of this paper is described as follows: “Network architecture” describes the network architecture of 5G NR 
FR2 based V2V communications. The beam management process and performance metrics are further described 
in “Performance evaluation”. “Deep reinforcement learning model” provides a detailed description of the DRL 
framework in this paper. The simulation results and the corresponding discussions are shown in “Results and 
discussions”, the potential future work is discussed in “Future work”, and conclusions are made in “Conclusion”.

Network architecture
In this study, we focus on a V2V network that utilizes agent-based simulation software, Anylogic 8.8, to simulate 
the mobility patterns (i.e., velocity and position) of vehicles (as shown in Fig. 1). Specifically, we select a typical 
highway scenario as the simulation area, which comprises four lanes and a two-lane exit, and define it as A . To 
support beam management in the V2V network, we employ DRL technology, whereby a DRL agent determines 
the beam pattern of each vehicle at the beginning of each frame.

Following the 5G standard, the network in our study is configured to operate in a time-slotted manner with 
a time slot duration of 1ms and a frame length of 10 ms (i.e., consisting of 10 time slots). We define the set of 
vehicles within the simulation area A at time slot ti ( i ∈ [1, 10] ), frame fj ( j ∈ [1,∞) ) as 
�i,j =

{

Vuk

∣

∣

∣
k = 1, 2, . . . ,NV

i,j

}

 , where NV
i,j is the number of vehicles at time slot ti , frame fj . Without loss of 

generality, we chose a cluster consisting of two vehicles as a typical cluster, and the corresponding beam manage-
ment method can be extended to clusters with more vehicles. For a given time slot ti , frame fj , define the typical 
cluster formed by vehicle Vum and Vun ( m  = n ) as Gm,n

i,j .
At the beginning of each frame (i.e., t0 of fj ), vehicles contained in Gm,n

i,j  need to determine proper beam 
patterns to keep connected with each other. Defining the determined beam patterns of Vum and Vun at frame 
fj as Fm,n

j  and Fn,mj  , respectively. The beam alignment, beam tracking, and communication process is shown in 
Fig. 2. Recall that the network operates in a time-slotted manner. Also, we assume Vum and Vun need to change 

Figure 1.  Network architecture (3D/2D).
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safety-critical information during each frame to maintain road safety. As shown in Fig. 2, the V2V communica-
tion process can be summarized into two phases;

1. Beam alignment phase: In this phase, vehicles contained in Gm,n
i,j  will use the 5G NR FR2 band to do beam 

alignment to make initials connection with each other. If beam alignment succeeds, i.e., Vum and Vun suc-
cessfully capture each other with Bmi,j and Bni,j , the communication process will turn to the following beam 
tracking phase. Once Vum or Vun fails to track each other in the following beam tracking phase, the com-
munication between Vum and Vun will be turned to the beam alignment phase. Here we defined the beam 
alignment phase as PBA.

2. Beam tracking and data transmission phase: In this phase, Vum and Vun will keep adjusting the beam direc-
tion and width to maintain the link quality between them. At each frame, the transmitter will first determine 
a proper beam pattern based on the previous feedback information from the receiver through uplink trans-
mission every frame. Then, if the link quality is high enough, e.g., the channel capacity is higher than a given 
threshold γth , Vum and Vun will maintain the beam tracking phase and keep transmitting data. However, if 
the link quality drops (mostly because of an unpredicted large movement of Vum and Vun ), Vum and Vun 
will start a new beam alignment phase to re-capture each other. Similarly, we defined the beam tracking and 
data transmission phase as PBT

Hence, in a given frame fj , the communication between Vum and Vun could be in the beam alignment phase or 
the beam tracking and data transmission phase, depending on their initial connection success and subsequent 
beam tracking process. As data transmission does not occur during the beam alignment phase, Vum and Vun 
need to avoid this phase to improve the long-term average spectral efficiency. However, their movement is unpre-
dictable as they only have access to feedback information, such as location and velocity, from the previous time 
slots. Based on Ref.20, we assume that the location information from Vum and Vun has small normally distributed 
errors, denoted as elo ( elo ∼ N(0, , σlo) ). Even errors as small as several centimeters can significantly affect link 
performance in 5G scenario with massive MIMO technology, which requires a small beam width to compensate 
for high channel fading. Thus, repeating the beam alignment phase becomes necessary. To account for this, we 
model uplink transmission/decoding failures as a stationary stochastic process denoted by �F . Nj represents 
the probability of such a failure occurring at fj . Additionally, blockage by other vehicles could be significant at 
mmWave  frequencies21,22. We model the blockage as a stationary stochastic process denoted by �B , with Mj 
representing the probability of a blockage occurring at fj . To address these issues, we propose a DRL-assisted 
beam tracking method, which is described in the following section.

Performance evaluation
Codebook-based beamforming
As we mentioned in the last section, in the beam alignment phase, Vum and Vun will set up an initial link through 
beam alignment. However, the link is not stable since Vum and Vun are probably moving with a high velocity. 
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Figure 2.  Communication process.
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Thus, They need to keep adjusting the beam pattern to maintain an acceptable link quality. In this paper, the link 
quality is measured by the channel capacity, which is contained in the feedback message sent through the uplink. 
We assume that all vehicles are equipped with a uniform planar array (UPA) of Mx ×My antenna elements. Since 
the duration of a time slot is as short as 1ms, the channel condition during each time slot is supposed to be stable, 
i.e., the channel matrix between Vum and Vun will not change during each time slot. Let’s take the situation where 
Vum is the transmitter and Vun is the receiver as an example for the following analysis. The derivation process 
for other situations is similar.

The channel between the transmit array and receiver array at time slot ti can be expressed by (1),

where GTR and GAR are the transmit and receive antenna gains; αm,n
TR (·) and αm,n

AR (·) represent the array steering 
vectors of Rsm and Vun , respectively; αm,n

LoS

(

fc, d
m,n
i

)

 and αk,m,n
NL

(

fc, d
k,m,n
i

)

 are the path losses of the LoS path and 
NLoS path, respectively; fc is the carrier frequency; dm,n

i  is the length of the LoS path at time slot ti ; dk,m,n
i  is the 

length of the kth NLoS path at time slot ti ; Npa represents the number of NLoS paths; θm,n
DP (i) and θm,n

AR (i) are the 
azimuth AoD and AoA of the LoS path at time slot ti , respectively; θk,m,n

AR (i) and θk,m,n
DP (i) are the azimuth AoD 

and AoA of the kth NLoS path at time slot ti , respectively. If a blockage occurs, the LoS path will be blocked, and 
only NLoS paths exist.

Similarly, ϕm,n
DP (i)/ϕm,n

AR (i) is the elevation AoD/AoA of the LoS path at time slot ti , and ϕk,m,n
AR (i)/ϕk,m,n

DP (i) 
is the elevation AoD/AoA of the the kth NLoS path at time slot ti . More specifically, the number of multipath 
components, Npa , is a uniformly distributed variable within a range of [1,5]. For the azimuth AoD and AoA of 
the kth NLoS path at time slot ti , i.e., θk,m,n

DP (i) and θk,m,n
AR (i) , we have

where ϑk,m,n
DP (i) and ϑk,m,n

AR (i) follow two independent uniform distributions on [−π , π] (i.e., [−180◦, 180◦] ). 
Similarly, for the elevation AoD and AoA of the kth NLoS path at time slot ti , i.e., ϕk,m,n

DP (i) and ϕk,m,n
AR (i) , we have

where ψk,m,n
DP (i) and ψk,m,n

AR (i) follow two independent uniform distributions on [−π/4, π/4] (i.e., [−45◦, 45◦] ). 
For Mx ×My-elements UPA, the array steering vector can be expressed by

where mx and my are the antenna elements index with 0 ≤ mx ≤ Mx and 0 ≤ my ≤ My , respectively; rA = �C/2 
is the antenna element spacing, J is the imaginary unit, �C is the wavelength; θ and ϕ are variables of the func-
tion aUPA(θ ,ϕ) . Since the duration of a time slot is short, here we assume that the beam pattern, i.e., precoding 
vector, is reselected in every subframe instead of every time slot. Denoting NTR = Mx ×My , NRC = Nx × Ny , 
based on Shannon equation, the normalized channel capacity (i.e., maximum achievable spectral efficiency) of 
the link at time slot ti , frame fj can be expressed  by23,

 with

 where Jm,n
i,j  is the received interference matrix of V2V pair Vum and Vun at time slot ti ; frame fj , H

p,q
i,j  is the chan-

nel matrix of the interfering V2V pair, e.g., Vup and Vuq , and Fp,qj  is the corresponding precoding vector; σ 2
s  is 

the power of additive white Gaussian noise (AWGN) of the channel between the transmitter and receiver; INRC 
is an NRC × NRC identity matrix; det (·) is the determinant of the given matrix; Fm,n

j  is the precoding vector for 
frame fj and PTR is the transmit power of the UPA. We use Fm,n

j  instead of Fm,n
i,j  here since the beam pattern is 

determined at the first time slot of fj and then remain stable before next frame, i.e., fj+1.
A common approach to change the beam pattern of Vum is to set a threshold for the signal to interference 

plus noise ratio (SINR) of the current link. If the SINR is below the threshold, Vum will switch to another beam 
pattern to improve the link quality; otherwise, it will maintain the existing one. Nevertheless, this technique is 
not suitable for V2V communication as high vehicle velocity can result in significant changes in link quality. To 
address this, an AI agent is employed to select Fm,n

j  from a pre-defined codebook, which controls the actions of 
Vum . The pre-defined codebook is depicted in Fig. 3.
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The construction of the codebook can be found in Ref.24. Since the movement of Vum/Vun is hard to predict, 
a codebook with the same beam width is not robust enough to handle all the situations that may occur during 
beam tracking. This is why we have used a multi-level codebook. For example, a codeword F{a,b}P  in the codebook 
will be selected by the RL agent to do beam tracking and data transmission in each frame fj , i.e., F{a,b}P → F

m,n
j  

in (5). The parameter a denotes the level of the codeword and b is the location of the codeword at level a. Since 
the vehicles’ dynamics on elevation is relatively small compared with the azimuth cases, we do not consider the 
variation of elevation AoD and AoA in this paper. Then, the corresponding beam width and beam direction of 
F
{a,b}
P  can be expressed by

To improve the beamforming gain and compensate for excessive path losses at higher frequencies, a codeword in 
the lower level of the codebook is not considered for beam tracking and data transmission. Thus, in this paper, 
vehicles only use the codeword from levels 3 to 6 of the codebook to do beam tracking and data transmission. 
Based on (7), the corresponding beam width is from 2π/8 = 22.5◦ to 2π/64 = 1.40625◦25.

Problem formulating
Based on (5), we define the SINR of the transmitting link from Vum to Vun at time slot ti , frame fj as ρm,n

i,j  . Simi-
larly, the SINR of the transmitting link from Vun to Vum is defined by ρn,m

i,j  . By defining the communication phase 
of Vum at ti , fj as R m,n

i,j  , the long-term overall achievable spectral efficiency can be expressed by

where 1(·) is the indicator function, γth is the SINR threshold for the received signal to be successfully decoded. 
Based on (8), we can see that the value of Cov is related to the value of Cm,n

i,j /Cn,m
i,j  , ρm,n

i,j /ρn,m
i,j  , and total number 

of PBT . Furthermore, based on (5), the value of Cm,n
i /Cn,m

i  depends on the channel condition Hm,n
i,j /Hm,n

i,j  and the 
corresponding beam pattern determined by Vum/Vun , i.e., Fm,n

j /Fn,mj  . The total number of PBT is also related to 
the beam pattern selected by Vum/Vun during the beam alignment/beam tracking phase. Therefore, optimizing 
the overall spectral efficiency actually means choosing the appropriate beam pattern for the channel conditions. 
However, it is difficult to obtain channel conditions in the scenario where the vehicles are moving at high velocity 
and using massive MIMO for communication. Thus, we model the beam management problem in V2V commu-
nication as a Markov decision process (MDP) and then use a DRL-based method to solve it. The corresponding 
problem can be formulated by

(7)

{
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Figure 3.  Structure of the codebook CB.
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where CB is the codebook used for hybrid precoding, and ∧ is the “and” operation.

Deep reinforcement learning model
Basic framework
We choose independent proximal policy optimization (IPPO)26 as the basic DRL framework to solve (9). Dif-
ferent from the regular single-agent PPO or multi-agent PPO (MAPPO), IPPO is a multi-agent reinforcement 
learning algorithm that modifies the PPO algorithm to handle environments with multiple agents without shar-
ing parameters and policies among the agents. The IPPO uses a centralized value function to help agents learn 
more effective policies by allowing them to reason about the behavior of other agents. It also uses a decentralized 
policy optimization strategy that allows agents to update their policies independently. We chose IPPO instead of 
MAPPO based on the following reasons: 1) The V2V network is a typical distributed network lacking a central 
control mechanism for vehicle communication management; 2) The topology of V2V network changes rapidly, 
and the vehicles within a cluster are not fixed. Therefore, the MAPPO method is not suitable for such an envi-
ronment; 3) The MAPPO used a specific mechanism of sharing parameters among agents, and this mechanism 
will increase the transmission delay, which is unacceptable in V2V communication.

Thus, we use an IPPO method to solve (9), in which each agent uses the same DRL framework with a shared 
reward function and independent parameters.

Let’s take Vum as an example. The state of the environment at ti , fj is defined by

where xki,j , y
k
i,j , v

k
i,j are the x-coordinate, y-coordinate, and velocity of Vuk , respectively.

Based on (10), the local observation of Vum at ti , fj is defined by

Since Vum achieves its own location information through a localization system (e.g., GPS), here 
(

xmi,j

)∗

 and 
(

ymi,j

)∗

 
are the values of x-coordinate and y-coordinate provided by corresponding localization system. Based on Ref.20, 
we have

On the other hand, Vum can obtain the mobility information of Vun through sensing technology. Similarly, we 
assume that the information obtained by sensing has a normally distributed error est , where elo ∼ N(0, σst) . 
The accuracy of mobility information obtained through sensing is generally higher than that obtained through 
localization systems; for this reason, we assume σst to be less than σlo . Thus, we have

Since the observation obtained by Vun is also shared in Gm,n
i,j  . Based on (12)(13), the joint observation of Vum 

can be expressed by

(9)
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k
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(11)o
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.

(12)







�

xmi,j

�∗

= xmi,j + elo
�

ymi,j

�∗

= ymi,j + elo
.

(13)
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The action selected by Vum for Vun at time slot ti , frame fj is defined by am,n
i,j  . Since the number of codewords 

contained in CB is fixed and discrete, we choose to use a discrete action space that am,n
i,j ∈

[

1,
6
∑

k=3

2k
]

 . For the 

sake of convenience, we map Fa,bP  to am,n
i,j ∈

[

1,
6
∑

k=3

2k
]

 as Fa,bP → a
m,n
i,j =

(

2a − 23
)

+ b . Moreover, based on (8) 

and (9), the reward of time slot ti (frame fj ) is defined by

By defining the updating condition as CD , i.e., if CD is satisfied, the NNs in the DRL framework will be updated. 
The pseudocode of the training process is shown in Algorithm 1. 

For the training phase, we generated 3000 episodes of training data, each containing 2000 training steps. 
Thus, the total data for training is 3000× 2000 = 6× 106 . We employed the Anylogic 8.8 to create synthetic 
V2V communication scenarios, mimicking real-world vehicular movements, densities, and communication 
challenges. Furthermore, we generated another set of data for testing, and the total amount of the testing data 
is 100× 2000 = 2× 105 . Representing the tracking accuracy as ρm,n

i,j ≥ γth ∧ ρ
n,m
i,j ≥ γth , the performance of 

the proposed framework is shown in Fig. 4. Here we choose the EKF-assisted method as the baseline, i.e., the 
beam management of Vum and Vun is determined based on the location information, which is predicted by a 
well-trained EKF. Let us take Vum as an example. Specifically, the EKF used by Vum will provide a prediction for 
the location of Vun at the first time slot of fj . Based on the prediction, Vum will use the corresponding codeword 
located at the last level of CB to do beam management.

The actor-network and critic-network used in the IPPO framework consist of three hidden layers, each hav-
ing 300 neurons. The PPO clip parameter is set to 0.2. The activation functions used in the NNs are hyperbolic 
tangent function (tanh) functions. The capacity of the replay memory is 10000, and the batch size is 256. The 
learning rate is set as 0.0001, and the discounted factor is set at 0.99. The optimizer used in the IPPO framework 
is the Adam optimizer with ǫ = 0.00001 . The maximum number of iterations in each episode (i.e., fmax ) is 
2000. As we can see from Fig. 4, the performance of the DRL framework keeps improving during the training 
phase and begin to converge after 3000 episodes. However, the performance is not acceptable according to the 
requirements of the 5G standard, particularly with regard to tracking accuracy, i.e., reliability. Therefore, it is 
necessary to make modifications to the basic framework to enhance its performance and bring it in line with 
the requirements of the 5G standard.
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Algorithm 1.  Training process of IPPO.
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State and reward
For DRL methods, the performance heavily relies on the definition of state and reward. Reasonably mapping 
environmental information and agent behaviors to state and reward can significantly increase the learning effi-
ciency of the RL agent; however, if the state and reward are not properly defined, the policy of the agent may not 
even converge. Since the performance of the basic framework is not acceptable, we need to modify the structure 
of state and reward to improve the performance of V2V communication. 

1. State: Keeping the variance of the state in a relatively small range can effectively improve the training results. 
At the same time, the relative positions of Vum and Vun are more important for beam management than their 
absolute positions. Therefore, we adjust (14) to (16), 

 Do note that, based on the architecture of the network, the maximum and minimum value of vmi,j/v
n
i,j is 20m/s 

and 30m/s, the maximum and minimum value of 
∣

∣

∣
xmi,j − xni,j

∣

∣

∣
 is 490 and 10 (ignore the additive error term), 

the maximum and minimum value of 
∣

∣

∣
ymi,j − yni,j

∣

∣

∣
 is 12 and 4 (ignore the additive error term).

2. Reward: According to the 5G standard, both the transmitter and the receiver must successfully complete 
beam alignment before the beam tracking and data transmission phase (see (15)). This means that the reward 
space is sparse, and a sparse reward space will reduce the efficiency of agent training. Therefore, we adjusted 
the definition of the reward so that it can better learn from failed experiences. 

 where C̄ov

(

j − 1
)

 is the average achievable spectral efficiency for the last j − 1 frames.

Dependency analysis
Another possible reason for the unacceptable performance is that the neural networks (NNs) used in the DRL 
model do not match the task. (1), The relationship between observation om,n

i,j

(

si,j
)

 , action am,n
i,j  , reward ri,j , and 

next observation om,n
i,j+1

(

si,j+1

)

 , is too complicated, which makes the PPO framework with a simple structure 
incapable of handling it; (2), the structure of the training data is too complex to handle for regular fully connected 
NNs. To improve the performance of the beam tracking accuracy and data transmission capacity, we analyze 
the structure of the training data. Since the action at each frame is selected based on the current observation 
o
m,n
i,j

(

si,j
)

 and previous experiences (also including previous observations), we choose data of observations to 
make the analysis. If the data has a strong temporal dependence, then recurrent neural networks (RNNs) may 
be better than fully connected NNs to solve the problem in (9).

The Hurst exponent is commonly utilized to analyze the dependence in a given dataset. It represents a meas-
ure of a time series’ long-term memory. Studies incorporating the Hurst exponent were originally developed in 
hydrology to address practical concerns related to determining the optimal size of dams for the unpredictable 
rain and drought conditions of the Nile River that had been observed over an extended period.27.
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Figure 4.  Average spectral efficiency and tracking accuracy of training phase (IPPO).
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Based  on28, the Hurst exponent can be estimated using three typical methods: (1) the Periodogram method; 
(2) the Variance-Time Analysis method; (3) and the Rescaled Adjusted Range Statistic (R/S) method. Here we 
choose the R/S method to evaluate the Hurst exponent of the training data. For a given series Xi , we define the 
partial sum of Xi as,

and sample variance is denoted by,

Furthermore, the R/S statistic is defined as,

A log-log plot of the R/S statistic versus the number of points of the aggregated series should be a straight line 
with the slope being an estimate of the Hurst parameter. A value H in the range (0.5, 1.0) indicates that Xi has 
long-term positive self-correlation, meaning that more high values are expected in the series. A value in the range 
(0, 0.5) indicates that Xi has a long-term switching behavior between high and low values in adjacent pairs. This 
indicates that a single high value is likely to be followed by a low value. Also, this tendency to switch between 
high and low values will continue over a long period of time.

We utilized this method to evaluate the Hurst exponent of both position and velocity data of Vun . The Hurst 
exponent for velocity and position data are 0.19 and 0.89, respectively. The Hurst exponent for velocity is close 
to 0 since it is more likely for a high-velocity vehicle to decrease its velocity, and vice versa. Conversely, the Hurst 
exponent for the data of position is close to 1 because the vehicle keeps moving in the same direction in the 
simulation scenario (and in most application scenarios). The Hurst exponent results indicate that the training 
data series has a long-term dependency, which corroborates the use of RNN models, such as LSTM/GRU, to 
improve the performance of the DRL framework.

ITD3 framework with RNN
By analyzing the relations between reward and action, we found that the optimized reward is often obtained with 
an action close to the boundary. This point is similar to tasks in the field of robot control, where the TD3 model 
is commonly used to handle such a task. In the TD3 model, the target policy network and action policy network 
are separate, and their parameters are updated independently. The advantage of doing so is that overestimation 
can be reduced, but it may also cause the agent more prefer to choose edge actions. This may be disadvantageous 
in other tasks, but it can be used to solve V2V beam management problems. Since the locations of the vehicles 
are restricted on the lanes of the road, there is a high probability that Vum and Vun will be in the same lane. In 
such cases, the edge policy has a higher probability of achieving better performance. Here we choose to use the 
ITD3 framework with gate recurrent unit (GRU) to solve (9).

In regular reinforcement learning frameworks, randomly picking up Nba experiences from the replay buffer 
is a common way to construct a mini-batch. However, this approach does not work when using RNNs due to 
the temporal dependency requirement for its training data. Thus, we need to alter the standard procedure of 
constructing a mini-batch. The changes can include: (1) randomly selecting an experience Expk from the replay 
buffer; (2) selecting the subsequent Nba/Nsba − 1 experiences from the replay buffer to create a sub-batch, i.e., 
{

Expk ,Expk+1, · · · ,Expk+ Nba
Nsba

−1
,Exp

k+
Nba
Nsba

}

 ; (3) repeating steps (1) and (2) for Nsba times to create a mismatch 

with Nba experiences. By following this procedure, the ITD3 framework can maximize the use of the GRU net-
work and improve the performance of the agent for reinforcement learning. Since the TD3-based DRL framework 
requires a continuous action space, we map the level and direction of the codeword in CB to the action as 
a
m,n
i,j =

{

am,n
i,j , bm,n

i,j

}

 , where am,n
i,j  and bm,n

i,j  are equal to the a and b in F{a,b}P  , respectively.
In this paper, the normally distributed noise with a mean value of 0 and variance of 0.1 is added to the target 

action. In addition, no dropout and batch normalization is used. This is because both are not suitable for the 
DRL framework with RNN. Also, the policy is updated for every two Q-function updates.

Results and discussions
We carried out our simulations according to the parameters defined in Table 1. Based on the 5G standard, the 
maximum carrier bandwidth of FR2 is 200 MHz. Thus, during the training and testing process, the spectrum of 
the network is randomly chosen as 200·NV

i,jMHz bandwidth (i.e, from 24GHz to 71GHz: 200 MHz bandwidth per 
VU). Do note that the defaulted transmit power is 0.1W and may vary according to the simulation conditions.

The average spectral efficiency and tracking accuracy of the training phase are shown in Fig. 5. As we can 
see, average spectral efficiency and tracking accuracy are improved compared with the IPPO-based method 
Fig. 4. Also, the ITD3-based method outperforms the baseline method, i.e., the EKF-based method, in tracking 
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k
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accuracy. However, the ITD3-based method has similar spectral efficiency to the EKF-based method after 3000 
episodes of training because the EKF-based method uses the narrowest beam to achieve higher beamforming 
gain. Therefore, for the same tracking accuracy, the EKF-based method has higher spectral efficiency. Despite 
these improvements, the performance of the ITD3 framework does not yet meet the 5G standards. This is because 
ITD3 is an off-policy DRL framework, and the policy used for training and testing is not the same. Addition-
ally, the ITD3-based DRL agent adds noise to both actions and policies, resulting in lower performance during 
training than during testing. The testing performance of the ITD3 framework is shown in Fig. 7.

Upon first glance, the curves in Fig. 5 may seem as though the model hasn’t fully stabilized or converged after 
3000 episodes. However, this observation can be attributed to the initial lower performance levels during the 
early training episodes, which have a pronounced visual impact on the graphical representation. It’s essential 
to emphasize that the primary objective of the DRL method is the optimization of long-term performance. By 
the 3000-episode mark, the actual performance of the model has indeed converged, aligning with the model’s 
long-term optimization goals. The initial setbacks in performance create a visual offset, leading to a perception 
of non-convergence in the graphical representation. It’s imperative to interpret this within the context of the 
DRL’s overarching goals and the model’s trajectory across episodes.

By the conclusion of 3000 training episodes, evident across Fig. 6, the ITD3 with GRU model manifests a 
marked maturation in spectral efficiency and tracking accuracy across varied settings. This elongated train-
ing phase has granted the model the leeway to thoroughly explore the action and policy spaces, optimizing its 
response to complex vehicular network dynamics. A predominant factor influencing performance is interfer-
ence. As vehicle density (i.e., ArV ) increases, the inherent challenge of interference intensifies due to multiple 

Table 1.  Definition and corresponding values of the parameter of simulations.

Symbol Definition Value

LR Length of the road 500 m

Wla Width of the lane 4 m

ArV Arrival rate of vehicles 200 to 300/minute

σv Preferred velocity 20 to 30 m/s

σlo Variance of elo 0.1 m

PTR Transmit power of vehicle 0.1 to 0.3 W

NTR Number of transmit antennas 64× 16

NRC Number of receive antennas 4× 4

γth SINR threshold 10 dB

Nba Capacity of minibatch 256

Nsba Capacity of sub-minibatch 32

σac Variance of the normally distributed exploration noise (ITD3) 0.5

σpo Variance of the normally distributed policy noise (ITD3) 0.5

lac Learning rate of actor-network (ITD3) 0.0003

lcr Learning rate of critic-network (ITD3) 0.0005

γD Discount factor (ITD3) 0.95
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Figure 5.  Average spectral efficiency and tracking accuracy of training phase with respect to carrier frequency 
(ITD3 with GRU).
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simultaneous communications. Yet, the ITD3 with GRU model showcases resilience, attributing to its capabilities 
of handling complicated scenarios. The model’s adeptness at maneuvering this balance becomes even more com-
mendable when considering the dual role of vehicle density-both as a source of interference and as a factor that 
reduces communication distances, improving signal power. That is to say, the implications of vehicle density are 
twofold. On one hand, denser networks foster closer source-destination proximities, enhancing signal power. 
Conversely, increased density augments interference. The model’s spectral efficiency and tracking accuracy trajec-
tories across episodes, particularly in the post-2000 episodes phase, underline its ability to adapt and harmonize 
these conflicting dynamics. Furthermore, varying carrier frequencies introduce an added layer of complexity. 
Different frequencies correspond to distinct path loss profiles even with consistent communication distances. For 
instance, higher frequencies, such as fc = 71 GHz, typically experience more significant path loss. However, the 
model’s performance, especially at the conclusion of 3000 episodes, signifies its versatility in adjusting to these 
differences. It’s noteworthy that despite these variations in path loss, the model’s spectral efficiency and tracking 
accuracy remain commendably consistent across the board.

The results of the ITD3 framework with GRU during testing are presented in Fig. 7, displaying the average 
spectral efficiency and tracking accuracy. As demonstrated in the figure, the tracking accuracy exceeds 90%, 
indicating the capability to manage V2V communication even when the transmission frequency is as high as 
71GHz. Also, as we can see from the figures, the average spectral efficiency increases with the density of vehicles. 
There are possibly two reasons underlying this phenomenon: (1) As the beamwidth narrows, the energy of the 
beam becomes more concentrated, resulting in lower interference to the surrounding environment from the 
sidelobes. (2) Under high-frequency transmission conditions (i.e., 5G NR FR2), the signal attenuates rapidly 
with increasing distance. Thus, as the vehicle density increases, the interference attenuates even more drastically 
than the signal, primarily because the sources of interference are often at greater distances.

Notably, the testing performance is considerably higher than the training performance, which is attributed 
to the characteristics of the ITD3 framework. Specifically, DRL methods with continuous action space, such as 
DDPG and TD3, are designed to introduce noise to action (e.g., am,n

i,j  ) during training to encourage adequate 
exploration of the action space. Consequently, the action during training may not be the optimal one for achiev-
ing the best performance due to noise. However, when the fully trained DRL agent is used during testing, the 
action space does not require further exploration. As such, the action am,n

i,j  during testing is the most suitable for 
optimal performance. Additionally, the ITD3-based methods can make vehicle position prediction and dynamic 
beam pattern selection integrated based on past experiences, while EKF-based methods would require additional 
optimization algorithms designed for beam pattern selection to achieve the same functionality. These findings 
suggest that the ITD3 framework with GRU can effectively capture the mobility of VUs and assist in selecting a 
better codeword, ultimately improving overall performance.

Figure 8 presents the average spectral efficiency and tracking accuracy during the testing phase concerning 
transmit power and carrier frequency for the ITD3 with GRU method in comparison with the EKF. The following 
observations can be made: (1) Across different carrier frequencies, ITD3 with GRU consistently demonstrates 
a superior spectral efficiency compared to EKF, regardless of the transmit power. This can be observed in sub-
figures 8a to c; (2) Sub-figures 8d to f elucidate the tracking accuracy of the two methods. ITD3 with GRU main-
tains an appreciable tracking accuracy across the board, marginally outperforming EKF in most scenarios. It’s 
noteworthy to mention that the difference in performance between the two methods becomes more evident at 
higher transmit powers; (3) For all carrier frequencies, increasing the transmit power from 0.1 to 0.3 W doesn’t 
lead to significant improvements in spectral efficiency or tracking accuracy for either method. This is primarily 
because, as PTR increases, not only does the signal strength linearly increase, but the interference strength also 
rises linearly, with only the noise power remaining unchanged. Under these conditions, performance enhance-
ment mainly results from the increase in the signal-to-noise ratio (SNR). However, this improvement is relatively 
limited under high SNR conditions.

Figure 9a shows the selection probability of different beam widths. As we can observe, for the lower carrier 
frequency (24 GHz), the AI agent supported by TD3 with GRU is more likely to select a beam pattern with a wider 
beam width. When the transmission frequency is 52 GHz or 71 GHz, the AI agent supported by ITD3 with GRU 
starts to choose narrower beam width, e.g., 2π/64 = 1.40625◦ , to achieve a higher beamforming gain to com-
pensate for the higher path loss. This observation indicates that the ITD3 framework with GRU can successfully 
help the RSI to determine a more robust beam pattern while considering VU mobility and channel conditions.

On the other hand, due to the variation in the execution time of the same algorithm on different devices, we 
define the time consumed by the ITD3-based method as one unit of time in Fig. 9b and use normalized time 
cost to compare the difference in latency between the ITD3-based method and the 5G-based method. As we 
can observe from Figure 9b, our method outperforms the 5G-based method, even when the number of beam 
patterns is 8. Furthermore, the tracking latency increases dramatically with the number of beam patterns when 
the 5G-based method is used but remains stable with our method. This is because our method uses the DRL 
framework to determine the codeword directly without searching the codebook. Therefore, our method can 
use more beam patterns to assist beamforming to obtain higher spectral efficiency and beam tracking accuracy.

Future work
As we progress through our exploration of vehicular networks using DRL framework, a multitude of possibilities 
beckon for further research. Building on the insights gained from our study, the following areas are earmarked 
for future exploration: 
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1. Advanced DRL Models: While TD3 with GRU showcased promising results, the domain of Deep Reinforce-
ment Learning is vast. Other advanced models and algorithms could be explored, potentially leading to 
improved spectral efficiency and accuracy across different frequencies.

2. Real-world Testbeds: Simulations provide valuable insights, but real-world testbeds introduce unpredict-
abilities that can significantly influence results. Implementing our methodologies in a real-world setting will 
provide practical insights, emphasizing areas that simulations might overlook.

3. Integration with Other Technologies: As vehicular networks evolve, their integration with emerging tech-
nologies like edge computing, IoT, and B5G/6G becomes inevitable. Future work could explore how these 
integrations affect the performance of our method, paving the way for more robust and efficient vehicular 
communication systems.

4. Enhanced Training Strategies: The current study observed a spectral efficiency difference between ITD3/
IPPO framework and EKF based on the frequency. Fine-tuning the training strategies, perhaps by integrating 
other tricks, could extend and optimize the performance of our method to other network conditions.

5. Holistic Network Analysis: Beyond spectral efficiency and tracking accuracy, vehicular networks comprise 
numerous other performance metrics, such as throughput and reliability. Future studies could adopt a more 
holistic approach, exploring the comprehensive performance implications of the chosen methodologies.

In conclusion, while our research provides valuable insights into vehicular networks using DRL framework, the 
journey is far from over. Each avenue mentioned above holds the promise of further optimizing and refining 
vehicular communication systems, ensuring they are equipped to meet the ever-evolving demands of tomorrow.

Conclusion
The focus of this paper is on beam management for V2V communications, which presents a challenging task 
due to various factors, including the short duration of each time slot, high velocity of vehicles, and estimation 
errors of vehicles’ locations. Additionally, higher transmission frequencies exacerbate the challenges, leading to 
increased path loss and the need to balance spectral efficiency and tracking accuracy. To address these issues, we 
propose a DRL-assisted method that accounts for all aspects of vehicles’ mobility and transmission frequency. 
Our approach involves an analysis of the mobility of vehicles, revealing a high temporal dependency, and the 
modification of the IPPO framework to the ITD3 framework with GRU. The simulation results demonstrate that 
the ITD3 framework with GRU outperforms both the IPPO framework and EKF-based method. Specifically, 
the proposed ITD3 framework achieves high spectral efficiency while maintaining high tracking accuracy and 
low latency.

Data availibility
The data supporting this study’s findings are available from the corresponding author, X.G., upon reasonable 
request.
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