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Modelling the effectiveness 
of surveillance based 
on metagenomics in detecting, 
monitoring, and forecasting 
antimicrobial resistance in livestock 
production under economic 
constraints
Ofosuhene O. Apenteng 1,2*, Frank M. Aarestrup 1 & Håkan Vigre 1*

Current surveillance of antimicrobial resistance (AMR) is mostly based on testing indicator bacteria 
using minimum inhibitory concentration (MIC) panels. Metagenomics has the potential to identify 
all known antimicrobial resistant genes (ARGs) in complex samples and thereby detect changes 
in the occurrence earlier. Here, we simulate the results of an AMR surveillance program based on 
metagenomics in the Danish pig population. We modelled both an increase in the occurrence of ARGs 
and an introduction of a new ARG in a few farms and the subsequent spread to the entire population. 
To make the simulation realistic, the total cost of the surveillance was constrained, and the sampling 
schedule was set at one pool per month with 5, 20, 50, or 100 samples. Our simulations demonstrate 
that a pool of 20–50 samples and a sequencing depth of 250 million fragments resulted in the shortest 
time to detection in both scenarios, with a time delay to detection of change of >15 months in all 
scenarios. Compared with culture-based surveillance, our simulation indicates that there are neither 
significant reductions nor increases in time to detect a change using metagenomics. The benefit of 
metagenomics is that it is possible to monitor all known resistance in one sampling and laboratory 
procedure in contrast to the current monitoring that is based on the phenotypic characterisation of 
selected indicator bacterial species. Therefore, overall changes in AMR in a population will be detected 
earlier using metagenomics due to the fact that the resistance gene does not have to be transferred to 
and expressed by an indicator bacteria before it is possible to detect.

The ability to implement targeted control measures in due time against emerging antimicrobial resistance (AMR) 
depends on an efficient monitoring system of AMR in humans, animals, and the  environment1–6. In Denmark, a 
surveillance programme for antimicrobial usage and AMR (DANMAP) was established in  19957. Since its estab-
lishment, DANMAP has been based on phenotypic-based characterisation of clinical isolates of selected patho-
gens and selected indicator bacteria from samples in animals, humans, and food using minimum inhibitory con-
centration (MIC)  panels7,8. Antimicrobial resistance genes (ARGs) can occur in all bacterial  species9,10. Using only 
a few selected bacteria for detecting the emerging or increased occurrence of AMR might miss the emergence 
and spread of AMR in the entire  resistome7,8,11. With the ongoing development of gene sequencing technology, 
it is now possible to investigate the presence and abundance of ARGs in a sample using shotgun metagenomic 
sequencing of DNA fragments extracted from all organisms in the sample, and subsequently mapping obtained 
sequences of nucleobases against databases with known sequences of nucleobases for  ARGs11–16. It has been 
shown that the metagenomics approach is a useful and reliable measurement for AMR in pig  production17–21, and 
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we have recently shown the added value of the metagenomics approach in direct comparison to the phenotypic 
surveillance used in the Danish DANMAP  program22. It has also been suggested that the use of metagenomics 
will increase the likelihood that emerging ARGs are detected earlier since the whole microbiota in the sample 
is being analysed for  AMR23–25.

However, the likelihood of detecting an emerging or significant quantitative change of an ARG in a population 
using  metagenomics26 depends, in addition to the actual occurrence of the ARG, on the design of the monitor-
ing system. This includes a fraction of the population of interest where samples are collected (sample size), the 
frequency of sampling, and how much of the physical sample is investigated [in metagenomics, this is equivalent 
to how many extracted DNA fragments are sequenced (sequencing depth)].

For the national surveillance of AMR in Denmark and many other countries, a key performance parameter is 
the lag time between the de novo emergence of a novel ARG in a population or a real change in the occurrence 
of an ARG already present and when this change will be detected as a significant change in the surveillance pro-
gram (sensitivity). It is also of practical importance that the program does not result in too many false alarms. 
Thus, in situations with a stable AMR level, the program should not indicate changes in the occurrence of AMR 
(specificity). The sensitivity and specificity of a monitoring program are often negatively correlated.

The presented study aimed to, given economic restrictions, assess different pooling strategies for detecting 
emergence and the increase in the prevalence of ARGs in the Danish pig population by simulation. In the simu-
lation, we took into account the stochasticity related to sampling and laboratory procedures and the economic 
restrictions. Based on the simulated data, we estimated the sensitivity and specificity to compare pooling strat-
egies in the surveillance of ARGs in a population of production animals. In the study, we show that by using 
relatively large pools combined with metagenomics, it is possible to monitor the all ARGs in a population. The 
results of the simulations show that with the use of metagenomics, it is possible to monitor all known ARGs, 
both detecting changes in endemic and detecting newly introduced ARGs.

Results
In this study, we have measured the occurrence of ARGs as the counts per million (#CPM), which should be 
interpreted as how many of the sequenced gene fragments were representing a specific ARG (normalised to 
1,000,000). In Fig. 1 (ARGs coding for efflux pumps causing tetracycline resistance) and Fig. 2 (ARGs coding 
for resistance against gentamicin), the true occurrence of CPM, the CPM in a pooled sample, and the CPM 
measured using metagenomics is illustrated. In both figures, the observed occurrence is fluctuating around the 
truth as a result of both sampling error and laboratory noise. The effect of increasing the number of samples per 
pool, and at the same time reducing the sequencing depth in the metagenomics lowers the deviation between 
the true and observed data for both the highly abundant and low abundant genes.

Using the deviation from the truth with the sampling schedule of five samples per pool as a reference, the 
relative deviation from the truth when changing the sampling schedule (increased number of samples per pool 
and reduced sequencing depth) was calculated for monitoring the occurrence of ARGs coding for tetracycline 
efflux pumps (Table 1) and ARGs coding for gentamicin resistance (Table 2). Overall, the deviation from the 
truth when using 50–100 samples per pool is about 1/3 relative to the deviation from the truth when using 5 
samples per pool.

In Figs. 3 and 4, the time until detection after the start of a true increase in each iteration using a sample size 
of 5, 20, 50, and 100 is presented using violin plots. Regardless of sample size, the range of the time to detect was 
from 1 month to not detected within 120 months, and there was no apparent difference in the time to detect 
between the sample sizes used in the monthly pool. In the simulated surveillance based on phenotypic charac-
terisation of isolates, there were more iterations resulting in no detection within the first 120 months after the 
start of changes for common resistance, indicating that the amount and type of information (resistance/sensitive 
isolate) in the current monitoring system does not have the same power to detect changes in the occurrence 
of highly abundant resistance. In the simulation of phenotypic characterisation for detecting changes in the 
occurrence of low-abundant resistance, there was no apparent difference in the time to detect, wherever using 
metagenomics or phenotypic characterisation of isolates.

The number of false positive signals indicating a change in the occurrence of highly abundant ARGs was 
not dependent on the sample size (Fig. 3). The number of false signals for phenotypic characterisation of highly 
abundant resistance was of the same magnitude.

Opposite, the number of false positive signals indicating a change in the occurrence of low-abundant ARGs, 
was strongly dependent on the sample size (Fig. 4). In the 1001 iterations for 20, 50, and 100, respectively, there 
were zero false signals. When using 5 samples in the monthly pool, in more than 90% of the iterations, there were 
10 false positive signals or more during the simulated time of 10 years with no true change. The number of false 
signals for phenotypic characterisation was of the same magnitude as in the scenario based on metagenomics of 
pooled samples with 20 or more samples per pool.

The more samples collected and pooled at each sampling point, the closer the sample represents the true 
occurrence of the ARG (Figs. 1 and 2). In the situation with 5 samples per pool, where a relatively large amount 
of the economical resources is spent on sequencing, the deviation in the observed data from the truth is due to 
the low representability of the sample because of the few animals in the pooled sample, and this cannot be com-
pensated for by sequencing deeper. In Tables 1 and 2, the reduction in the overall deviation from the truth when 
increasing the number of animals per pool and a corresponding reduction in the sequencing depth is presented. 
Increasing the number of samples per pool from 5 to 50 or 100 will result in a deviation that is about 1/3 of the 
deviation when using 5 animals per pool.

In this study, we have used a statistical algorithm to analyse the simulated time series for significant changes 
in the observed data. We used the algorithm to summarise the simulated data and to generate patterns in the 
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monitoring results in the different scenarios. We are not suggesting that this algorithm should be used in the 
monitoring program in real settings.

The algorithm was set to detect a change in trends over months, and not acute changes from 1 month to 
another. The outcome of interest in each time series was when a significant change was observed in the data 
during the 240-month long times series, and these time points were then compared with the defined truth.

In the two first scenarios, during the initial 120 months, there was no true change, so any significant time 
points detected in this time interval are false positive signals. In scenario 1, monitoring an ARG with relatively 
high abundance, the number of false negative signals in each time series ranged from 0 to 5 (Fig. 3) irrespective 
of the number of animals represented in the monthly pool. In the alternative monitoring approach, based on 
phenotyping 20 E.coli isolates per month, the number of false positive signals was similar, but with a tendency 
of more signals during the 120 months with no true change.

In scenario 2, monitoring an ARG with low abundance, due to the relatively large impact of selection error 
on the observed #CPM, there was a very large number of false positive signals (Fig. 4). In the sampling schedule 
using 5 samples per pool, it was almost random from month to month if there was a signal, and in most of the 
1001 time series, there were more than 20 false positive signals. The number of false negative signals decreased 
with an increased number of samples in each pool. At 100 samples per pool, the most common number of false 

Figure 1.  Time-series plot of simulated data representing a scenario of surveillance for 20 years of genes coding 
for efflux pumps causing resistance against tetracycline in swine faeces. The simulated sampling schedule is 
monthly collections of 5 samples (upper left), 20 samples (upper right), 50 samples (lower left), and 100 samples 
(lower right) of faeces from random pigs in the population. All of the samples collected per month are pooled 
and analysed using metagenomics. The blue line is the true CPM in the population (same in all graphs), the 
brown line is CPM in the pooled sample and the green line is the observed CPM in metagenomics.
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Figure 2.  Time-series plot of simulated data representing a scenario of surveillance for 20 years of genes coding 
for resistance against gentamicin in swine faeces. The simulated sampling schedule is monthly collections of 5 
samples (upper left), 20 samples (upper right), 50 samples (lower left), and 100 samples (lower right) of faeces 
from random pigs in the population. All of the samples collected per month are pooled into one technical 
sample and analysed using metagenomics. The blue line is the true CPM in the population (same in all graphs), 
the brown line is CPM in the pooled sample and the green line is the observed CPM in metagenomics.

Table 1.  The relative deviation from the true occurrence of ARGs coding for tetracycline efflux pumps when 
increasing the number of samples from 5 (reference) to 20, 50, and 100 samples per pool per month (and 
subsequently reducing the sequencing depth); and the relative distribution of the absolute deviation due to the 
number of samples and sequencing depth.

# samples per pool per month The relative size of the total deviation
Relative distribution of the deviation due to the number of 
samples/sequencing depth

5 100% (reference) 92%/8%

20 51% 85%/15%

50 33% 77%/23%

100 27% 61%/49%
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Table 2.  The relative deviation from the true occurrence of ARGs coding for resistance against gentamicin 
when increasing the number of samples from 5 (reference) to 20, 50, and 100 samples per pool per month (and 
subsequently reducing the sequencing depth); and the relative distribution of the absolute deviation due to the 
number of samples and sequencing depth.

# samples per pool per month The relative size of the total deviation Relative deviation due to sampling/lab

5 100% (reference) 93%/7%

20 51% 82%/18%

50 35% 71%/29%

100 29% 53%/47%

Figure 3.  Results from simulation of monitoring significant changes in the occurrence of resistance against 
tetracycline in a pig population using 5, 20, 50, or 100 faecal samples per month. The occurrence of resistance 
is measured as the abundance of ARGs coding for efflux pumps causing resistance against tetracycline using 
metagenomics (mg) or phenotypic resistance in E.coli (pheno). The simulation was conducted on a scenario 
with no increase for 10 years (causing false negative signals—lower graph) and subsequently a 5% annual 
increase over 10 years (where we measured time to detection—upper graph).
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positive signals in the 1001 iterations was 0, or only a few, but in several iterations, there was a false negative sig-
nal more than twice a year (more than 20 signals in total) (Fig. 4). Also, in the alternative monitoring approach, 
based on phenotyping 20 E. faecalis isolates per month, the number of false positive signals was high (Fig. 4).

In the scenario monitoring changes in the abundance of high-abundance ARGs already present in the popu-
lation, the time to detect a true change ranged from 5 to 120 months for all sampling schedules, and it was not 
strongly influenced by the number of samples per pool, indicating the information needed to detect a change is 
collected using only a few samples.

However, in the scenario monitoring changes in the abundance of a low-abundance ARG, using only 5 sam-
ples gave, in general, the shortest time to detect. This partly illogical result is due to the impact of random error 
on the observed results being very high in this scenario. This result is also the explanation for the high number 
of false positive signals, and this is independent of the truth. Therefore, the signal of a significant change shortly 
after the change has started is just random. Considering the monitoring of changes in low-abundance ARGs, 
taking the number of false positive signals into account, especially at a few samples per pool, the predictive value 
of a positive signal indicating a change is very low. At an increasing number of samples per pool (50–100), the 
positive predictive value of a signal indicating a change increases, and should be considered as truly positive.

Figure 5 shows the distribution of time to detect the 1001 iterations done in each scenario with different 
numbers of samples in the pool. For any number of samples per pool, the time to detection varies by several 
months due to the stochasticity of sampling and laboratory, ranging from a detection within the first few months 
after increased occurrence to the increase detected first after several years. This variation in time to detection 
for any number of samples per pool was a result of the stochasticity of sampling from a population, and the 
randomness in which fragments that are sequenced and also partly by variation in the actual sequencing depth, 
which is not fixed.

The occurrence of the pathogen within animals on infected farms was set to the abundance of blaTEM in 
real farms.

Figure 4.  Results from simulation of monitoring significant changes in the occurrence of resistance against 
gentamicin in a pig population using 5, 20, 50, or 100 faecal samples per month. The occurrence of resistance is 
measured as the abundance of the ARG aph coding for resistance against gentamicine using metagenomics (mg) 
or phenotypic resistance in E. faecalis (pheno). The simulation was conducted on a scenario with no increase 
for 10 years (causing false negative signals—lower graph) and subsequently a 5% annual increase over 10 years 
(where we measured time to detection—upper graph).
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In addition, the time to detection was also simulated using the phenotypic method, where the presence 
detected a new AMR strain of E.coli, with the same transmission rate between farms. The occurrence of the new 
strain in infected farms was set to the current prevalence of ESBL in pig production.

The right plot shows the prevalence of farms at different times after introduction (equivalent to the y-axis of 
the left graph) that was used in the simulation. The transmission rate is equivalent to that the gene is present in 
almost all farms 5 years after introduction into one farm at month 1 (prevalence 85%).

Figure 6 illustrates the 4-year forecast of the occurrence of an ARG based on the data that was observed in 
iterations in the period between 2000 and 2020. The size of the uncertainty in the forecast was increased by the 
period that was forecasted, but instead of an eyeball forecast, an analytical approach utilising the data is more 
valid, robust, and objective. The close approximation of the observed and forecasted data to the true data in 
Fig. 6 reveals that the performance of the surveillance is a valid representation of the truth and can be used to 
forecast the occurrence.

Discussion
In this study, we modelled the utility of metagenomics in livestock production for detecting, monitoring, and 
forecasting the presence of ARGs. The model was developed on two dimensions: first, the dynamic change in the 
occurrence of AMR, and second, the monitoring procedure—sampling schedule, laboratory method, interpreta-
tion, and statistical analysis of laboratory results. Like all mathematical models, these results must be interpreted 
in the context of the model assumptions and the quality of available simulated data. Also, the results are based 
on ARG data from Danish pigs and assumptions about the spread of ARGs between farms in the Danish pig 
production system. The earlier indication of a change of AMR in a population, as more effective preventive 
measures will be (regulating or banning the use of certain antimicrobials) in respect to limiting the occurrence 
of AMR. However, to the best of our knowledge, this is the first mathematical model developed for estimating 
the performance of an AMR surveillance program based on metagenomics.

All of our simulations suggest a considerable time delay to detect either an increased occurrence of an 
ARG already present in the population (33–64 months) or the first detection of a completely novel ARG 
(19–33 months). However, our results also show that given the same amount of funding we might "gain" 
14–31 months in time to detection by using the optimal pooling strategy combined with metagenomics. Also, 
as suggested by our simulations, the correct pooling strategy might be as effective as simply increasing the overall 
cost used for surveillance of AMR (in our case, 50%).

The generation of time-series data, in general, also gives the opportunity to do some kind of forecasting—
either visually or analytically. In most surveillance programs related to health in animal or human populations, 
e.g.,  DANMAP27, the forecast is based on a visual inspection of the time-series data, aggregating the data to the 
annual occurrence. The use of metagenomics, in combination with a very strict sample schedule where samples 
are collected every month, will result in a time series about the quantitative amount of all known ARGs per, e.g., 
month. By estimating the trend in the observed data, the estimated trend can be used for a long-time forecast 
of AMR, given the trend is continuing. Given the potential of ARGs to transfer between bacteria species and 
the long time it takes to reduce the occurrence of AMR with preventive measures, forecasting the occurrence of 
AMR can support the implementation of preventive measures in due diligence, applying precautionary principles. 

Figure 5.  Results from 1001 iterations per sample schedule for time to detect a newly introduced AMR gene 
into the pig population. The simulated sampling schedules are a collection of faecal samples from 5, 20, 50, and 
100 random pigs per month that are pooled into one technical sample before analysing with metagenomics 
(mg).
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Figure 6.  Plots of the forecasted trend of CPM of genes coding for resistance against tetracycline due to efflux 
pumps (left column) and genes coding resistance against gentamicin (right column). The green line show 
simulated observations obtained over 20 years of monitoring of resistance based on a monthly sampling of 5 
(upper row), 20 (second upper row), 50 (third upper row), and 100 faecal samples (lower row) and metagenome 
analysis.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20410  | https://doi.org/10.1038/s41598-023-47754-w

www.nature.com/scientificreports/

This is especially relevant for AMR; decisions need to be taken before the adverse effects of AMR are observed 
in the human population.

The more sensitive we make the algorithm to detect changes, the greater the number of false alarms. The 
sensitivity of the whole surveillance must, in the end, be balanced against the size of the potential risk and the 
costs of false alarms, and in the end, that is a decision that needs to be made by risk managers. The parameter 
"duration" in the DBEST significantly detects change within the time series data. The shorter the "duration," the 
faster a breakpoint will be identified, but also, a short duration time will increase the likelihood of false alarms.

Compared to surveillance based on the phenotypic characterisation of isolated bacteria, the metagenomic 
method allows for monitoring the occurrence of all resistance genes with known nucleotide sequences in the 
same sample and laboratory procedure. Another strength is that the data structure of the outcome of metagen-
omics (#counts) makes it possible to aggregate the counts of each gene into higher levels, to obtain the #CPM of 
genes coding for resistance against antimicrobial class (tetracyclines, aminoglycosides, etc.). Thereby, surveillance 
of AMR based on metagenomics can reveal changes in the occurrence of AMR in the bacterial population at 
different levels. One apparent disadvantage of metagenomics is that the method does not indicate if the detected 
genes are phenotypically expressed in the population of bacteria. However, in the case of surveillance of AMR 
in populations of production animals, the risk is related to the likelihood that the gene is transferred to human 
pathogens. One of the deciding factors for the size of this risk is the absolute number of resistance genes in the 
microbiome. Therefore, in this context, whether the genes of interest are expressed or not in the collected sample 
is of minor concern.

The inherent benefit of using metagenomics to monitor AMR in a population is that it is possible to monitor 
the occurrence of all known ARGs within one technical sample. However, the power to detect changes in the 
occurrence of AMR depends strongly on the true occurrence of the AMR in the population and the criteria set 
defining a change. Traditionally, this can be handled by adjusting the sample size for each AMR of interest, so 
there is a given probability to detect a change in the monitoring system if it is present in reality. In monitor-
ing based on metagenomics, this is not as straightforward, because we use the same sample for monitoring all 
known ARGs.

Within the range of the simulation settings in this study, also for monitoring based on metagenomics, the most 
important factor to obtain valid monitoring results is to have technical samples with a high representativeness of 
the population of interest. Compared to monitoring based on the characterisation of isolates, metagenomics can 
be applied to pooled samples. The results from our simulations indicate that, given the economical constraints, 
using technical samples of 50–100 pooled faecal samples give the most valid results when applying metagenomics 
for monitoring AMR in the Danish pig population.

Comparing the results of the scenarios with high and low abundance of ARGs, the metagenomics has the best 
performance in monitoring changes in highly abundant ARGs (faster to detect changes and fewer false signals). 
For monitoring changes in low-abundant ARGs, the performance is impaired by the fact that the random noise 
from sampling and laboratory procedure results in false positive signals in the observed data. The solution for 
this is to increase the magnitude of change that must be observed before it is classified as a change (increasing 
the cutoff value), but this will be at the cost of having a longer time to detect a true change. For the detection of 
new emerging ARGs, metagenomics has a better performance than phenotypic-based monitoring when using 
50–100 samples per pool.

Before starting to use metagenomics to monitor AMR in a population, studies elucidating the effect of 
decisions about the criteria for classifying a change in observed data as a true change must be performed. The 
amount of data (and information) generated in metagenomics is comprehensively compared to the proportion 
of resistant isolates of pre-selected indicator bacteria species. The comprehensiveness of the sequencing data 
must be combined with robust approaches for summarising metagenomic data into outcome measures that are 
in alignment with the aim of the surveillance system.

Overall, the opportunity to succeed in strengthening the surveillance of AMR in animal populations using 
metagenomics is that this laboratory procedure can be applied to large pools of samples. Large pools of samples 
increase the representativeness of the monitored results. The dilution effect due to pooling can be handled by 
using a high sequencing depth. In addition, by using metagenomics, all known ARGs are included in the moni-
toring program.

In general, as a result of an increased sensitivity of monitoring, the likelihood of false signals also increases. 
The balance between sensitivity and specificity of a monitoring program is a decision more than a scientific 
question. The database we used in the metagenomic analysis to identify acquired ARGs currently contains about 
5000 ARGs. Due to the magnitude of ARGs that can be monitored, a crude screening for significant changes will 
by chance result in hundreds of false alarms at every testing point of time.

In real settings, a well-functioning monitoring system is characterized by high negative and positive predicted 
values, which is the likelihood that the absence of signals in the monitoring system is a true reflection that there 
are no changes, and that a true positive monitoring signal is truly positive. A low negative predicted value in a 
monitoring system will result in the emergence of an increased occurrence of ARGs and it will be more extended 
before it is identified and preventive measures are implemented. A low positive predictive value in a monitoring 
system is not useful because the unsubstantiated or false-positive reports result in unnecessary investigations 
and wasteful allocation of resources.

Monitoring the changes in highly abundant ARGs, the outcome from the 1001 iterations using different 
numbers of samples and sequencing depth was similar, indicating that both positive and negative predictive 
values are the same across different numbers of samples per pool and sequencing depth. For the phenotypic 
characterisation of isolates to identify changes, the positive predicted was similar to what was found in the moni-
toring based on metagenomics, but the negative predicted value is significantly smaller, and in many iterations, 
the true change was not detected.
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To detect a newly introduced AMR gene or isolate in the pig population, in the simulations settings, almost 
irrespectively of metagenomics or phenotypic detection, or the number of samples used in the pool, the AMR will 
be detected within 5 years (Fig. 5). Overall, the setup with 50 samples per monthly pool and using metagenomics 
gave the shortest time to detection. In a few iterations using 5 samples per pool and metagenomics, or phenotypic 
characterisation of 20 isolates monthly, a newly introduced AMR was not detected.

The presented results from our simulation demonstrated that the overall performance of a monitoring pro-
gram of AMR in the Danish pig population depends on the abundance of AMR in the population, sampling 
schedule and laboratory method, how fast the occurrence of AMR is changing in the population and the thresh-
old for classifying an observed change as a significant change.

In the situation of monitoring AMR in a population, the value of the positive and negative predicted value 
of the monitoring system is dependent on the characterisation of the monitoring system (sample schedule, data 
generated via the laboratory method, and algorithm to identify signals), and the true occurrence of AMR in 
the population that is monitored. To optimize the overall negative and positive predictive values of monitor-
ing ARGs in a population, the algorithms used for screening the results must take into account which ARGs 
or groups of ARGs impose important risks to humans. In addition, a comparison of the consequences of false 
signals (unnecessary investigations and wasteful allocation of resources) and the consequence of time between 
the occurrence of change and detection (uncontrolled spread of the ARGs) should be considered when defining 
the threshold used for indicating a change in the occurrence.

The overall strength of using metagenomics compared to traditional phenotypic characterisation of isolates 
is that all known ARGs can be monitored within the same laboratory analysis. Also, the metagenomic approach 
makes it feasible to work with pooled samples, whereby a larger proportion of the population of interest can be 
represented in the sample.

Methods
The design of the study is presented in Fig. 7. Initially, we developed a dynamic mathematical model describing 
the occurrence and the change in the occurrence of ARGs of interest in the population over time. This model 
describes the "true" occurrence of ARGs of interest at any given time.

Secondly, a model mimicking the surveillance program overlaid the model of the "true" occurrence to simu-
late the results that can be observed in surveillance given the settings of the sampling schedule (frequency of 
sampling, sample size, and pooling) and the metagenomic procedure (sequencing depth). In each iteration, by 
taking into account the stochasticity of sampling and metagenomics, a time series of observed data was gener-
ated. Each time series was subsequently analysed statistically to identify time points for the detection of the 
start of changes in the occurrence as well as to estimate long-term trends. In addition, given the time series, the 
future occurrence of the ARG of interest in the population was forecasted using a forecasting methodology. The 
results from the statistical analysis were finally compared with the known truth that was given in the dynamic 
model describing occurrence and the change in the occurrence of an arbitrary ARG in the population over time.

Figure 7.  Study flowchart for study design adapted in this study.
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Mathematical notification of model describing "true" occurrence and the change in the occur-
rence of an arbitrary ARG in the population over time
True occurrence of an ARG in this study was defined as the occurrence of an ARG at the farm (proportion 
of farms positive), within farm prevalence (proportion of pigs within a positive farm with the ARG), and the 
concentration of the ARG in faeces of pigs carrying the gene. The concentration of the ARG(s) of interest in 
faeces was obtained from a lognormal distribution fitted to real-world data of the concentration of ARGs in pig 
 faeces28,29. We chose a lognormal distribution because this gave the best fit to the data as compared with gamma 
and Weibull (for details, see Supplementary Fig. 1).

In this study, three different scenarios of true occurrence were modelled, each representing ARGs with 
different occurrences and changes: (1) an increased occurrence of an ARG that is already widely present in 
all farms in all pigs (high-level endemic), (2) an increased occurrence of an ARG that is present but at a lower 
frequency (low-level endemic) and (3) the de novo emergence of a novel ARG (emerging). In all scenarios, we 
used metagenomic data obtained from the samples collected in a previous study conducted on the Danish pig 
 population28. In scenario 1, we used CPM of ARGs coding for efflux pumps causing resistance against tetracy-
cline (tet(A), tet(B), tet(C), tet(G), tet(H), tet(K), tet(L), tet(Z), tetA(P), tet(30) and tet(40). This type of AMR is 
widely spread in the Danish pig population, and therefore in scenario 1, the proportion of pigs carrying this AMR 
was set to 100%, where the concertation was varied between pigs. Within the first 120 months, we assumed that 
there was no increase in concentration. After 120 months, we introduced a 5% annual increase in concentration.

In scenario 2, we used CPM of ARGs coding resistance against gentamicin by enzymatic modification 
(aac(6′)-Ie-aph(2″)-Ia)). This type of AMR rearely occurs in the Danish pig population, and therefore in scenario 
2, the prevalence of animals within farms was set at 11%, in accordance with results from an observational study 
in Danish pig  farms28. Within the first 120 months, we assumed that there was no increase in the prevalence of 
pigs carrying this AMR. After 120 months, we introduced a 5% annual increase in prevalence.

In scenario 3, new ARG was introduced into one farm in a population of 4,000 farms, where the ARG was 
allowed to spread to other farms over time (emerging). The spread was following a generalized Susceptible-
Infected ( SI ) compartmental  model30 (for details, see Supplementary Eq. 1). Our model was based on a homo-
geneous mixing system, with a transmission rate (0.148) resulting in 85% contaminated farms after 5 years. 
The spread described in the (SI) model only considers the spread of ARG between farms. As soon as an ARG is 
introduced into a farm, it was assumed that the occurrence of pigs carrying the ARG was the same as the occur-
rence in a farm that has been infected for a longer period (10%). We assumed that the within-pig concentration 
of the emerging ARG was the same as the concentration of the blaTEM gene by results from an observational 
study in Danish pig  farms28, where the CPM was extremely low.

To compare the use of metagenomics in surveillance with the current surveillance based on culturing, a model 
mimicking this surveillance was also developed based on the approach and results from the DANMAP surveil-
lance. Phenotypic tetracycline resistance in the indicator bacteria Enterococcus faecalis [75% in 2021 (DANMAP 
2021)] was used as a model for an increased occurrence of antibiotic resistance that is already widely present in 
all farms in all pigs (high-level endemic), phenotypic gentamicin resistance in the indicator bacteria E.coli (6% 
DANMAP 2021) was used as a model for an increased occurrence of antibiotic resistance that is present but at a 
lower frequency (low-level endemic). For the de novo emergence of novel antibiotic resistance, we assumed that 
the clone is introduced to one farm, and followed the same spread between farms as described for the spread of 
emerging ARGs (scenario 3). As soon as the clone is introduced into a farm, it was assumed that the occurrence 
of pigs carrying the clone was the same as the occurrence in a farm that had been infected for a longer period 
(90%). We assumed that the within-pig occurrence of the emerging clone was the same as the occurrence of 
phenotypic gentamicin resistance in the indicator bacteria E.coli (1% DANMAP 2021).

Model for simulating results obtained in the surveillance program
In the simulation, we generated results obtained in a hypothetical monitoring program, including the effect 
of the design of the monitoring—the frequency of sampling and the number of samples at each timepoint of 
sampling. In this study, we assumed that all samples collected at each time point were pooled into one single 
technical sample before sequencing. Depending on the number of DNA fragments that are sequenced (sequenc-
ing depth)31–33 and the concentration of the ARG of  interest34, the initial output from the model is the number 
of DNA fragments that were assigned to the ARG of interest.

Subsequently, we calculated the Counts of ARG divided by the total millions of fragments sequenced in the 
sample—Counts Per Million (#CPM)35,36. Thereby, the outcome of the surveillance of AMR using metagenomics 
is the #CPM in the population. The #CPM in each faecal sample is the product of whether the sample is collected 
from a farm having the ARG (0 or 1) binomial

(

n = 1, prob = farmprev
)

 , the collected animal within a positive 
farm carrying the ARG (0 or 1) binomial

(

n = 1, prob = farmprev
)

 and the concentration of the ARG if the animal 
is carrying the ARG (random draw from the lognormal distribution). The model includes a pooling procedure 
where the number of collected faecal samples at each timepoint of sampling (assumed to be 5, 20, 50, or 100) are 
pooled into one technical sample before DNA sequencing. The mean of the CPM in the pooled faecal samples 
represents the "concentration of the ARG in the technical sample at a given point in time." The simulation was 
conducted over 240 months, with a sampling frequency of once per month.

In theory, when the design factors frequency of sampling, sample size, or the sequencing depth goes infinite, 
the sensitivity of the monitoring program will become 100%, and the lag time between change of occurrence 
and detection of change will be zero. To obtain realistic values of the design factors, we developed an equation 
wherein the price of sampling and sequencing were integrated with the variables sample size and sequencing 
depth, summing up to a given total annual cost of a monitoring  program37. We developed a cost function (Eq. 1) 
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to estimate how deep we would be able to sequence each pooled technical faecal sample given a sampling of n 
faecal samples (n = 5, 20, 50, and 100) randomly collected once a month. The cost was calculated using Eq. (1).

here k is the number of technical samples processed in the lab per month (in this study k = 1 ), and n and m are 
the number of samples in pooling and the sequencing depth, respectively (for details, see Supplementary Table 1).

An important determinant of the likelihood of metagenomics in detecting an emerging ARG is how many 
gene fragments are sequenced (sequencing depth)38–40. Fragments that are sequenced in a sample are random, 
whereas the number of sequenced fragments can be pre-defined within a certain range. The mean sequenc-
ing depth for each sample pool is determined using rtruncnorm(n, a, b,mean, sd) : where n is the number of 
observations (months); a is the lower mean sequencing depth; b is the upper mean sequencing depth; themean 
is mean sequencing depth, and sd is (mean− a)/3 . To add randomness to the sequencing depth, we assume 
that the depth is varying stochastically between ±20% of the mean, following a normal distribution where the 
range between -20% and + 20% is equal to 6SD. During simulation, the sequencing depth was truncated at ±
3SD41. In the simulation of all scenarios and sub-scenarios, 1001 iterations were performed using Monte Carlo 
 simulation42–44, representing 1001 time series of the observations.

Calculating deviations between observed and true occurrence
As given by the setup of the simulation, the deviation of the observed data from the truth originates from the 
sampling error at the collection of faecal samples (deviation due to sampling) as well as which gene fragments 
are sequenced (deviation due to lab procedure). These two sources of error are distinct from one another. To 
compare how these two sources of error contribute to the deviation between the observed data and the truth, for 
each observed data point in each time series, we decompose the total deviation into deviation due to sampling 
(Eq. 2) and lab procedure (Eq. 3)

Subsequently, the absolute values of DeviationSampling and DeviationLab for each sampling schedule were 
summarised and compared relative to each other.

Also, to compare the overall effect of the number of samples and sequencing depth on how close to the truth 
the monitoring will be for each observed data point in each time series, the deviation is calculated according 
to Eq. (4)

Subsequently, the absolute values of Deviation_obs_truth were summarised and compared relatively between 
the different sampling schedules within scenarios one and two, respectively.

Statistical analysis of the time series obtained in the simulations
The performance of the surveillance  program45 for detecting ongoing changes in the occurrence of ARGs in the 
population was done by initially identifying a change in the observed data using breakpoint  analysis46,47, and 
subsequently calculating the time between the start of the change given by the mathematical function defining 
the true occurrence of an ARG in the population, and the time point when this change was identified in the 
time-series of observed data.

By applying the breakpoint analysis throughout the time series of observed data, including the initial period 
of 10 years with no true change, we also obtained the number of false alarms, which is when the surveillance 
indicates a change in the occurrence of #CPM where the occurrence is not changing.

Breakpoint analysis—DBEST method
The simulated observed data of an ARG in a population using metagenomics were analysed for the presence of 
changes in occurrence over time using breakpoint analysis. In reality, when the occurrence of endemic AMR 
starts to change, the increase/decrease takes place gradually over months/years and not with a direct shift from 
one level to another within a few months. In the R package DBEST, statistical methods are applied to analyse 
time trends and detect changes over time. DBEST was originally developed to both detect and forecast changes 
in vegetation using remote  information48,49. We chose DBEST because of its ability to handle #CPM in the form 
of continuous data, which is not possible with surveillance package analysis programs that only consider whole 
numbers.

In our study, we used DBEST for time-trend analysis, looking for changes in the #CPM of the ARG(s) of 
interest over time (Supplementary Fig. 2). DBEST detects and estimates trend changes in two ways (abrupt and 
non-abrupt) and the timing, magnitude, number, and direction of those changes. In the DBEST method, five 
parameters must be defined before the analysis. The description of the "change_magnitude" is the size of changes 
in the data that indicate a potential true change. In this study, we used a 5% increase/decrease (change_magni-
tude, Table 1) from the #CPM mean of the ARG of interest in the population before an increase occurred. The 
specified "duration" is the period after the breakpoint that the change must be present to indicate a true persistent 
change, given the algorithm’s sensitivity to detect changes. This was defined as 6 months in our study (Table 3).

(1)
Totalprice =labcost ∗ k + labtechniciancost

+ n ∗ pricepersample +m ∗ priceperfragment

(2)DeviationSampling[CPM] = Sample[CPM]−Truth[CPM]

(3)DeviationLab[CPM] = Observed[CMP]− Sample[CPM]

(4)Deviation_obs_truth[CPM] = Observed[CMP]− True[CPM]
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Following our knowledge of changes in ARGs in animal populations over time and how it was specified in 
the model, the statistical methods should identify non-abrupt changes over a longer period. Abrupt changes in 
a short time interval are not expected, and therefore, the parameters in the algorithm were set so it only looks 
for non-abrupt changes. Therefore, the values for "first-level-shift" and "second-level-shift" were set to extremely 
high values, whereby none of the detected change points were classified as abrupt. This is a technical issue, but 
it is worth noting. The "alpha" is the statistical significance level value used to test the significance of detected 
changes. Table 3 shows how these five parameters were implemented in the DBEST.

Forecasting
In this study, based on the simulated data, we also tried to forecast the trend for 5 years (60 months) using the 
R package “forecast”. The trend was obtained using exponential smoothing assuming additive errors, additive 
trend, and no seasonality.
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