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Using 16S rDNA and metagenomic 
sequencing technology to analyze 
the fecal microbiome of children 
with avoidant/restrictive food 
intake disorder
Qina Ye 1,2, Shaodan Sun 2, Jian Deng 1, Xiaogang Chen 3, Jing Zhang 1, Suihua Lin 1, 
Hongxuan Du 1, Jinxiong Gao 1, Xiaoyin Zou 1, Xiaoling Lin 3, Yawen Cai 3 & Zhuoming Lu  1*

To investigate the gut microbiota distribution and its functions in children with avoidant/restrictive 
food intake disorder (ARFID). A total of 135 children were enrolled in the study, including 102 children 
with ARFID and 33 healthy children. Fecal samples were analyzed to explore differences in gut 
microbiota composition and diversity and functional differences between the ARFID and healthy 
control (HC) groups via 16S rDNA and metagenomic sequencing. The gut microbiota composition 
and diversity in children with ARFID were different from those in heathy children, but there is no 
difference in the composition and diversity of gut microbiota between children at the age of 3–6 
and 7–12 with ARFID. At the phylum level, the most abundant microbes in the two groups identified 
by 16S rDNA and metagenomic sequencing were the same. At the genus level, the abundance of 
Bacteroides was higher in the ARFID group (P > 0.05); however, different from the result of 16SrDNA 
sequencing, metagenomic sequencing showed that the abundance of Bacteroides in the ARFID group 
was significantly higher than that in the HC group (P = 0.041). At the species level, Escherichia coli, 
Streptococcus thermophilus and Lachnospira eligens were the most abundant taxa in the ARFID group, 
and Prevotella copri, Bifidobacterium pseudocatenulatum, and Ruminococcus gnavus were the top 
three microbial taxa in the HC group; there were no statistically significant differences between the 
abundance of these microbial taxa in the two groups. LefSe analysis indicated a greater abundance of 
the order Enterobacterales and its corresponding family Enterobacteriaceae, the family Bacteroidaceae 
and corresponding genus Bacteroides, the species Bacteroides vulgatus in ARFID group, while the 
abundance of the phylum Actinobacteriota and its corresponding class Actinobacteria , the order 
Bifidobacteriales and corresponding family Bifidobacteriaceae, the genus Bifidobacterium were 
enriched in the HC group. There were no statistically significant differences in the Chao1, Shannon 
and Simpson indices between the Y1 and Y2 groups (P = 0.1, P = 0.06, P = 0.06). At the phylum level, 
Bacillota, Bacteroidota, Proteobacteria and Actinobacteriota were the most abundant taxa in both 
groups, but there were no statistically significant differences among the abundance of these bacteria 
(P = 0.958, P = 0.456, P = 0.473, P = 0.065). At the genus level, Faecalibacterium was more abundant in 
the Y2 group than in the Y1 group, and the difference was statistically significant (P = 0.037). The KEGG 
annotation results showed no significant difference in gut microbiota function between children with 
ARFID and healthy children; however, GT26 was significantly enriched in children with ARFID based on 
the CAZy database. The most abundant antibiotic resistance genes in the ARFID group were the vanT, 
tetQ, adeF, ermF genes, and the abundance of macrolide resistance genes in the ARFID group was 
significantly higher than that in the HC group (P = 0.041). Compared with healthy children, children 
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with ARFID have a different distribution of the gut microbiota and functional genes. This indicates that 
the gut microbiome might play an important role in the pathogenesis of ARFID.

Clinical trial registration: ChiCTR2300074759

Abbreviations
AA	� Auxiliary oxidoreductase
AN	� Anorexia nervosa
ARGs	� Reservoir of antibiotic resistance genes
ARFID	� Avoidant/restrictive food intake disorder
BED	� Binge eating disorder
CBM	� Carbohydrate binding module
CE	� Carbohydrate esterase
DSM-5	� Diagnostic and statistical manual of mental disorders
EOS	� Extremely oxygen-sensitive
FEDs	� Feeding and eating difficulties
GH	� Glycoside hydrolase
GT	� Glycosyltransferase
ICD-11	� The 11th revision of the World Health Organization’s international statistical classification of 

diseases
MLS	� Macrolide-lincosamide streptogramin
PL	� Polysaccharide lyase
RD	� Rumination disorder
SCFAs	� Short-chain fatty acids

Feeding and eating difficulties (FEDs) include avoidant/restrictive food intake disorder (ARFID), anorexia ner-
vosa (AN), rumination disorder (RD), binge eating disorder (BED) and bulimia nervosa (BN)1. In the 5th revi-
sion of the American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders (DSM-5)2, 
ARFID is characterized by low interest in food and eating, underweight and/or nutrition deficiency3, which leads 
to one or more of the following: significant weight loss (or failure to meet expected weight and height trajectories 
in children and adolescents); (2) nutritional deficiencies (such as iron deficiency anemia); (3) a dependence on 
nutritional supplements (i.e., oral or enteral formulas) to meet energy requirements without an underlying con-
dition necessitating this; and (4) and/or significant interference with day-to-day functioning due to the inability 
to eat appropriately. Although there are no diagnostic age restrictions in ARFID, it is more commonly present 
in childhood and adolescence4.

The intestinal microecosystem is composed of trillions of microorganisms that maintain a dynamic physi-
ological balance and promote host immunity, metabolism, energy balance, and neural development5,6. The 
shaping and multiplication of the gut microbiome start at birth, and the modification of its composition depends 
on various factors, such as the atmosphere, genetics, diet and lifestyle7. The gut microbiota plays a vital role in 
digestion8 and correlates the gastrointestinal tract and the central nervous system by the gut–brain–microbiota 
axis9. Current studies show that the gut microbiota plays an important role in eating disorders10–14, however, 
most researches focus on anorexia nervosa15. Given the multitude of aspects, complexity and the limited data 
in ARFID, a multidisciplinary approach seems to be the best option, and researching the characteristics of gut 
microbes in children with ARFID, may help us obtain a better understanding and provide more help for the 
treatment of ARFID in the future.

Materials and methods
Patients
Between August 2022 and September 2022, 135 children with ARFID and healthy children from Guangzhou 
Women and Children Medical Center were recruited through posters and were divided into an ARFID group 
(ARFID, n = 102) and a healthy control group (HC, n = 33). Each participant was evaluated by our pediatricians 
who trained in diagnosing ARFID, and the ARFID module of the Eating Disorder Examination (child version)16 
was used for the structured clinical interview.

Inclusion criteria
(1) Patients were 3–12  years old; (2) Patients were diagnosed with ARFID; and (3) the disease course 
was ≥ 3 months.

Exclusion criteria
(1) age < 3 years or > 12 years; (2) treatment with antibiotics, intestinal microbial preparations, or other immu-
nological preparations in the previous month; (3) weight loss or growth retardation due to certain chronic 
underlying diseases such as chronic heart and lung disease, liver disease, rheumatic disease, kidney disease, or 
immunodeficiency; and (4) noncooperation with sampling regimens or parental refusal to participate.
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Specimen collection
Fresh fecal samples were collected into 10 ml stool containers (Batch No: GC-1022, Bioland) and were immedi-
ately frozen and stored at − 80 °C until analysis.

DNA extraction and 16S rDNA amplicon sequencing
The SDS method was used to extract the total genomic DNA from the samples. DNA concentration and purity 
were monitored on 1% agarose gels. According to the concentration, DNA was diluted to 1 ng/μL with sterile 
water. The V3–V4 region of bacterial 16S rDNA was then amplified using the primers F: CCT​AYG​GGRB-
GCASCAG and R: GGA​CTA​CNNGGG​TAT​CTAAT (Novogene Co., Ltd. Beijing, China). All PCR mixtures 
contained 15 μL of Phusion® High-Fidelity PCR Master Mix (New England Biolabs), each primer at 0.2 μM and 
10 ng target DNA, and cycling conditions consisted of a first denaturation step at 98 °C for 1 min, followed by 30 
cycles at 98 °C (10 s), 50 °C (30 s) and 72 °C (30 s) and a final 5 min extension at 72 °C. An equal volume of 1X 
loading buffer (containing SYBR Green) was mixed with the PCR products, and electrophoresis was performed 
on a 2% agarose gel for DNA detection. The PCR products were mixed in equal proportions, and then a Qiagen 
Gel Extraction Kit (Qiagen, Germany) was used to purify the mixed PCR products. Following the manufacturer’s 
recommendations, sequencing libraries were generated with the NEBNext® UltraTM IIDNA Library Prep Kit 
(Cat No. E7645). The library quality was evaluated on a Qubit@ 2.0 Fluorometer (Thermo Scientific) and Agilent 
Bioanalyzer 2100 system. Finally, the library was sequenced on an Illumina NovaSeq6000 platform, and 250 bp 
paired-end reads were generated.

Metagenome sequencing
We selected a subset of specimens after MicroPITA analysis for metagenome sequencing. In brief, a Covaris 
ultrasonic fragmentation instrument was used to randomly interrupt the 350 bp fragment, and the whole library 
was prepared by terminal repair, adding an A tail, adding a sequencing joint, purification and PCR amplifica-
tion. After the completion of library construction, Qubit2.0 was used for preliminary quantification, diluting the 
library to 2 ng/µl, and then an Agilent 2100 was used to detect the insert size of the library. After the insert size 
met the expectation, q-PCR was used to accurately quantify the effective concentration of the library (effective 
concentration > 3 nM) to ensure the quality of the library. After qualified library inspection, Illumina PE150 
sequencing was carried out by pooling different libraries according to the requirements of effective concentra-
tion and target on-machine data volume.

Bioinformatics and statistical data analyses
16S rDNA
Paired-end reads were assigned to samples based on their unique barcodes and were truncated by cutting off the 
barcodes and primer sequences. FLASH (Version 1.2.11) was used to merge paired-end reads17. Quality filtering 
of the raw tags was performed using fastp (Version 0.20.0) software to obtain high-quality clean tags. The clean 
tags were compared with the Silva database, using Vsearch (Version 2.15.0) to detect the chimera sequences, and 
then the chimera sequences were removed to obtain the effective tags18. For the effective tags obtained previously, 
denoising was performed with DADA2 in QIIME2 software (Version QIIME2-202006) to obtain initial amplicon 
sequence variants (ASVs), and then ASVs with abundances less than 5 were filtered out19. Alpha diversity was 
calculated from 4 indices in QIIME2, including the Observed_otus, Chao1, Shannon and Simpson indices. Beta 
diversity was calculated based on unweighted UniFrac distances in QIIME2. LEfSe software (Version 1.0) was 
used to perform LEfSe analysis.

Metagenome
Readfq was used for preprocessing raw data from the Illumina sequencing platform to obtain clean data for 
subsequent analysis. Clean data need to be BLASTed to the host database to filter out reads that may come from 
host origin20,21. MEGAHIT software (v1.0.4-beta) was used for assembly analysis of clean data, and scaftigs 
without Ns were obtained by breaking the resulting scaffolds from the N junction22–24. MetaGeneMark (V3.05) 
was used to perform ORF prediction for scaftigs (≥ 500 bp) of each sample, and entries with a length less than 
100 nt in the prediction results were filtered out. For the ORF prediction results, CD-HIT software (V4.5.8) was 
used to eliminate redundancy and obtain the nonredundant initial gene catalog. Clean data of each sample were 
aligned to the initial gene catalog by using Bowtie2 (Bowtie2.2.4) to calculate the number of reads of the genes on 
each sample alignment. Based on the abundance of each gene in the gene catalog in each sample, basic informa-
tion statistics were obtained. The gene sequences were compared with the KEGG, CAZy and CARD functional 
databases to obtain functional information.

Statistical analysis
SPSS26.0 statistical software was used for data analysis. Measurement data with a normal distribution were repre-
sented by ( x ± s ), and a t test was used. Measurement data with a nonnormal distribution were represented by M 
(P25, P75), and the Mann‒Whitney U test was used. For all comparisons, the level of significance was set at 0.05.

Ethics approval
This study was performed in line with the principles of the Declaration of Helsinki. This study was approved by 
the Ethics Committee of the Guangzhou Women and Children Medical Center, (date 15/03/2021/No.201B01).
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Consent to participate
Consent to participate Informed consent was obtained from all parents of the children.

Result
Patient demographics
Among the children, 102 were diagnosed with ARFID, and 33 were healthy. There were 50 males and 52 females 
in the ARFID group and 15 males and 18 females in the healthy control group (HC group). There was no sig-
nificant difference in age (P = 0.352) or sex composition (P = 0.512). The main characteristics are summarized 
in Table 1.

16S rDNA sequencing results
After high-throughput sequencing of the fecal samples, we generated 2,676,787,184 valid sequences in total. The 
average effective length was 415.95 bp, and the average number of sequences was 24,785,066.52.

Composition and diversity of the microbiome in the ARFID group and HC group determined 
by 16S rDNA sequencing
As shown in Fig. 1, the Goods coverage tended to be relatively stable, and the curve for the rank showed a 
downward trend with gentle leveling, which proves that the number of samples in this study was basically suf-
ficient, and the sequencing depth could well reflect the complete microbiome composition of fecal samples from 
children with ARFID.

The Chao1 index values of the HC group were higher than those of the ARFID group, and the differences 
were statistically significant (P < 0.001) (Fig. 2a). Additionally, the Simpson index values (Fig. 2b) and the Shan-
non index values (Fig. 2c) of the ARFID group were higher than those of the HC group, and the differences were 
statistically significant (P = 0.009 and P = 0.02).

We found two distinct groups of microbes using unweighted UniFrac distance-based principal coordinates 
analysis (PCoA), which showed that the microbiome of the ARFID group was different from that of the HC 
group (Fig. 3).

At the phylum level, Bacillota were the most abundant bacteria in the ARFID group, followed by Bacteroidota, 
Proteobacteria and Actinobacteriota, which accounted for 45.7%, 41.2%, 6.8% and 5.4%, respectively. Similar 
to the ARFID group, Bacillota, Bacteroidota, Proteobacteria and Actinobacteriota were the most abundant bac-
teria in the HC group, accounting for 48.9%, 34.2%, 6.8% and 8.4%, respectively, but there were no statistically 
significant differences between the abundance of these microbial taxa in the two groups. At the genus level, the 

Table 1.   Patient demographics.

Parameter Number Age (months) Male/Female Weight (kg) Height (cm)

ARFID 102 66 (53, 82) 50/52 15.9 (14.0, 19.0) 107.0 (100.0, 116.0)

HC 33 60 (48, 72) 15/18 20.0 (16.0, 22.5) 115.0 (106.5, 119.5)

P 0.352 0.512 < 0.001 0.011

Figure 1.   Microbiome composition of the fecal samples. Samples Y.S.1–Y.S.102 were in the ARFID group, and 
samples K.B.1–K.17 were in the HC group.
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top 4 taxa in the ARFID group and HC group were Bacteroides, Faecalibacterium, Blautia and Bifidobacterium 
(Fig. 4). The abundance of Bacteroides was higher in the ARFID group than in the HC group, but the difference 
was not statistically significant (P > 0.05).

To further explore all alterations in the gut microbiotas of the ARFID group and the HC group, we used 
LEfSe analysis (LDA effect size) to identify the key taxa responsible for the differences in the compositions of the 
fecal microbiotas between the two groups. The abundance of 5 taxa (the phylum Actinobacteriota and its corre-
sponding class Actinobacteria, the order Bifidobacteriales and corresponding family Bifidobacteriaceae ,the genus 
Bifidobacterium), were enriched in the HC group. However, the order Enterobacterales and its corresponding 
family Enterobacteriaceae, the family Bacteroidaceae and corresponding genus Bacteroides, the species Bacteroides 
vulgatus were enriched in the ARFID group (Fig. 5).

Composition and diversity of the microbiome in Y1 group and Y2 group determined by 16S 
rDNA sequencing
To further verify the difference in the gut microbiota of children with ARFID at different ages, we divided the 
fecal samples of 102 children with ARFID into two groups according to age. Among them, the Y1 group con-
tained a total of 59 children aged between 3 and 6 years, including 25 males and 24 females, and the Y2 group 
contained a total of 43 children aged between 7 and 12 years, including 12 males and 21 females. As shown in 
Fig. 6, there were no statistically significant differences between the Y1 group and Y2 group in the Chao1 index, 
Shannon index and Simpson index (P = 0.1, P = 0.06, P = 0.06).

PCoA showed that the structural differences between the Y1 group and Y2 group were not significant (Fig. 7).

Figure 2.   Comparison of α-diversity between the ARFID group and the HC group. (a) The Chao1 index values 
of the HC group were higher than those of the ARFID group; (b) the Simpson index values of the ARFID group 
were higher than those of the HC group; (c) the Shannon index values were significantly higher in the ARFID 
group than in the HC group.

Figure 3.   Each point in the figure represents a sample, and the points with the same color come from the 
same group. The closer the two points are, the smaller the difference in community composition is. Principal 
coordinate analysis (PCoA) plots of individual fecal microbiotas based on unweighted UniFrac distances.
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Moreover, Anosim showed no significant differences in bacterial community structures between the two 
groups (R-value = − 0.014, P = 0.7) (Fig. 8), so we concluded that there was no apparent difference in gut micro-
biota diversity between the Y1 group and Y2 group.

At the phylum level, Bacillota, Bacteroidota, Proteobacteria and Actinobacteria were the most abundant 
bacterial taxa in the two groups, and there were no statistically significant differences in the abundance of these 

Figure 4.   (a) The top 10 microbes at the phylum level. (b) The top 10 microbes at the genus level. The vertical 
axis is the relative abundance of each species. Columns with different colors correspond to different species, and 
the height of the column represents the abundance of the species.

Figure 5.   (a) Biomarkers associated with the ARFID group and HC group discovered by LEfSe analysis 
(logarithmic LDA score threshold = 4.0) in ARFID samples. (b) Cladogram representing the phylogenetic 
relationship of biomarkers associated with the ARFID group and HC group identified through linear 
discriminant effect size (LEfSe) analysis in samples.

Figure 6.   Comparison of the Chao1 index (a), the Simpson index (b) and the Shannon index (c) between the 
Y1 group and Y2 group.
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taxa (P = 0.958, P = 0.456, P = 0.473, P = 0.065). Notably, at the genus level, the abundance of Faecalibacterium was 
higher in the Y2 group than in the Y1 group, and the difference was statistically significant (P = 0.037) (Fig. 9).

Composition of the microbiome in the ARFID group and HC group as determined by metage-
nome sequencing
We selected 12 samples through Distinct mode in the microPITA analysis for metagenome sequencing. After fil-
tering and assembly, 952,862 unigenes were obtained, and the total length was 709.59 Mbp, with an average length 
of 744.7 bp. The dilution curve of the core genes (Fig. 10a) and pan genes (Fig. 10b) showed that the samples we 
measured could cover the real genes in the tested samples and meet the requirements of subsequent analyses.

As shown in Fig. 11, there were 459,055 genes in common between the two groups, and the ARFID group 
had more gene entries, with 215,800 genes.

The most abundant phyla in both groups were Bacillota, Bacteroidota, Pseudomonadota and Actinomycetota; 
the abundances of Bacillota and Actinomycetota in the HC group (45.1%, 14.3%) were higher than those in the 
ARFID group (37.6%, 6.3%), while the abundance of Bacteroidetes in the ARFID group (25.9%) was higher than 
that in the HC group (16.2%), although the difference was not statistically significant (P = 0.394) (Fig. 12a). At the 
genus level, different from the result of 16S rDNA sequencing, the abundance of Bacteroides in the ARFID group 
was much higher than that in the HC group (P = 0.041) (Fig. 12b); Escherichia coli, Streptococcus thermophilus 
and Lachnospira eligens were the most abundant taxa in the ARFID group at the species level, and Prevotella 
copri, Bifidobacterium pseudocatenulatum, and Ruminococcus gnavus were the top three microbial taxa in the 
HC group (Fig. 12c).

Figure 7.   Principal coordinate analysis (PCoA) plots of individual fecal microbiotas based on weighted UniFrac 
(a) and unweighted UniFrac distances (b).

Figure 8.   Anosim between the Y1 group and Y2 group. The y-coordinate is the distance, and the x-coordinate 
is the number of distances. R-values are between (− 1, 1), and R-values > 0 indicate differences between groups; R 
value < 0 indicates that the difference within the group is greater than the difference between the groups. P < 0.05 
indicates statistical significance.
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Figure 9.   Differences between the Y1 group and Y2 group at the genus level as determined by T test analysis.

Figure 10.   Rarefaction curves of the core genes (a) and pan genes (b).

Figure 11.   Venn diagram between the ARFID group and the HC group.
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Functional differences between the ARFID and HC groups
The KEGG database (Kyoto Encyclopedia of Genes and Genomes, Version: 2018.01) and the CAZy database 
(Carbohydrate-Active-enzymes Database, Version: 2018.01) are two commonly used databases. After blasting 
the filtered genes against the KEGG database, 6948 KOs were obtained. In KEGG Level 1, we found that a total 
of 44 pathways were related to the fecal microbiome, and the most abundant pathway was metabolism (Fig. 13).

In KEGG Level 2, carbohydrate metabolism, amino acid metabolism and environmental information pro-
cessing: membrane transport were the most abundant pathways in the ARFID group and HC group (Table 2).

In KEGG Level 3, ko02010 (ATP-binding cassette transporter) and ko02020 (Two-component system) 
were the most abundant pathways in both groups (Table 3), but the differences were not statistically significant 
(P > 0.05).

Based on the CAZy database, 541 ECs were identified. Six major enzymes were found in the gut micro-
biota: glycoside hydrolase (GH), glycosyl transferases (GT), carbohydrate binding module (CBM), carbohydrate 
esterase (CE), polysaccharide lyase (PL) and auxiliary oxidoreductase (AA). Glycoside hydrolase was the most 
annotated gene in the two groups (Fig. 14).

As shown by the clustering heatmap, GT26 was significantly more abundant in the ARFID group, while GH51 
and GH36 were more abundant in the HC group (Fig. 15).

Based on the CARD database (v2.0.1), we found a total of 195 resistance genes. It can be seen from the species 
attribution diagram of resistance genes that Bacillota, with the highest content of resistance genes in the both 
groups, accounted for 38% of all drug-resistant bacteria in the ARFID group and 45% in the HC group (Fig. 16).

The most abundant antibiotic resistance genes in the ARFID group were vanT (vancomycin resistance gene), 
followed by tetQ (tetracycline resistance gene), adeF (Acinetobacter baumannii resistance gene), and ermF (mac-
rolide resistance gene), while vanT, tetO, vanW (vancomycin resistance gene) and vanY (vancomycin resistance 
gene) were the 4 most abundant antibiotic resistance genes in the HC group (Fig. 17). The abundance of ermF 
in the ARFID group was significantly higher than that in the HC group (P = 0.041).

Discussion
The human body carries a large number of gut microbes, which affect our metabolism, hormonal status, immune 
system and even behavior25, therefore, the human microbiome is becoming an important research topic in 
somatic and psychiatric diseases26,27. Though research into ARFID is increasing28, none research on the gut 

Figure 12.   The top 10 microbes at the phylum level (a), genus level (b) and species level (c). The vertical axis 
is the relative abundance of each species. Columns with different colors correspond to different species, and the 
height of the column represents the abundance of the species.
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microbiota of children with AFRID have been found so far. Recently, the most widely used high-throughput 
sequencing technique for bacterial identification has been 16S rDNA sequencing29, but bacteria can only be iden-
tified to the genus level, and specific information at the species level cannot be obtained. However, compared with 
16S rDNA sequencing, metagenome sequencing can not only solve this problem but also obtain functional infor-
mation on the microbiome. Based on 16S rDNA sequencing and metagenome sequencing, this study analyzed 
the composition of the gut microbiota in children with ARFID and healthy children and found that there were 
differences in the structure, diversity and functional information of the gut microbiome between the two groups.

In our study, the Chao1index (reflecting the microbe species richness), was higher in the healthy children 
than in the children with ARFID, and the difference was statistically significant (P < 0.001). And the Shannon 
index and Simpson index (reflecting microbial species diversity) in the ARFID group, were higher than that in 
the HC group, and the differences were statistically significant (P = 0.009 and P = 0.02). These results suggesting 
that intestinal flora community structure and diversity changed compared with those in healthy children and 
that intestinal flora disorders occurred in children with ARFID. Due to the different databases that used in the 
process of metagenome and 16S rDNA sequencing, as well as the different depth of sequencing, there will be 
differences in the annotation results. For example, the most abundant microbes in the two groups at the phylum 

Figure 13.   The number of genes in KEGG Level 1.

Table 2.   The top 10 most abundant pathways in KEGG Level 2 (%).

Pathway

Metabolism: 
carbohydrate 
metabolism

Environmental 
information 
processing: 
membrane 
transport

Metabolism: 
amino acid 
metabolism

Metabolism: 
metabolism of 
cofactors and 
vitamins

Metabolism: 
energy 
metabolism

Environmental 
Information 
processing: 
signal 
transduction

Genetic 
information 
processing: 
translation

Cellular 
processes: 
cellular 
community-
prokaryotes

Metabolism; 
glycan 
biosynthesis 
and 
metabolism

Metabolism; 
nucleotide 
metabolism

HC 4.568 3.219 3.485 2.422 2.282 1.654 2.062 1.583 1.523 1.664

ARFID 4.800 3.018 3.344 2.531 2.284 1.798 1.783 1.579 1.753 1.612

P value 0.589 0.937 0.485 0.485 1.00 0.180 0.240 0.937 0.180 0.485

Table 3.   The top 10 most abundant pathways in KEGG Level 3 (%).

Pathway ko02010 ko02020 ko02024 ko03010 ko00230 ko00500 ko02060 ko00010 ko00520 ko00270

HC 2.265 1.324 1.028 1.252 1.015 0.885 0.325 0.683 0.804 0.728

ARFID 1.944 1.429 1.047 1.066 0.970 0.822 0.437 0.727 0.867 0.663

P value 0.394 0.240 0.937 0.310 0.485 0.818 0.937 0.699 0.240 0.180
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level were Bacillota, Bacteroidota, Proteobacteria and Actinobacteriota through 16S rDNA sequencing, however, 
the most abundant phyla in both groups were Bacillota, Bacteroidota, Pseudomonadota and Actinomycetota at 
the phylum level through metagenome sequencing. Besides, At the genus level, different from the result of 16S 
rDNA sequencing, the abundance of Bacteroides in the ARFID group was much higher than that in the HC group 
(P = 0.041), in the result of metagenome sequencing. In order to further understand the differential abundance at 
the species level between the two groups, we conducted metagenomic analysis of some samples. However, there 

Figure 14.   The number of CAZy annotations.

Figure 15.   Cluster plot of the abundance of functions in Level 2 between groups based on the CAZy 
annotations.

Figure 16.   Double-circle diagram of the relationship between two groups of drug resistance genes and species 
attribution. (a) is the ARFID group, (b) is the HC group, the inner circle is the species distribution of AROs, and 
the outer circle is the species distribution of all sample genes.
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were no statistically significant differences between the abundance of these microbial taxa in the two groups 
at the species level. Based on the LEfSe analysis, the microbes that had a strong influence in the ARFID group 
were the order Enterobacterales and its corresponding family Enterobacteriaceae, the family Bacteroidaceae and 
corresponding genus Bacteroides, the species Bacteroides vulgatus, while the phylum Actinobacteriota and its 
corresponding class Actinobacteria, the order Bifidobacteriales and its corresponding family Bifidobacteriaceae, 
the genus Bifidobacterium influenced the HC group most.

Previous studies revealed that Bacteroides is a dominant genus in human intestines30. They can colonize 
the host intestines for a long time and have the function of regulating the intestinal microenvironment31, using 
carbon hydrate, enhancing the host’s adaptability to the environment32,33 and secreting metabolites such as short-
chain fatty acids (SCFAs)34,35, thus establishing a stable symbiotic relationship with the host36. However, some 
reports have also shown that Bacteroides have adverse effects on the host37–39. Bacteroides vulgaris is widely 
considered a class of Bacteroides related to inflammatory bowel disease. This conjecture has been verified in a 
large number of in vivo and in vitro experiments40–43. In addition, some animal experiments have proven that 
Bacteroides vulgaris alleviates inflammation in mice44,45. The family Enterobacteriaceae has had a great medical 
and public health impact on the global community, as these species are associated with a wide range of clinical 
syndromes and are major causative agents of foodborne enteritis46. So far, a large number of studies have focused 
on the epidemiology, pathogenesis, virulence, and/or antibiotic resistance of pathogenic strains of Enterobac-
teriaceae in humans47. Bifidobacterium, belonging to Actinobacteria, is a genus of gram-positive, pleomorphic, 
rod-shaped bacteria that are strictly anaerobic, and these bacteria have important immune regulation, anti-tumor, 
anti-pathogenic, anti-inflammation, anti-aging, and hypolipemic effects in humans48. Therefore, Bifidobacterium 
species have long been used as probiotics to alleviate various diseases by changing the gut microbiota composition 
and are significantly associated with human health49. The results of our study suggested that the increased content 
of Bacteroides or Enterobacteria or the reduced content of Bifidobacterium may be related to ARFID, but the 
pathogenesis still needs further study. As is known to all, a persistent failure to meet appropriate nutritional is one 
of the main characteristics of ARFID50,51. Growing evidence indicates that malnutrition may bring about qualita-
tive changes in the microbiome52 and specific strains of probiotics can potentially address the qualitative shift that 
occurs in the malnourished microbiome53. Previous study have shown that the depletion in gut Bifidobacterium 
represents the first step in gut microbiota alteration that associated with severe malnutrition54, suggesting that 
Bifidobacterium supplementation may be extremely important in the treatment of malnutrition. Although the 
best therapeutic intervention for eating disorders (including ARFID) is currently family-based intervention, in 
conjunction with both medical and dietetic monitoring and management, and pharmacologic management is 
never recommended as a first-line treatment, probiotic preparations may be useful as adjunctive interventions, 
similar to the previous researches, the live Bifidobacterium preparation may be a good choice through our study.

The composition and function of the gut microbiota have been largely overlooked in 3–6-year-old and 
6–12-year-old children compared with infants and adolescents55, probably because such investigations have 
been constrained by ethical and practical considerations, such as difficulties in obtaining fecal samples from 
individuals in these age groups56. In our results, there seemed to be no difference between preschool children and 
primary school children with ARFID in terms of gut microbiota diversity. At the phylum level, the most abundant 
bacteria in the two groups were the same; however, at the genus level, the abundance of Faecalibacterium was 
significantly higher in primary school children than in preschool children with ARFID, while the abundance 
of Bifidobacterium and Ruminococcus gnavus were higher in preschool children with ARFID. Faecalibacterium 
is a genus of strictly anaerobic, extremely oxygen-sensitive (EOS), Gram-positive bacteria and is considered 
to be ubiquitous in the gastrointestinal tracts of healthy humans57. Numerous types of evidence suggest that 
Faecalibacterium plays an important role in immune system regulation, gut barrier protection, and microbiota 
modulation58. Notably, due to Faecalibacterium increased with age from newborns to adults and decreased again 

Figure 17.   Abundance of antibiotic resistance (AR) genes in the ARFID group and HC group.
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at later ages59, the Faecalibacterium was more abundant at the genus level in older children with ARFID in our 
study, which may related to age gain, however, more researches are needed to support this hypothesis.

Finally, according to the KEGG annotation results, there seemed to be no significant difference in gut micro-
biota function between children with ARFID and healthy children. However, GT26 was significantly enriched 
in children with ARFID compared with healthy children in Level 2 based on the CAZy database. It was reported 
that based on the structural relatedness of glycosyltransferase (GT) catalytic and carbohydrate-binding modules, 
GTs have been grouped into 115 families in the CAZy database, and only four distinct GT protein folds, termed 
GT-A through GT-D, have been reported thus far60. The architecture of GT-B enzymes consists of two β/α/β 
Rossmann-like domains, and the GT26 family was predicted to possess the GT-B fold61, but there have been no 
other further reports on GT26 to date.

The human gut microbiota is an important reservoir of antibiotic resistance genes (ARGs). Due to improper 
use of antibiotics, the gut microbiota will be disordered, and the presence of drug-resistant bacteria can affect the 
intestinal microecological environment, which may accelerate the development of disease. A recent report sug-
gested that tetracycline, multidrug, and macrolide-lincosamide streptogramin (MLS) resistance genes were the 
top three most abundant ARG types in healthy individuals, and ermF was a representative ARG in the Chinese 
population62. Unlike findings in adults, our results suggested that the most abundant genes for gut microbiota 
resistance in healthy children were vancomycin, tetracycline and macrolide resistance genes. ErmF is a subtype 
of the MLS resistance gene type. In our study, we found that the ermF level was significantly higher in children 
with ARFID, which may be due to the higher abundance of Bacteroides. Since the use of macrolide antibiotics 
is the main reason for the increase in the abundance of Bacteroides63, we should be more cautious in the use of 
macrolide antibiotics in clinical practice. At present, we still know little about the impact of resistance genes on 
the gut microbiota in children, and there is not enough evidence to prove that resistance genes are directly related 
to the occurrence and development of ARFID, but researchers cannot ignore the potential threat of resistance 
genes to children’s health.

This was a preliminary study of the intestinal flora in children with ARFID, however, some limitations were 
identified. First, because of the high cost of metagenome sequencing, the total sample size was relatively limited. 
Moreover, due to the lack of healthy volunteers, the number of healthy controls was small. Finally, the sampling 
area was limited. To overcome these limitations, future studies should control related confounding factors and 
apply multiomics research strategies to microbial studies of ARFID, which will help reach more complete and 
in-depth conclusions.

Data availability
The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive (Genom-
ics, Proteomics & Bioinformatics 2021) in National Genomics Data Center (Nucleic Acids Res 2022), China 
National Center for Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences (GSA-Human: 
HRA005177) that are publicly accessible at https://​ngdc.​cncb.​ac.​cn/​gsa-​human.
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