
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports

A hybridization of evolution
strategies with iterated greedy
algorithm for no‑wait flow shop
scheduling problems
Bilal Khurshid 1, Shahid Maqsood 2, Yahya Khurshid 1, Khawar Naeem 3* &
Qazi Salman Khalid 1

This study investigates the no‑wait flow shop scheduling problem and proposes a hybrid (HES‑IG)
algorithm that utilizes makespan as the objective function. To address the complexity of this NP‑hard
problem, the HES‑IG algorithm combines evolution strategies (ES) and iterated greedy (IG) algorithm,
as hybridizing algorithms helps different algorithms mitigate their weaknesses and leverage their
respective strengths. The ES algorithm begins with a random initial solution and uses an insertion
mutation to optimize the solution. Reproduction is carried out using (1 + 5)‑ES, generating five
offspring from one parent randomly. The selection process employs (µ + λ)‑ES, allowing excellent
parent solutions to survive multiple generations until a better offspring surpasses them. The IG
algorithm’s straightforward search mechanism aids in further improving the solution and avoiding
local minima. The destruction operator randomly removes d‑jobs, which are then inserted one by one
using a construction operator. The local search operator employs a single insertion approach, while
the acceptance–rejection criteria are based on a constant temperature. Parameters of both ES and
IG algorithms are calibrated using the Multifactor analysis of variance technique. The performance of
the HES‑IG algorithm is calibrated with other algorithms using the Wilcoxon signed test. The HES‑IG
algorithm is tested on 21 Nos. Reeves and 30 Nos. Taillard benchmark problems. The HES‑IG algorithm
has found 15 lower bound values for Reeves benchmark problems. Similarly, the HES‑IG algorithm has
found 30 lower bound values for the Taillard benchmark problems. Computational results indicate that
the HES‑IG algorithm outperforms other available techniques in the literature for all problem sizes.

The no-wait flow shop scheduling problem (NWFSSP) is a variant of the classic permutation flow shop scheduling
problem (PFSSP), and it finds application in several industrial domains, including hot metal rolling, chemical
processing, food production, pharmaceuticals, and plastic manufacturing, among others1. Permutation flow shop
scheduling involves processing various jobs in the same sequence on a defined set of machines, resulting in wait
times for jobs before machine allocation as well as idle times for machines. However, some crucial and practical
jobs need to be processed with specific constraints. Examples of such constraints include the absence of a buffer
storage facility between intermediate machines, which may cause blocking, and the need for continuous process-
ing of a particular job, which can result in no-wait scheduling issues. In NWFSSP the consecutive operations
of jobs are performed without any interruption, hence a job cannot be stored in a buffer or held on a machine2.
Interest in NWFSSP began in the 1970s and has continued to grow due to its practical implementation in various
manufacturing environments. This is particularly relevant in manufacturing processes that are dependent on
specific temperatures or other conditions, and thus cannot be stored in a buffer. Other factors that support the
use of NWFSSP include the ability to achieve lean production and reduce work-in-process inventory3. Moreover,
the NWFSSP problem is classified under the NP-hard problem category, and it is considered one of the most
challenging scheduling problems, even when there are only two machines involved4.

Numerous authors highlighted the practical applications of NWFSSP in advanced industries, including the
Steel industry5,6, Patient and Surgery scheduling problems7,8. Flight scheduling9,10, Parallel computing11,12, Traffic

OPEN

1Department of Industrial Engineering, University of Engineering and Technology, Peshawar 25000,
Pakistan. 2Department of Industrial Engineering, Jalozai Campus, University of Engineering and Technology,
Peshawar 25000, Pakistan. 3College of Science and Engineering, Qatar Foundation, Hamad Bin Khalifa University
(HBKU), P.O. Box: 34110, Doha, Qatar. *email: khna16988@hbku.edu.qa

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-47729-x&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

control system13, Train Scheduling14, Bakery production15, Robotic cells16,17, and Glass manufacturing18. The
NWFSSP concept can be illustrated by considering a steel factory where heated metal must undergo continuous
processing to maintain its temperature. In this scenario, each job must also undergo continuous processing in a
no-wait flow shop. Once a job starts processing on the first machine, it must proceed through all machines in the
factory without any interruptions or pauses to satisfy the no-wait constraint. Any delay in the processing of a job
to fulfill the no-wait constraint will result in a delay in its completion. The most frequently studied optimization
criteria for NWFSSP are total completion time and makespan19. The makespan is the total time needed for all
job operations to be completed before they exit the system20. Minimizing the makespan is crucial for enhancing
resource efficiency and completing a batch of jobs as quickly as possible. The total completion time is the sum of
all completion times, and minimizing it is beneficial for increasing the processing rate. This approach is suitable
for reducing the work-in-process inventory and for quickly meeting demand requirements.

This study aims to employ the HES-IG algorithm to minimize the makespan of NWFSSP. ES is a population-
based technique and it can solve scheduling problems with large search spaces, however, it can get stuck in local
minima and can suffer from premature convergence. To resolve this issues the ES algorithm is combined with
the IG algorithm, which can generate high-quality solutions by combining with other meta-heuristics and also
avoids local minima. Minimization of makespan is the most common objective function studied by researchers
since it leads to maximum utilization of machines and the manufacturing costs are also reduced. For further
details on NWFSSP, the readers should follow the review papers of Hall and Sriskandarajah5, Allahverdi3, and
Allahverdi et al.2. The paper is structured as follows: “Literature review” section contains an extensive review
of relevant literature on NWFSSP, as well as the application of ES and IG algorithms in resolving other opti-
mization problems. In “Problem statement” section, the problem statement is presented. The methodology is
described in “Methodology” section, while “Results” section presents and analyzes the experimental results.
Lastly, “Conclusion, future work, and limitations” section presents the conclusion, proposes potential avenues
for future research and limitations.

Literature review
NWFSSP is a combinatorial optimization problem, its complexity increases significantly as the size of the problem
grows. As a result, resolving larger instances of the problem becomes increasingly difficult. Solving NWFSSP
using exact methods i.e. Branch and bound method, mixed integer programming, etc. is difficult due to the com-
plex nature of these problems. Hence Meta-heuristic algorithms i.e. Ant colony optimization (ACO), Simulated
annealing (SA), Particle swarm optimization (PSO), Tabu search (TS), and Genetic algorithm (GA), among oth-
ers are used to solve these complex problems as they have successfully solved other complex problems. Hall and
 Sriskandarajah5 carried out an extensive survey of various solution techniques used to solve NWFSSP, the survey
paper covered all solution techniques used until 1993. Allahverdi3 presented another survey paper on NWFSSP
and covered all solution techniques used for NWFSSP from 1993 to 2016. Hence, the readers should read the
above-mentioned papers to review various solutions and techniques used for solving NWFSSP until 2016. Engin
and Günaydin21 utilized an adaptive learning approach to minimize makespan of NWFSSP. A simple heuristic
algorithm based on a GA was suggested by Silva et al.22 to minimize the makespan of NWFSSP. The algorithm
uses permutation representation and an intensive local search utilizing insert and swap moves to find better
solutions. Based on an iterated search method, Mousin et al.23 proposed a new approach using a sub-sequence
of consecutive jobs to minimize the makespan of NWFSSP. During solution search, the combinatorics of the
initial problem is first reduced and then increased. For distributed NWFSSP, Komaki and Malakooti24 presented
a general variable neighborhood search method (GVNS). Based on crossover and mutation mechanism, Engin
and Güçlü25 suggested an effective hybrid ant colony algorithm to minimize makespan of NWFSSP.

The GVNS algorithm, similar to the variable neighborhood search technique, involves a local search algorithm
and a shaking procedure, although the shaking procedure’s intensity varies based on the solution’s advancement.
Additionally, by adopting time-saving techniques, the GVNS concentrates on potential solutions that show
promise. Shao et al.26 proposed a hybrid metaheuristic approach based on the probabilistic teaching–learn-
ing mechanism (PTLM) to solve NWFSSP, to minimize the makespan. The PTLM comprises four primary
components: previewing before the class, the teaching phase, the learning phase, and the review after the class.
The previewing stage employs NEH heuristic and opposition-based learning, while the teaching phase utilizes
the Gaussian distribution to guide the search toward promising regions. The learning phase involves the use of
crossover, and for reviewing after the class, the authors applied simulated annealing with an improved speed-up
random insert local search to enhance the algorithm’s local search capabilities. A hybrid meta-heuristic based
on improved ACO and SA is presented by Riahi and Kazemi27 for NWFSSP. The approach adopted in this study
employs ACO to create solutions and update the pheromone trail to obtain the optimal solution. Subsequently,
SA is used to refine the solution further and identify the most favorable neighborhood solution. Lin et al.28 sug-
gested a cloud theory-based IG algorithm to minimize makespan and the weighted sum of total tardiness of
NWFSSP. Using dominance relations, Allahverdi et al.2 introduced an AA algorithm, which is a hybridization
of SA and the insertion algorithm. The algorithm’s primary objective is to minimize both the makespan and the
total tardiness. Zhu et al.29 proposed a novel quantum-inspired cuckoo co-search algorithm to minimize the
makespan of the NWFSSP. The algorithm comprises three phases, which are as follows: (1) a Quantum repre-
sentation of the solution, (2) A quantum-inspired cuckoo search-differential evolution search, and (3) a Local
neighborhood search algorithm. Furthermore, the algorithm’s convergence property was analyzed theoretically.

Zhao et al.30 proposed a hybrid algorithm called HBV, which combines biogeography with variable neighbor-
hood search (VNS) to minimize the makespan of NWFSSP. The initial solution for the HBV algorithm is created
by employing the NEH heuristic and the nearest neighborhood mechanism. To accelerate the convergence of the
algorithm, a hybrid migration operator is combined with the path relink technique. To enhance the exploitation

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

ability of the algorithm, the mutation operator is integrated with an iterated greedy algorithm. A variable neigh-
borhood strategy based on insert neighborhood structure and block neighborhood structure is adopted to locate
the best solution in the vicinity of the current solution. Tasgetiren et al.31 aimed to minimize the total flow time
and total energy consumption by using a mixed integer programming model to identify Pareto optimal sets,
which were then tested on Taillard instances. To obtain a non-dominated set of solutions for large instances, the
researchers developed three heuristics: a Discrete Artificial Bee Colony, an Energy-efficient genetic algorithm,
and another variant of energy-efficient genetic algorithm. Of the three algorithms, the Discrete Artificial Bee
Colony algorithm outperformed the other two in terms of finding better solutions. Zhao et al.32 proposed a
factorial-based particle swarm optimization (PSO) method for solving the NWFSSP by incorporating a popula-
tion adaptation mechanism. The NEH heuristic and nearest neighborhood mechanism are used to generate the
initial solution. A variable neighborhood structure based on swap and insert neighborhood is employed to find
the best solution around the current solution. To prevent being stuck in local optima and maintain population
diversity, the population adaptation mechanism is used. Shao et al.33 addressed a multi-objective distributed
NWFFSP with sequence-dependent setup time, using makespan and total weight tardiness as performance
criteria. To achieve this, a Pareto-based estimation of the distribution algorithm was employed, along with the
construction of three probabilistic models. These models included the probability of jobs in an empty factory,
two jobs in the same factory, and adjacent jobs. The algorithm was extended to a distributed environment to
generate initial individuals. Additionally, a sampling method with a referenced template was introduced to
generate offspring individuals, and several multi-objective neighborhood search methods were developed to
optimize solution quality.

To minimize makespan in the food industry with release date constraints, Pourhejazy et al.34 proposed two
algorithms i.e. beam search method and a local search based-beam search method, and tested them on bench-
mark problems of Taillard, Vallada, and Reeves. The improved beam search algorithm found better solutions as it
avoided early convergence and local optimality by dismissing non-prominent solutions. Zhao et al.35 introduced
a Jigsaw puzzle heuristic (JPA) for minimizing the makespan of NWFSSP. The JPA uses a waiting time matrix
to evaluate the distance between two jobs. Subsequently, a matching matrix is generated from the waiting time
matrix. The final solution is then created based on the matching matrix. Wu and Che36 proposed an adaptive
multi-objective variable neighborhood search for simultaneous minimization of makespan and total energy
consumption in NWFSSP. Two heuristics are designed initially to minimize total energy consumption without
increasing makespan. The descent phase of the variable neighborhood search method integrates insertion and
swap moves. To enhance the algorithm’s performance, a novel problem-specific shake procedure is employed.
Accelerated techniques are used to increase the algorithm’s speed. According to Zhao et al.37 research, a two-stage
cooperative evolutionary algorithm (TS-CEA) was proposed as a solution to energy-efficient scheduling of the
NWFSSP, aiming to minimize both makespan and total energy consumption. To create an initial solution, two
constructive heuristics were designed by analyzing the problem’s properties. TS-CEA uses an iterative local search
strategy to explore potential extreme solutions in the first stage, along with a hybrid neighborhood structure that
enhances the quality of the solution. In the second stage, a mutation strategy based on critical path knowledge
was proposed to extend the extreme solutions to the Pareto front.

Yüksel et al.1 introduced a mixed-integer linear programming model (MILP) and a constraint programming
model for minimizing total energy consumption and total tardiness in bi-objective NWFSSP. As finding the
solution for total tardiness is an NP-hard problem, the authors proposed multi-objective algorithms such as a
genetic algorithm, discrete artificial bee colony algorithm, and GA integrated with local search to address the
bi-objective NWFSSP. Xuan et al.38 proposed a novel genetic SA algorithm for minimizing total flow time in
unrelated parallel machines. The NEH heuristic is used for generating the initial solution. A two-dimensional
matrix encoding is used for solution design, followed by an insertion translation approach for decoding. To
avoid premature convergence and enhance exploration ability, an adaptive adjustment strategy is applied in
the crossover and mutation operators. To improve the performance of the GA, SA with five search methods is
used. To minimize the completion time of the assembly process in distributed assembly NWFSSP, Zhao et al.39
proposed a backtracking search algorithm in which the initial solution was generated from three heuristics.
The suggested approach of block-shifting ensures that the best possible subsequence of a potential solution is
preserved during the mutation process. Moreover, the similarity among candidate solutions is employed as a
feedback indicator to regulate the application of block-shifting.

Miyata and Nagano40 addressed the issue of minimizing makespan in the distributed NWFSSP with sequence-
dependent setup times and maintenance operations. A mixed-integer linear programming (MILP) formulation
is employed to formally represent the problem, and heuristic methods are proposed to incorporate maintenance
operations into job scheduling. For Distributed NWFSSP, Shao et al.41 proposed a MILP to minimize the makes-
pan. This study introduces a machine selection technique that follows the “first earliest available machine” rule.
In addition, three factory assignment rules, which use the NEH (Nawaz-Enscore-Ham) heuristic, are proposed
to allocate jobs to factories in a greedy manner. Furthermore, a set of 14 dispatch rules, based on simple sorting
and decomposition, are developed to establish a priority sequence for jobs. By combining these dispatch rules
and factory assignment rules, several constructive heuristics are derived. Keskin and Engin42 tackled the issue
of scheduling in the NWFSSP with setup times, focusing on two performance metrics: total flow time (ΣCj)
and makespan. To address this problem, a Hybrid Genetic Local and Global Search Algorithm was introduced.
This hybrid genetic algorithm was formulated by combining an insert-search approach with a self-repair algo-
rithm featuring a self-repair function. Considering a fuzzy environment in NWFSSP, Başar and Engin43 used an
improved Scatter search approach to minimize the makespan with setup times. Initially, the effectiveness of the
proposed algorithm is evaluated on benchmark problems in the literature. Following this, the proposed improve-
ment scatter search algorithm for fuzzy due dates is applied to solve a benchmark NWFSSP that includes setup
times. Azerine et al.44 investigated the two-machine NWFSSP with two competing agents, aiming to minimize

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

the overall completion time of one agent while adhering to an upper bound on the makespan of the second agent.
Polynomial-time algorithms were demonstrated for certain restricted scenarios. Additionally, a mathematical
programming model and a branch and bound approach were suggested as solving methods for smaller problems.
For larger instances, a tabu search meta-heuristic algorithm was developed.

A mixed integer linear programming model is proposed by Zeng et al.45 to minimize the total energy con-
sumption and makespan of PFSSP with no-wait constraints and sequence dependent setup times. The initial solu-
tion is generated using NEH heuristic and then the solution is optimized using Improved Non-dominated Sorting
Genetic Algorithm. Additionally, this author introduced two heuristics for adjusting speed tailored to the specific
problem, aiming to improve the quality of the non-dominated solutions acquired. Karacan et al.46 thoroughly
examined the NWFSSP with the primary aim of optimizing both earliness (E) and tardiness (TT) objectives. To
tackle this intricate challenge, he introduced a novel perspective on enhancing the parallel simulated annealing
algorithm. This inventive approach is specifically designed to alleviate the runtime limitations commonly linked
with traditional simulated annealing while simultaneously reinforcing its resilience. To address multi-objective
challenge of energy-efficient distributed assembly NWFSSP, Zhao et al.47 introduces a novel approach called rein-
forcement learning-driven brain storm optimization to minimize the makespan and total energy consumption
(TEC), and achieving balanced resource allocation. To optimize the objective of maximum assembly completion
time, the study incorporates four critical operations: critical factory insertion, critical factory swapping, critical
factory insertion into other factories, and critical factory swapping with other factories. Utilizing the simple
structure of Iterated local search (ILS) algorithm, Avci48 minimized the makespan of distributed NWFSSP by
combining two variable neighborhood descend based procedures with the ILS algorithm. Furthermore, the
perturbation intensity is dynamically tailored to match the characteristics of the search space’s structure.

ES adopts a hill-climbing procedure and is developed to solve numerical optimization problems. Recently
ES has been applied to discrete optimization problems. Evolutionary algorithms can be divided into subclasses,
namely ES and GA. While both techniques use the principle of selecting the fittest individual and maintaining
populations of feasible solutions, there are significant differences between them. One key distinction is in the
way individuals are represented: GA uses binary vectors, whereas ES uses floating-point vectors. Another dif-
ference is the selection procedure, with GA using a random selection process while ES relies on a deterministic
approach. Additionally, the relative order of procedures is different, with selection preceding recombination in
ES, and recombination preceding selection in GA. Overall, while both techniques share some similarities, they
also have notable differences. ES has proven to be effective in addressing a wide range of optimization problems
i.e. Distributed blocking FSSP49, Image segmentation50, Permutation FSSP51,52, Blocking FSSP53, Multiple trave-
ling salesman problem54, Robust Permutation FSSP55, Team orienting problem56, Open vehicle routing57, Group
scheduling problem58, Assembly line balancing59. Keeping in view the successful results obtained by using ES for
various optimization problems, in this research work ES is designed and applied to NWFSSP to minimize the
makespan. The ES algorithm can be computationally expensive, suffer from premature convergence, and have
suboptimal solution quality for multi-objective solutions. These issues can be addressed by combining the ES
algorithm with another local search method to enhance its performance.

The optimal meta-heuristic for PFSSP is the Iterated Greedy (IG) algorithm, as proposed by Ruiz and Stüt-
zle60 due to its ability to yield superior solutions using a straightforward search method. The IG algorithm is
composed of two phases: a destruction phase, during which elements are eliminated from the solution, and a
construction phase, during which a greedy constructive heuristic is used to reintroduce the eliminated elements.
Further improvement to the solution is made in the reconstruction phase through local search. An enhanced
version of the IG algorithm, with a Tabu reconstruction strategy, was introduced by Ding et al.61 for NWFSSP.
The researchers applied the improved algorithm to Taillard instances and identified 43 new upper bounds. The
efficacy of the algorithm is primarily attributed to the reconstruction strategy, which enhances the exploration
ability and steers the search towards more advantageous regions by avoiding local minima. To further refine
the solution, the neighborhood search method incorporates swap, inset, and double insert moves. The IG algo-
rithm is a highly adaptable algorithm that can be customized to suit various scheduling problems and integrate
a range of local search methods. By repeatedly combining solutions from different heuristics or perturbations,
it can rapidly generate top-quality solutions. Moreover, the algorithm can quickly converge to a near-optimal
solution, particularly when searching through a vast solution space. IG algorithm has a simple implementation
architecture, often performs well in resolving FSSPs, and offers a lot of potential for use in resolving industrial
 issues62. IG algorithm has been successfully applied to solve different scheduling problems i.e. Permutation
flow shop scheduling problems, Distributed flow shop scheduling problems63–65, No-wait flow shop schedul-
ing problems66, Blocking flow shop scheduling problems67,68, No idle flow shop scheduling problems69, Hybrid
Flow shop scheduling problems70. Hybrid IG algorithms are also used to solve different Flow Shop Scheduling
problems (FSSP) in which the IG algorithm is combined with other heuristics i.e. GA71, VNS72, Artificial Bee
 Colony73, Differential Evolution74, Teaching learning based optimization (TLBO)75, and Water wave optimiza-
tion algorithm76. For further details of the IG algorithm, the reviewers should read the paper of Zhao et al.62.

The IG algorithm is a computationally intensive method that involves executing multiple local searches and
combining the solutions. It may encounter difficulties in overcoming local minima, particularly when the initial
solution is suboptimal or the search space is not adequately explored. The effectiveness of the algorithm is highly
dependent on the quality of the local search algorithms used in each iteration. If the local search algorithm is
not proficient, the overall performance of the IG algorithm may be subpar. By combining different algorithms,
hybridization can improve the overall performance of the resulting hybrid algorithm in terms of solution qual-
ity, convergence speed, robustness, and scalability. Hybridization can also help to tackle complex real-world
problems that cannot be solved by a single algorithm alone. The combination of complementary techniques from
different algorithms can often lead to superior results compared to any single algorithm. To utilize the strength
and overcome the weaknesses of the IG algorithm, it is combined with the ES algorithm, the resultant HES-IG

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

algorithm helps in avoiding local minima. The IG algorithm starts with the improved solution provided by the
ES algorithm, hence the IG algorithm starts with an already improved solution and it takes less time to provide
a very feasible solution. In Table 1, various solution techniques used for NWFSSP are summarized.

Problem statement
The key difference between PFSSP and NWFSSP is that in PFSSP, a job can be retained on a machine or within
two machines while in NWFSSP job cannot be retained on any machine or within machines. The study aims to
minimize the makespan for NWFSSP and find an optimal sequence so that all jobs are processed. Due to tech-
nological constraints, there are cases where jobs cannot be retained on a machine or within machines. Hence,
when a job is started, it remains uninterrupted till the last operation on the last machine is completed.

In NWFSSP, n-jobs are processed in the same sequence on m-machines in the same order. Each job j (j = 1,
2,…,n) has a predefined processing time pi,j on machine I (i = 1, 2, …, m). The goal of NWFSSP is to determine
an optimal order for completing all jobs on all machines termed as makespan and denoted as Cmax or Cm,n, such
that there is no waiting time for any job, and all jobs follow the same sequence. This problem makes several
assumptions, including that each machine can handle only one job at a time, each job can only be processed by
one machine at a time, all jobs follow the same processing sequence, and every machine processes jobs in the
same order. Additionally, no waiting time is permitted on or between machines, and a job cannot be interrupted
once it has begun until its final operation is complete. Processing times are known in advance, and any job can
start at time zero, with preemption not being permitted.

The no-wait feature of this problem guarantees that the time it takes to complete one job and start the next job
is solely influenced by the processing times of these two jobs, without regard to the other jobs in the sequence.
Consequently, it is possible to establish a completion time separation for every pair of jobs. To determine the
completion time distance from job i to job j, it can be calculated as follows61:

The completion time distances can be calculated in advance. A schedule for the NWFSSP can be represented
as a job permutation π = [π(1), π(2),…, π(n)], where π(k) ∈ {1,2,…, n} and π(k) ≠ π(kʹ), ∀ k ≠ kʹ. The makespan
of a feasible schedule can be calculated using Eq. (2).

(1)Di,j =
max

k = 1, . . . ,m

{

m
∑

h=k

(

ph,j − ph,i
)

+ pk,i

}

.

Table 1. Solution techniques used to minimize the makespan of NWFSSP.

Author Problem Technique Makespan Instances Coding language

Ding et al.61 FM |No wait|Cmax Tabu mechanism improved IG algorithm ✓ Reeves, Taillard C++

Silva et al.22 FM |No wait|Cmax Simple heuristic algorithm ✓ Reeves C

Mousin et al.23 FM |No wait|Cmax IG algorithm ✓ Taillard C++

Komaki and Malakooti24 FM |No wait, dist|Cmax General VNS ✓ Naderi (Taillard) Matlab

Shao et al.26 FM |No wait|Cmax Probabilistic TLBO ✓ Reeves, Taillard, Vallada Anova

Riahi and Kazemi27 FM |No wait| TT, Cmax ACO and SA ✓ Reeves, Taillard Delphi

Lin et al.28 FM |No wait| ∑wT, Cmax Cloud theory-based IG algorithm ✓ Carlier, Reeves, Taillard C++

Allahverdi et al.2 FM |No wait| TT, Cmax SA, Insertion algorithm ✓ Self-generated Anova

Zhu et al.29 FM |No wait |Cmax Novel quantum-inspired cuckoo co-search algorithm ✓ Reeves VC++

Zhao et al.30 FM |No wait |Cmax Hybrid biogeography, VNS ✓ Taillard, Vallada Matlab

Tasgetiren et al.31 FM |No wait |, TF, TEC Discrete ABC, variants of Energy efficient GA Taillard C++

Zhao et al.32 FM |No wait |Cmax Factorial-based PSO ✓ Reeves, Taillard Anova

Zhao et al.35 FM |No wait |Cmax Jigsaw puzzle heuristic ✓ Taillard, Vallada Matlab

Pourhejazy et al.34 FM |No wait, rj |Cmax Beam search method ✓ Taillard, Vallada, Reeves C++

Yüksel et al.1 FM |No wait| TT, TEC MILP model Taillard C++

Wu and Che36 FM |No wait| Cmax, TEC Multi-objective neighborhood search ✓ Self-generated C++

Zhao et al.37 FM |No wait |Cmax, TEC Two stage cooperative evolutionary algorithm ✓ Taillard Matlab

Keskin and Engin42 FM |No wait| Cmax, ΣCj Hybrid Genetic Local and Global Search Algorithm ✓ Engin and Günaydın –

Xuan et al.38 FM |No wait |, TF Novel SA algorithm Self-generated Matlab

Başar and Engin43 FM |No wait| Cmax Scatter search ✓ Self-generated C++

Zeng et al.45 FM |No wait |Cmax, TEC Improved Non-dominated Sorting Genetic Algorithm ✓ Self-generated PlatEMO

Karacan et al.46 FM |No wait | E, TT SA algorithm Carlier C#

Zhao et al.47 FM |No wait | Cmax, TEC Reinforcement learning-driven brain storm optimisation idea ✓ Self-generated –

Avci48 FM |Dist, No wait | E, TT Iterated local search algorithm ✓ C++

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

D[j−1],[j] represents the completion time distance between (j − 1)th and jth jobs in schedule π, i.e. Dπ [j−1], π [j].
A dummy job π(0) having zero processing time is introduced in the permutation π to simplify the makespan
expression. Hence the schedule can be updated as π = [π(0), π(2),…,π(n)]. The makespan of a permutation π
can be calculated using Eq. (3).

where

If ∏ denotes the set of all possible permutation schedules. Then the objective is to find a permutation schedule
π* ∈ ∏ such that:

Methodology
Evolution strategies
ES is a subclass of the evolutionary algorithm, which mimics the principles of natural evolution for solving
parameter optimization problems. ES was developed in the 1960s by Rechenberg77 and Schwefel78. ES was previ-
ously believed to be evolutionary algorithms that exclusively utilized mutation as a recombination operator and
were represented by floating-point numbers. However, their application has expanded to a range of optimiza-
tion problems that involve constantly changing parameters, including discrete optimization problems. The first
ES algorithms relied on a single population and a single genetic operator, namely mutation, in the evolution
process. Nevertheless, the idea of representing the individual as a pair of float-valued vectors was fascinating.
In the “two-membered ES”, an offspring competes with its parent during the competition stage, resulting in two
individuals in the population.

In multi-membered ES, the size of the population is greater than one. In addition, the mating probability for
the individuals is the same. A recombination operator is also used to generate offspring from two parents. Both
the multi-membered and the two-membered have one thing in common i.e. they produce a single offspring. A
convenient notation of the ES is as under:

• Two-membered evolution strategy (1 + 1)-ES.
• Multi-membered evolution strategy (µ + 1)-ES.

where µ represents the population size.
The multi-membered ES evolved further to mature as (µ + λ)-ES and (µ, λ)-ES. The (µ + λ)-ES is an exten-

sion of the multi-membered-ES (µ + 1)-ES, where offspring (λ) are produced from individuals (µ). A selection
process then reduces the population of (µ + λ) individuals to µ individuals. While λ offspring are produced from
µ individuals in (µ, λ)-ES, and the selection process produces λ offspring from a new population of λ individu-
als. The ES algorithm involves generating a population of offspring that undergoes mutation and evaluation of
their objective function during each iteration. The better-performing offspring are then recombined to create
a new population for the subsequent iteration. This procedure is continued until the termination criteria are
satisfied. The ES algorithm distinguishes itself from other evolutionary algorithms in its utilization of mutation
and recombination operators, as well as its unique representation of the population. Figure 1 shows the pseudo-
code for the ES algorithm.

Initial solution
To implement parent selection in the ES algorithm, a uniform distribution is utilized to randomly choose parents
from the population. This approach guarantees that each individual in the population has an equal likelihood
of being selected as a parent. Heuristics can also be used to create the initial solution, however, it makes the
algorithm complex and increases the computational time.

Mutation operator
The mutation operator in the ES algorithm serves to introduce genetic diversity into the parent population, mak-
ing it a vital source of genetic variation. The mutation is mandatory to ensure that the new offspring is different
from its parent. The diversity is controlled using the mutation rate. Different types of mutation operators are
available i.e. Insertion mutation, scrambled mutation, swap mutation, and inversion mutation, among others.
Since insertion mutation performs best for Flow shop scheduling problems (FSSP). Hence we are using inser-
tion mutation in this research work. Unlike other mutation operators, insertion mutation does not disrupt the

(2)Cmax(π) = Cm,n(π) =

n
∑

j=2

D[j−1],[j] +

m
∑

k=1

pπ(1),k .

(3)Cmax(π) = Cm,n(π ′) =

n
∑

i=1

D[j−1],[j],

(4)D[0],[1] =

m
∑

k=1

pπ(1),k .

(5)Cmax

(

π∗
)

=
min

π ∈
∏C

max

(π).

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

existing structure of the algorithm, which can help to maintain the integrity of the genetic information79. The
procedure of the insertion mutation is shown in Fig. 2.

Reproduction operator
In reproduction, λ offspring are generated from µ individuals. Different types of reproduction operators are
available i.e. 1, 4, 5, 9, and 1680. It should be noted that varying the value of λ in the algorithm affects the com-
putational time and the number of offspring generated from a single parent. Specifically, setting λ to 1 results in
the minimal computational time since only one offspring is created. However, increasing λ to 4, 5, 9, or 16 will
generate four, five, nine, or sixteen offspring from a single parent, respectively. Notably, when λ is set to 16, the
algorithm explores the maximum solution space, but this comes at the cost of increased computational time.
To save computational time and find a better solution in the search space, λ = 5 is used in this research paper.
Hence from one parent five offspring are randomly generated. The procedure of the reproduction operator is
shown in Fig. 3.

Survivor selection operator
During survivor selection, the best individuals are deterministically selected from the descendent, and their
fitness value is calculated. There are two types of survivor selection i.e. (µ + λ) and (µ, λ). The (µ + λ)-selection
method involves selecting the top offspring (µ) from the combined pool of parents and offspring. This approach
is considered elitist since a parent can persist for several generations if none of its offspring can surpass its fit-
ness. However, the (µ, λ) strategy performs better in probabilistic environments, while the (µ + λ) approach is
more effective for combinatorial optimization problems. In this research work, we have used (µ + λ), as (µ, λ)
descendent can produce the worst results.

Termination criteria
In the ES algorithm, various termination criteria can be employed such as computational time, number of gen-
erations, or lack of improvement for a certain number of generations. In this research, we have chosen to use
computational time as the termination criteria, with a time limit of n2/2 × 10 ms for each instance.

Pseudo Code for E.S. Algorithm
1: Initialize parameters for the ES algorithm
 Population size=5, Computational time= t, Mutation rate= m=40%
 For t=1: n^2/2 x 5 ms ;
2: Begin by setting gen=1, where gen represents the number of iterations.
3: Calculate the makespan for each parent solution.
4: Generate a new population randomly.
5: Reproduce using a (1+4) strategy, where four offspring are generated from one parent.
6: Utilize discrete recombination.
7: Employ a multi-mutation operator.
8: Compute the makespan for all newly generated and mutated offspring.
9: Select the fittest gene deterministically.
10: Designate the fittest gene as the parent for the next iteration.
11: If t< n^2/2 x 5 ms is met, then return to step 2 and increase gen by 1.
 Else, save the makespan and schedule for the best solution.

Figure 1. Pseudo code for the ES algorithm.

Figure 2. Procedure for insertion mutation.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

Hybrid evolution strategies— iterated greedy algorithm (HES‑IG)
The purpose of hybridizing algorithms is to combine two or more different algorithms or techniques to leverage
their respective strengths and mitigate their weaknesses61. This approach aims to create a new algorithm that
performs better than its individual components in solving a specific problem or class of problems. Hybridization
maintains balance between exploration and exploitation; it increases the robustness and improves the overall per-
formance of the algorithm. Hybrid algorithms provide better results interms of speed, convergence and accuracy.
However, hybridization can increase the complexity of the algorithm as managing and tuning hybrid algorithm
can increase the computational resources. Other key factors which needs special attention in hybridization are
(1) algorithms integration, (2) Interpretation, (3) Overfitting and (4) Increased development time. The most
crucial non-trivial effort, however, is choosing the appropriate combination of algorithms and determining how
they should interact. Doing so can assist to mitigate the disadvantages of hybridization.

The ES algorithm is known for its simplicity, flexibility, scalability, robustness, and effectiveness in global
 search81,82. However, it also has certain limitations such as getting trapped in local minima, slow convergence,
and sensitivity to genetic operators83. To overcome these limitations, this paper proposes a hybrid algorithm
that combines the strengths of both ES and IG algorithms. The IG algorithm is known for its simplicity and
ability to find near-optimal solutions quickly and is well-suited for problems that have a preference for greedy
 solutions84. However, IG algorithm is sensitive to the initial solution. The IG algorithm exhibits clear constraints
when tackling large-scale problems. Firstly, the algorithm employs a “single solution” search approach alongside
a greedy insertion reconstruction technique, potentially leading to limited solution variety when compared to
population-based search methods. Secondly, after completing the reconstruction phase, it typically employs
a neighborhood search method, which tends to focus on exploring local minima regions. These observations
suggest that enhancing the IG algorithm’s exploitation capabilities could prove advantageous61. The proposed
hybrid HES-IG algorithm addresses these issues by first utilizing the ES algorithm to solve the problem and then
incorporating the IG algorithm to further minimize the makespan more effectively and it successfully solves
problems of all sizes.

Key advantages of Hybridizing ES algorithm with IG algorithm are as follows:

• Diverse exploration and exploitation ES is known for its ability to explore a wide solution space through the
use of mutation and reproduction operators. IG, on the other hand, excels at exploiting local optima. By
combining these two approaches, the hybrid algorithm can effectively balance exploration and exploitation,
which is essential for finding high-quality solutions in complex optimization problems.

• Global and local search integration ES provides a global search capability, while IG focuses on local search
and refinement. Combining these approaches allows the hybrid algorithm to first explore the global search
space with ES and then fine-tune promising solutions using IG, resulting in more efficient convergence to
optimal or near-optimal solutions.

• Improved convergence speed The hybridization can lead to faster convergence compared to using either ES or
IG alone. ES can quickly generate diverse candidate solutions, and IG can refine them efficiently.

• Parallelization ES and IG are often amenable to parallelization. By integrating these algorithms, the hybrid
approach can effectively utilize parallel and distributed computing environments, further speeding up the
optimization process.

• Reduced risk of premature convergence ES helps mitigate the risk of premature convergence by maintaining a
diverse set of candidate solutions. This diversity can prevent the algorithm from getting stuck in suboptimal
regions of the search space.

• Effective handling of large‑scale problems For large-scale optimization problems, the hybrid approach can be
particularly advantageous.

Figure 3. Procedure for reproduction operator.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

The pseudo-code for the HES-IG algorithm is presented in Fig. 4.

Iterated greedy algorithm
In 2007, Ruiz and Stützle60 devised an IG algorithm to solve PFSSP, which is closely related to the Iterated Local
search algorithm (ILS) of Stützle85. Over the past 15 years, IG algorithms are used to solve different FSSPs. IG
algorithm is a simple heuristic and is a single-solution-based method that starts with an initial solution and con-
centrates on finding additional alternatives to enhance it. IG iterates analogously across construction heuristics
as opposed to a local search, as ILS does. IG algorithm iterates over greedy constructive heuristics using the two
primary phases of destruction and construction to create a sequence of solutions. The other secondary phases
of the IG algorithm are local search and acceptance-rejection criteria. The four phases of the IG algorithm are
repeated till the termination criteria are met.

The key advantages of the IG algorithm are: easy to design and implement, has a flexible framework that can
be combined with other algorithms, is very suitable for solving FSSP, has few parameters it can save calibration
 time62. The IG algorithm involves repeatedly applies a greedy strategy to select the locally optimal solution at each
step. IG algorithm can be considered a type of iterative local search method, which repeatedly examines solutions
within specific areas and utilizes perturbation techniques to avoid getting stuck in local optima. However, there
are several limitations to this approach such as being Sensitive to the initial solution, being computationally
expensive for large-size problems, using a single solution-based search strategy, and getting trapped in local
 optima62. However, these limitations can be addressed by combining them with other meta-heuristics such as
GA, ES, SA, etc.70. The pseudo-code for the IG algorithm is presented in Fig. 5, while the flow chart for the IG
algorithm is shown in Fig. 6 respectively.

Destruction
Destruction is applied to a permutation P of n-jobs, and it involves randomly selecting d-jobs without repeti-
tion, and removing them from the permutation in the order they were chosen. Destruction of sequence results
in two subsequences: a partial sequence called PD, which consists of the remaining n-jobs, after the removal of
d-jobs. The value of d is calculated using d = (n/10), for a 20-jobs case the value of d is 2, in the case of a decimal
value, the value of d is rounded to the next integer value. The second partial sequence is PR, having a sequence

HES-IG Algorithm: Pseudocode for the HES-IG Algorithm
1: Generate the initial random schedule, referred to as the parent population
2: for t=1: n^2/2 x 5 ms
3: Calculate Cmax for the parent population
4: Use the IES algorithm and optimize the permutation sequence
5: Repeat till t= n^2/2 x 5 ms (go to step 2)
6: end for
7: Record the best sequence from the IES algorithm and term it as the new parent population
8: for t= n^2/2 x 5 ms : n^2/2 x 10 ms
9: Calculate Cmax for the new parent population
10: Use the IG algorithm and find the best sequence
11: repeat till t= n^2/2 x 10 ms (go to step 9)
12 end for
13: Output Cmax and the best sequence

Figure 4. Pseudo code for the HES-IG algorithm.

Pseudo Code for IG Algorithm
1: Initialize parameters for the IGA algorithm
π= solution from ES is the initial solution
πb= best solution
t=computational time= n^2/2 x 5 ms
 For t=1: n^2/2 x 5 ms ;
2: While n=1:i, n is the number of iteration
3: Destruction:
4: Construction
5: Local search:
6: Acceptance criteria
7: Selection
 End
 Record best solution

Figure 5. Pseudo code for the IG algorithm.

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

of d-jobs. These d-jobs in PR must be reinserted into PD to create a complete candidate solution, in the order,
they were removed.

Construction
In the construction phase also termed greedy reinsertion, the algorithm applies to step 3 of the NEH heuristic
repeatedly until a complete sequence of all n-jobs is obtained. The process begins by using a subsequence, PD,
and then performs d steps in which jobs from PR are inserted into PD. This is done by starting with PD, and then
inserting the first job of PR (PR(1)) into all possible n + 1 positions within PD. The position which results in the
lowest Cmax value is then selected as the best fit for PR(1). This process is repeated until PR is empty.

Local search
The local search phase is a key component in most IGAs and is vital to achieving satisfactory solutions. Different
type of local search methods can be used as mentioned below:

 i. Single Insertion (remove job at ith and place it at jth position).
 ii. Swap (swap two neighboring jobs i and i + 1).
 iii. Interchange (Interchange jobs at ith position with jth position).
 iv. Multiple Insertion (remove multiple jobs and reinsert them).

Swap neighborhood methods is very fast however the solution quality is often inferior. Stützle85 showed that
insertion neighborhood method is better as compared to Interchange method. Multiple insertion method is
relatively complex as compared to single insertion method. In the parameter optimization of the IGA algorithm,
Insertion method has shown better results as compared to other local search methods. In this study, we employ
the Single Insertion (L1) method as our local search operator. This method improves an existing solution by
removing a job and inserting it into a new position, which can be chosen as the optimal position or a random
one. L1 is a widely used operator in IG algorithms and is often incorporated as a component in mixed local
search operators.

Acceptance rejection criteria
During each iteration of the IGA, a new solution (πʹ) is generated through the destruction, construction, and
optional local search phases. This new solution is compared to the previously accepted solution (π), known as
the seed solution for the current iteration. Since the destruction and construction phases do not guarantee that
the new solution (πʹ) will be better than the previous solution (π), an acceptance criterion is used to determine
which solution will be accepted and used as the seed solution for the next iteration. The acceptance-rejection
criteria in this paper are based on Stützle85 having a constant temperature of T adopted from the SA algorithm.
The constant temperature is based on the instance number and it can be calculated using Eq. (6).

By allowing for the acceptance of some worse solutions, this acceptance criterion enables the algorithm to
escape local minima and potentially find better solutions.

(6)Temperature = T ×

∑m
i=1

∑n
j=1 pij

n×m× 10
.

Figure 6. Flow chart of HES-IG Algorithm.

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

Parameter optimization for ES algorithm
The proposed ES algorithm has several parameters: (a) population size, (b) Number of iterations, (c) reproduction
operator, (d) selection operator, (e) mutation type, and (f) mutation rate. Population size is fixed as it is based
on the reproduction operator. A large population size will provide good results but each iteration will take more
computational time. Mutation operators have different types, but in this paper insertion mutation is used. The
mutation rate is fixed in this paper and it is 40%. The selection operator is (µ + λ) and is fixed, so a parent can
survive for many iterations unless superseded by a better offspring. So in total two parameters have to be tuned
for the ES algorithm. The Multi factor analysis of variance Design of Experiments86 is applied for the calibration
of algorithm parameters. The stopping criteria for the algorithm is 50nm milliseconds. The algorithm is tested
on reeves twenty-one (21) instances i.e. Rec01, Rec03, Rec05, Rec07, Rec09, Rec11, Rec13, Rec15, Rec17, Rec19,
Rec21, Rec23, Rec25, Rec27, Rec29, Rec31, Rec33, Rec35, Rec37, Rec39, and Rec41. For each instance five itera-
tions are performed for each parameter configuration.

In the calibration phase, the computational experiment is performed on the following factors: (I) reproduc-
tion operator λ at five levels: 4, 5, 8, and 9. (II) Selection operator is at two levels: (µ + λ), (µ, λ), resulting in 4 × 2
× 21 = 168 RPD values. Table 2 shows the F-value, P-value, sum of square and mean square values for calibration
phase of the ES algorithm.

Using the ARPD as the response variable, we carry out a multi-factor ANOVA, and its results are shown in
Table 3. The ARPD is calculated using Eq. (7).

where C* is the makespan found by the ES algorithm on any instance and C is the best makespan value for that
instance available in the literature. The F-value for the reproduction operator is 9.72, which shows that there
is more variation between the sample means. Also, the P-value for the reproduction operator is less than 0.05,
which shows that the means are significantly different. Similarly, the F-value for the selection operator is 206.69,
which also proves that there is more variation between the two groups i.e. (µ + λ) and (µ, λ). The P-value for
both these groups is also less than 0.05, which shows that the means are significantly different from each other.
The means with 95% least significant difference confidence intervals for reproduction and mutation rate are
shown in Figs. 7 and 8 respectively. If the ARPD intervals for the two means do not overlap then the difference
between the two means is statistically significant. From Fig. 7, we can see that the reproduction operator value 4
is statistically better than 5, and similarly, 4 is better than 8 and 9. The reproduction value of 4 is the best among
all the reproduction operators. In the case of the selection operator, From Fig. 8 we can see that the value (µ + λ)
is better than (µ, λ) statistically. Hence for the ES algorithm, we will use the reproduction operator, µ = 4 and the
selection operator, (µ + λ).

Parameter optimization for IG algorithm
The IG algorithm has several parameters: (a) destruction, (b) construction, (c) local search, (d) acceptance-
rejection criterion based on temperature and (e) number of iterations. The destruction operator has four levels i.e.
d = n/10, n/15, n/2 and n/5. Construction operator depends on the destruction, as the d-jobs, which are removed
during destruction, are re-inserted in the construction phase. Local search has four different methods i.e. Single
insertion, multiple insertion, swap and interchange operators. Temperature for the acceptance–rejection criteria
is constant and is calculated using Eq. (6). The Multi factor analysis of variance Design of Experiments86 is applied
for the calibration of algorithm parameters. The stopping criteria for the algorithm is 50nm milliseconds. The
algorithm is tested on Reeves twenty-one (21) instances i.e. Rec01, Rec03, Rec05, Rec07, Rec09, Rec11, Rec13,
Rec15, Rec17, Rec19, Rec21, Rec23, Rec25, Rec27, Rec29, Rec31, Rec33, Rec35, Rec37, Rec39, and Rec41. For

(7)ARPD =
C∗

− C

C
,

Table 2. ANOVA results for the calibration phase of ES algorithm.

Source Sum of squares Df Mean square F-ratio P-value

Main effects

 A: reproduction 0.005677 3 0.001892 9.72 0.0

 B: selection 0.040258 1 0.040258 206.69 0.0

 C: instance 0.000195 20 0.031748

Table 3. ANOVA results for the calibration phase in IG algorithm.

Source Sum of squares Df Mean square F-ratio P-value

Main effects

 A: Destruction 1067.14 3 355.71 42.98 0.0

 B: Local search 233.70 3 77.90 9.41 0.0

 C: Instance 2060.89 20 8.227

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

each instance, five iterations are performed for each parameter configuration. In the calibration phase, the com-
putational experiment is performed on the following factors: (I) Destruction and (II) Local search, resulting
in 4 × 4 × 21 = 336 RPD values. Table 3 shows the F-value, P-value, sum of square and mean square values for
calibration phase of the IG algorithm.

The ARPD is calculated using Eq. (7). Where C* is the makespan found by the IG algorithm on any instance
and C is the best makespan value for that instance available in the literature. The F-value for the destruction and
local search operator are 42.98 and 9.41 respectively. The large value of destruction operator i.e. 42.98 shows that
there is more variation among sample means. The P-value for the destruction operator is less than 0.05, which
shows that the means are significantly different. The F-value for the local search operator are 9.41 which shows

Figure 7. Interval plot of ARPD for various settings of reproduction operator in ES algorithm.

Figure 8. Interval plot of ARPD for various settings of selection operator in ES algorithm.

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

that there is ample variation between different local search operators i.e. single insertion, multiple insertion,
swap and interchange operators. The P-value for all the four groups is also then 0.05, which shows that there is
significant difference between the means. The means with 95% least significant difference confidence intervals
for reproduction and mutation rate are shown in Figs. 9 and 10 respectively. Since the ARPD intervals for two
means do not overlap, hence there is significance difference between the two means. From Fig. 9, we can see
that the for the destruction operator value n/10 is statistically better than n/2, while n/2 is better than n/15, and
similarly, n/15 is better than n/5. For the destruction operator, value of n/10 is the best among all the destruction
operators. In the case of the local search operator, From Fig. 10 we can see that the value single insertion is better

Figure 9. Interval plot of ARPD for various settings of destruction operator in IG algorithm.

Figure 10. Interval plot of ARPD for various settings of local search operator in IG algorithm.

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

than multiple insertion, swap and interchange operators, statistically. Hence, for the IG algorithm, we will use
the destruction operator i.e. d = n/10, and the local search operator i.e. single insertion.

Results
Experimental setup
To validate the performance of the proposed HES-IG algorithm it is tested on Reeves (Rec)87 and Taillard (TA)88
benchmark problems. Data for the Reeves and Taillard benchmark problems is taken from the OR-library (http://
people. brunel. ac. uk/ ~mastj jb/ jeb/ orlib/ files/ flows hop1. txt). Rec problems consist of 21 instances, where the
number of jobs varies from 20, 30, 50, and 75 while the number of machines varies from 5, 10, 15, and 20. The
Rec problems consist of 21 instances. The Taillard benchmark set contains 120 problems and each set is divided
into 12 groups. Each group containing 10 instances, the number of machines is 5, 10, 20, and number of jobs is
20, 50, 100, 200 and 500. To validate the results of the HES-IG algorithm for NWFSSP they are compared with
the algorithms of Pourhejazy et al.34. The author solved the NWFSSP using two heuristics i.e. Beam search (BS)
and Beam search with local search (BSLS) algorithms. Both these algorithms were tested on Rec benchmark
problems. The author showed that the BSLS algorithm avoided local optimality and early convergence and found
a better solution at the expense of computational time.

For a fair comparison of the HES-IG algorithm with the BS and BSLS algorithms. All these algorithms were
coded in MATLAB and tested on a Core™ i5 with 2.6 GHz and 4 GB memory. The computational time for each
instance is set at n2/2 × 10 ms. Each instance was run for 30 iterations and the makespan value in Table 4 is the
average value against 30 iterations.

Results comparison for Reeves benchmark problems
To compare the performance of different algorithms the relevant percentage difference (RPD) in makespan value
for any instance can be calculated using Eq. (8).

Cbest is the minimum makespan value, Csol is the makespan found in ES, BS, and BSLS algorithms.
A zero value of RPD shows that the algorithm has found a better upper bound while a positive value shows

that the algorithm has found an inferior solution. RPD values for BS, BSLS, and HES-IG algorithms are calcu-
lated using Eq. (8) and are shown in Table 4. For 20 jobs and 05 machines cases i.e. rec01, rec03, and rec05, BSLS
performs better than BS for all the 03 instances. However, HES-IG performs better than BSLS for rec01, rec03,
and rec05 where all the values of RPD for ES are zero. For 20 jobs and 10 machines cases i.e. rec07, rec09, and
rec11, BSLS performs better than BS for all the 03 instances, while HES-IG performs better than both BS and
 BSLS algorithms as its RPD values are zero for all the 03 instances. For 20 jobs and 15 machines cases i.e. rec13,

(8)RPD =
Csol − Cbest

Cbest

.

Table 4. Makespan and RPD values of REC instances for BS, BSLS, and HES-IG algorithms.

Problem instance

Size BS BSLS HES-IG

n m Cmax RPD Cmax RPD Cmax RPD

rec01 20 5 1564 2.49 1555 1.90 1526 0.00

rec03 20 5 1438 5.66 1414 3.89 1361 0.00

rec05 20 5 1438 1.77 1413 0.00 1413 0.00

rec07 20 10 2062 0.98 2060 0.88 2042 0.00

rec09 20 10 2132 4.41 2108 3.23 2042 0.00

rec11 20 10 1952 3.77 1917 1.91 1881 0.00

rec13 20 15 2639 3.69 2617 2.83 2545 0.00

rec15 20 15 2573 1.74 2557 1.11 2529 0.00

rec17 20 15 2790 7.85 2644 2.20 2587 0.00

rec19 30 10 3133 9.93 2954 3.65 2850 0.00

rec21 30 10 2969 5.25 2917 3.40 2821 0.00

rec23 30 10 2921 8.19 2795 3.52 2700 0.00

rec25 30 15 3897 8.46 3724 3.65 3593 0.00

rec27 30 15 3860 12.50 3510 2.30 3431 0.00

rec29 30 15 3405 3.46 3378 2.64 3291 0.00

rec31 50 10 4642 7.78 4496 4.39 4340 0.77

rec33 50 10 4756 7.50 4543 2.69 4462 0.86

rec35 50 10 4688 6.62 4576 4.07 4422 0.57

rec37 75 20 8559 6.80 8348 4.17 8158 1.80

rec39 75 20 9033 7.28 8775 4.22 8611 2.27

rec41 75 20 9094 7.79 8853 4.93 8579 1.68

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/flowshop1.txt
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/flowshop1.txt

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

rec15, and rec17, BSLS performs better than BS for all the 03 instances, while HES-IG performs better than both
BS and BSLS algorithms as its RPD values are zero for all the 03 instances.

For 30 jobs and 10 machines cases i.e. rec19, rec21, and rec23, BSLS performs better than BS for all the 03
instances, while HES-IG performs better than both BS and BSLS algorithms as its RPD values are zero for all the
03 instances. For 30 jobs and 15 machines cases i.e. rec25, rec27, and rec29, BSLS performs better than BS for all
the 03 instances, while HES-IG performs better than both BS and BSLS algorithms as its RPD values are zero for
all the 03 instances. Similarly, for 50 jobs and 10 machines cases i.e. rec31, rec33, and rec35, the RPD values for
BS are 7.78, 7.50, and 6.62, while RPD values for BSLS are 4.39, 2.69, and 4.07. Hence BSLS performs better for
these three instances as compared to the BS algorithm. For HES-IG, the RPD values for these instances are 0.77,
0.86, and 0.57 respectively. So HES-IG performs better than both BSLS and BS algorithms.

For the last 03 instances i.e. rec37, 39, and rec41 where we have 75 jobs and 20 machines, The RPD values
for BS are 6.60, 7.28, and 7.79, while RPD values for BSLS are 4.17, 4.22, and 4.93 respectively. So BSLS performs
better than BS for all these instances. RPD values for HES-IG for the last 03 instances are 1.80, 2.27, and 1.68
respectively. So RPD values of HES-IG are lower than the RPD values of BS and BSLS algorithms, hence HES-IG
performs better than BS and BSLS algorithms. Therefore, the performance of HES-IG is superior as compared
to BS and BSLS algorithms for all the instances where the BSLS algorithm performs better than the BS algorithm.
The HES-IG algorithm has proven to be effective in minimizing the makespan of NWFSSP, as indicated by
the results in Figs. 11 and 12. These figures show the makespan and RPD values for the BS, BSLS, and HES-IG
algorithms across various instances of the problem, with Rec05 being an exception where BSLS outperforms
the other two. However, the overall trend demonstrates that the HES-IG algorithm is a robust technique that
consistently outperforms the other algorithms in terms of minimizing the makespan of NWFSSP. Therefore,
the HES-IG algorithm has demonstrated its effectiveness as a viable solution to the NWFSSP with makespan as
the objective function.

Results comparison for Taillard benchmark problems
To compare the performance of different algorithms on Taillard benchmark instances the relevant percentage
difference (RPD) in makespan value for any instance can be calculated using Eq. (8). A zero value of RPD shows
that the algorithm has found a better upper bound while a positive value shows that the algorithm has found an
inferior solution. RPD values for BS, BSLS, and HES-IG algorithms are calculated using Eq. (8) and are shown
in Table 5. For the first group i.e. TA01–TA10, having 20 jobs and 5 machines the makespan values for HES-IG
are 1486, 1528, 1460, 1588, 1449, 1481, 1483, 1482, 1469 and 1377. The makespan values for BS are 1581, 1579,
1534, 1698, 1579, 1588, 1532, 1565, 1541, and 1438, while the makespan value for BSLS are 1584, 1557, 1484,
1633, 1525, 1585, 1517, 1537, 1516, and 1417 respectively. Hence, for the first group i.e. TA01-TA10, BSLS algo-
rithm performs better than BS algorithm. The RPD values of BSLS are minimum as compared to BS algorithm,
however none of the RPD value is zero which shows that both BS and BSLS were unable to find the lower bound
makespan value. Makespan values of HES-IG algorithm for TA01-TA10 are lower than both BS and BSLS, which
shows that HES-IG algorithm performs better than both algorithms. The RPD values for HES-IG algorithm are
all zero which shows that for all these instances HES-IG algorithm find the lower bound values.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

BS BSLS HES-IG

Comparison of RPD values for REC instances

RP
D

REC instances

Figure 11. Comparison of RPD values of REC instances for HES-IG, BS and BSLS algorithms.

16

Vol:.(1234567890)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

For the second group i.e. TA11-TA20, having 20 jobs and 10 machines the makespan values for HES-IG
are 2044, 2166, 1940, 1811, 1933, 1892, 1963, 2057, 1973 and 2051. The makespan values for BS are 2115, 2270,
1976, 1883, 2045, 1999, 2049, 2118, 2115 and 2159 while the makespan value for BSLS are 2097, 2264, 1975, 1874,
2015, 1964, 2012, 2106, 2039 and 2109 respectively. Hence, for the second group i.e. TA11–TA20, BSLS algorithm
performs better than BS algorithm. The RPD values of BSLS are minimum as compared to BS algorithm, however
none of the RPD value is zero which shows that both BS and BSLS were unable to find the lower bound makespan
value. Makespan values of HES-IG algorithm for TA11–TA20 are lower than both BS and BSLS, which shows
that HES-IG algorithm performs better than both algorithms. The RPD values for HES-IG algorithm are all zero
which shows that for all these instances HES-IG algorithm find the lower bound values.

For the third group i.e. TA21-TA30, having 20 jobs and 10 machines the makespan values for HES-IG are
2973, 2852, 3013, 3001, 3003, 2998, 3052, 3009, and 2979. The makespan values for BS are 3090, 2984, 3162, 3206,
3180, 3199, 3144, 3054, 3099 and 3093 while the makespan value for BSLS are 3077, 2933, 3059, 3024, 3151, 3071,
3082, 2959, 3099 and 3072 respectively. Hence, for the third group i.e. TA21–TA30, BSLS algorithm performs
better than BS algorithm. The RPD values of BSLS are minimum as compared to BS algorithm, however none of
the RPD value is zero which shows that both BS and BSLS were unable to find the lower bound makespan value.
Makespan values of HES-IG algorithm for TA21–TA320 are lower than both BS and BSLS, which shows that
HES-IG algorithm performs better than both algorithms. The RPD values for HES-IG algorithm are all zero
which shows that for all these instances HES-IG algorithm find the lower bound values.

From the computational comparison of all three algorithms i.e. BS, BSLS and HES-IG, the performance of
HES-IG is better than all other algorithms for all 30 Taillard instances. Graphical comparison against makespan
values for BS, BSLS and HES-IG algorithms is shown in Fig. 13, where HES-IG is performing better than the
other algorithms. Graphical comparison against RPD values for BS, BSLS and HES-IG algorithms is shown in
Fig. 14. Hence from the testing of all algorithms on Taillard instances, HES-IG algorithm is proven to be a robust
technique that consistently outperforms the other algorithms in terms of minimizing the makespan for NWFSSP.

Wilcoxon signed rank test
Wilcoxon89 proposed the Wilcoxon signed-rank test for the comparison of two independent samples. To deter-
mine if two samples’ population mean ranks vary, the test compares related samples, matched samples, and
performs paired difference test of repeated measurements on a single sample. Wilcoxon signed-rank test is a
non-parametric statistical hypothesis test that does not assume normal distribution. Wilcoxon signed-rank test is
a classical statistical method used for specific types of data. Neutrosophic statistics introduced by Smarandache90
is a broader framework that extends classical statistics to handle uncertainty and indeterminacy in data. It is
applied in situations where there is uncertainty, vagueness, or incompleteness in the data.

In this paper, Wilcoxon signed-rank test is used to compare the performance of the HES-IG algorithm against
BS and BSLS. This test is used to determine if there is a statistically significant difference in the performance of the
algorithms. We set the significance threshold at 0.05, which means that there is a statistically significant difference
between algorithms A and B if the asymptotic P-value is less than 0.05. The results of the Wilcoxon test for the
HES-IG, BS, and BSLS algorithms are shown in Table 6. Table 6 presents the results of the Wilcoxon signed test

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

BS BSLS HES-IG

Comparison of Cmax values for REC instances

M
ak

es
pa

n

REC instances

Figure 12. Comparison of Makespan values of REC instances for HES-IG, BS and BSLS algorithms.

17

Vol.:(0123456789)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

for comparing the HES-IG algorithm against BS and BSLS. It lists the Null Hypothesis and Alternative Hypothesis
values for the comparison. The results indicate that the Cmax and PI values of HES-IG are significantly different
from those of BS because the P-value for HES-IG vs BS is less than 0.05. Similarly, the P-value for HES-IG vs
 BSLS is less than 0.05, which shows that the Cmax and PI values of HES-IG are significantly different from BSLS as
well. In contrast, the P-value for BS and BSLS is more than 0.05, indicating that there is no statistically significant
difference in Cmax and PI values for BS and BSLS.

Conclusion, future work, and limitations
In this paper, a novel approach called the Hybrid (HES-IG) algorithm is proposed to minimize the makespan
of the NWFSSP by combining the global search capabilities of the ES algorithm with the simple search abilities
of the IG algorithm. The ES algorithm is a well-known numerical optimization technique that simulates natural
evolution and has been successfully applied to solve a wide range of optimization problems over the last few
decades. In the ES algorithm, the initial solution is generated randomly, and the mutation and reproduction
operators, which are the primary sources of genetic variation, significantly impact the algorithm’s performance.
To address the FSSP problem, this paper utilizes insertion mutation as it is known to be the most effective muta-
tion operator. The reproduction operator used is (1 + 5)-ES, which generates five offspring randomly from one
parent. The selection operator used is (µ + λ)-ES, which allows a good parent solution to survive for multiple
generations until it is replaced by a better offspring. The results obtained from the ES algorithm are significantly
enhanced through the application of the IG algorithm. To improve the quality of solutions, the IG algorithm
integrates multiple operators, such as destruction, construction, local search, and acceptance–rejection criteria.
The destruction operator randomly eliminates a certain number of d-jobs, which are subsequently reinserted
into the partial schedule using a greedy approach to minimize the makespan. The local search operator adopts a
single insertion method, and the acceptance-rejection criteria employ a constant temperature. By applying the
Hybrid HES-IG algorithm to the Reeves and Taillard benchmark problems, superior computational results were
achieved compared to other methods.

Table 5. Makespan and RPD values of Taillard instances for BS, BSLS, and HES-IG algorithms.

Problem instance

Size BS BSLS HES-IG

n m Cmax RPD Cmax RPD Cmax RPD

TA01 20 5 1581 0.06 1548 0.04 1486 0.00

TA02 20 5 1579 0.03 1557 0.02 1528 0.00

TA03 20 5 1534 0.05 1484 0.02 1460 0.00

TA04 20 5 1698 0.07 1633 0.03 1588 0.00

TA05 20 5 1579 0.09 1525 0.05 1449 0.00

TA06 20 5 1588 0.07 1585 0.07 1481 0.00

TA07 20 5 1532 0.03 1517 0.02 1483 0.00

TA08 20 5 1565 0.06 1537 0.04 1482 0.00

TA09 20 5 1541 0.05 1516 0.03 1469 0.00

TA10 20 5 1438 0.04 1417 0.03 1377 0.00

TA11 20 10 2115 0.03 2097 0.03 2044 0.00

TA12 20 10 2270 0.05 2264 0.05 2166 0.00

TA13 20 10 1976 0.02 1975 0.02 1940 0.00

TA14 20 10 1883 0.04 1874 0.03 1811 0.00

TA15 20 10 2045 0.06 2015 0.04 1933 0.00

TA16 20 10 1999 0.06 1964 0.04 1892 0.00

TA17 20 10 2049 0.04 2012 0.02 1963 0.00

TA18 20 10 2118 0.03 2106 0.02 2057 0.00

TA19 20 10 2115 0.07 2039 0.03 1973 0.00

TA20 20 10 2159 0.05 2109 0.03 2051 0.00

TA21 20 20 3090 0.04 3077 0.03 2973 0.00

TA22 20 20 2984 0.05 2933 0.03 2852 0.00

TA23 20 20 3162 0.05 3059 0.02 3013 0.00

TA24 20 20 3206 0.07 3024 0.01 3001 0.00

TA25 20 20 3180 0.06 3151 0.05 3003 0.00

TA26 20 20 3199 0.07 3071 0.02 2998 0.00

TA27 20 20 3144 0.03 3082 0.01 3052 0.00

TA28 20 20 3054 0.08 2959 0.04 2839 0.00

TA29 20 20 3099 0.03 3099 0.03 3009 0.00

TA30 20 20 3093 0.04 3072 0.03 2979 0.00

18

Vol:.(1234567890)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

To enhance the performance of the HES-IG algorithm, it is suggested to use a heuristic approach to generate
an initial solution for the ES algorithm. Furthermore, integrating local search methods like Simulated anneal-
ing, Tabu search, and Ant colony optimization can help to avoid local optima and speed up convergence. The
efficacy of the HES-IG algorithm can be demonstrated by applying it to a practical case in an industry setting. The
algorithm’s potential for success with other objective functions is also worth exploring. Additionally, it would be
beneficial to test the HES-IG algorithm on challenging benchmark problems, such as Taillard and Vallada, for the

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

BS BSLS HES-IG

Comparison of Cmax values for Taillard instances

M
ak

es
pa

n

Taillard instances

Figure 13. Comparison of Makespan values of Taillard instances for HES-IG algorithm with BS and BSLS
algorithms.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

BS BSLS HES-IG

Comparison of RPD values for Taillard instances

RP
D

Taillard instances

Figure 14. Comparison of RPD values of Taillard instances for HES-IG algorithm with BS and BSLS algorithms.

19

Vol.:(0123456789)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

NWFSSP environment. Finally, application of the HES-IG algorithm to other FSSP environments i.e. Blocking
FSSP, Hybrid FSSP, Robust PFSSP, PFSSP, No-idle FSSP, etc. is expected to provide useful results.

Hybridization of ES with the IG algorithm increases the complexity and computational time of the algo-
rithm. The initial solution in the ES algorithm is generated randomly, this reduces the computational time, but,
it increases the randomness in the ES algorithm. Incorporating a Heuristic to generate the initial solution will
help the ES algorithm to start with a feasible solution, and then the Hybrid algorithm can improve the solution
at the expense of computational time. Wilcoxon signed-rank test is used to compare the performance of the
HES-IG algorithm against BS and BSLS. However, if future Neutrosophic statistics can be used for validating the
performances of different algorithms.

Received: 15 May 2023; Accepted: 17 November 2023

References
 1. Yüksel, D., Taşgetiren, M. F., Kandiller, L. & Gao, L. An energy-efficient bi-objective no-wait permutation flowshop scheduling

problem to minimize total tardiness and total energy consumption. Comput. Ind. Eng. 145, 106431. https:// doi. org/ 10. 1016/j. cie.
2020. 106431 (2020).

 2. Allahverdi, A., Aydilek, H. & Aydilek, A. No-wait flowshop scheduling problem with two criteria; total tardiness and makespan.
Eur. J. Oper. Res. 269, 590–601. https:// doi. org/ 10. 1016/j. ejor. 2017. 11. 070 (2018).

 3. Allahverdi, A. A survey of scheduling problems with no-wait in process. Eur. J. Oper. Res. 255, 665–686. https:// doi. org/ 10. 1016/j.
ejor. 2016. 05. 036 (2016).

 4. Röck, H. The three-machine no-wait flow shop is NP-complete. J. ACM 31, 336–345 (1984).
 5. Hall, N. G. & Sriskandarajah, C. A survey of machine scheduling problems with blocking and no-wait in process. Oper. Res. 44,

510–525. https:// doi. org/ 10. 1287/ opre. 44.3. 510 (1996).
 6. Yuan, H., Jing, Y., Huang, J. & Ren, T. Optimal research and numerical simulation for scheduling no-wait flow shop in steel pro-

duction. J. Appl. Math. 2013, 498282. https:// doi. org/ 10. 1155/ 2013/ 498282 (2013).
 7. Hsu, V. N., De Matta, R. & Lee, C. Y. Scheduling patients in an ambulatory surgical center. Naval Res. Logist. 50, 218–238. https://

doi. org/ 10. 1002/ nav. 10060 (2003).
 8. Wang, B., Han, X., Zhang, X. & Zhang, S. Predictive-reactive scheduling for single surgical suite subject to random emergency

surgery. J. Comb. Optim. 30, 949–966. https:// doi. org/ 10. 1007/ s10878- 015- 9861-2 (2015).
 9. Kim, J., Kröller, A. & Mitchell, J. In 9th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems

(ATMOS’09) (Schloss Dagstuhl-Leibniz-Zentrum für Informatik).
 10. Bagassi, S., Francia, D. & Persiani, C. A. Proc. 27th Congress of the International Council of the Aeronautical Sciences 2010, ICAS

2010 5135–5143.
 11. Guirchoun, S., Martineau, P. & Billaut, J.-C. Total completion time minimization in a computer system with a server and two

parallel processors. Comput. Oper. Res. 32, 599–611. https:// doi. org/ 10. 1016/j. cor. 2003. 08. 007 (2005).
 12. Khurshid, I., Al-Shalabi, E. W., Afgan, I., Khurshid, B. & Hassan, A. M. Geochemical modeling of engineered water injection in

carbonates under harsh conditions: New insights with ionic adsorption. J. Energy Resour. Technol. 145, 023004 (2023).
 13. Mannino, C. & Mascis, A. Optimal real-time traffic control in metro stations. Oper. Res. 57, 1026–1039. https:// doi. org/ 10. 1287/

opre. 1080. 0642 (2009).
 14. Liu, S. Q. & Kozan, E. Scheduling trains with priorities: A no-wait blocking parallel-machine job-shop scheduling model. Transp.

Sci. 45, 175–198. https:// doi. org/ 10. 1287/ trsc. 1100. 0332 (2011).
 15. Hecker, F. T., Stanke, M., Becker, T. & Hitzmann, B. Application of a modified GA, ACO and a random search procedure to solve

the production scheduling of a case study bakery. Expert Syst. Appl. 41, 5882–5891. https:// doi. org/ 10. 1016/j. eswa. 2014. 03. 047
(2014).

 16. Lee, T.-E., Lee, H.-Y. & Lee, S.-J. Scheduling a wet station for wafer cleaning with multiple job flows and multiple wafer-handling
robots. Int. J. Prod. Res. 45, 487–507. https:// doi. org/ 10. 1080/ 00207 54060 07925 31 (2007).

 17. Agnetis, A. & Pacciarelli, D. Part sequencing in three-machine no-wait robotic cells. Oper. Res. Lett. 27, 185–192. https:// doi. org/
10. 1016/ S0167- 6377(00) 00046-8 (2000).

 18. Na, B., Ahmed, S., Nemhauser, G. & Sokol, J. A cutting and scheduling problem in float glass manufacturing. J. Sched. 17, 95–107.
https:// doi. org/ 10. 1007/ s10951- 013- 0335-z (2014).

 19. Laha, D. & Chakraborty, U. K. A constructive heuristic for minimizing makespan in no-wait flow shop scheduling. Int. J. Adv.
Manuf. Technol. 41, 97–109. https:// doi. org/ 10. 1007/ s00170- 008- 1454-0 (2009).

 20. Pinedo, M. Scheduling (Springer, 2015).
 21. Engin, O. & Günaydin, C. An adaptive learning approach for no-wait flowshop scheduling problems to minimize makespan. Int.

J. Comput. Intell. Syst. 4, 521–529 (2011).
 22. Silva, J. L., Viana, G. V. & Silva, B. C. 12th Metaheuristics International Conference‑MIC 2017.
 23. Mousin, L., Kessaci, M.-E. & Dhaenens, C. MIC 2017‑12th Metaheuristics International Conference.
 24. Komaki, M. & Malakooti, B. General variable neighborhood search algorithm to minimize makespan of the distributed no-wait

flow shop scheduling problem. Prod. Eng. 11, 315–329. https:// doi. org/ 10. 1007/ s11740- 017- 0716-9 (2017).

Table 6. Result of Wilcoxon signed test for HES-IG, BS, and BSLS algorithms.

Algorithm pair Metric N Median Wilcoxon statistic P-value

Test

Null hypothesis (Ho) Alternative hypothesis (H1)

HES-IG vs BS
Cmax 21 − 196 5 0.000 η = 0 η ≠ 0

PI 41 − 1.165 327 0.182 η = 0 η ≠ 0

HES-IG vs BSLS
Cmax 21 − 87 14 0.000 η = 0 η ≠ 0

PI 21 − 2.655 21 0.001 η = 0 η ≠ 0

BS vs BSLS
Cmax 21 110 231 0.000 η = 0 η ≠ 0

PI 21 2.7 231 0.000 η = 0 η ≠ 0

https://doi.org/10.1016/j.cie.2020.106431
https://doi.org/10.1016/j.cie.2020.106431
https://doi.org/10.1016/j.ejor.2017.11.070
https://doi.org/10.1016/j.ejor.2016.05.036
https://doi.org/10.1016/j.ejor.2016.05.036
https://doi.org/10.1287/opre.44.3.510
https://doi.org/10.1155/2013/498282
https://doi.org/10.1002/nav.10060
https://doi.org/10.1002/nav.10060
https://doi.org/10.1007/s10878-015-9861-2
https://doi.org/10.1016/j.cor.2003.08.007
https://doi.org/10.1287/opre.1080.0642
https://doi.org/10.1287/opre.1080.0642
https://doi.org/10.1287/trsc.1100.0332
https://doi.org/10.1016/j.eswa.2014.03.047
https://doi.org/10.1080/00207540600792531
https://doi.org/10.1016/S0167-6377(00)00046-8
https://doi.org/10.1016/S0167-6377(00)00046-8
https://doi.org/10.1007/s10951-013-0335-z
https://doi.org/10.1007/s00170-008-1454-0
https://doi.org/10.1007/s11740-017-0716-9

20

Vol:.(1234567890)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

 25. Engin, O. & Güçlü, A. A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems.
Appl. Soft Comput. 72, 166–176 (2018).

 26. Shao, W., Pi, D. & Shao, Z. An extended teaching-learning based optimization algorithm for solving no-wait flow shop scheduling
problem. Appl. Soft Comput. 61, 193–210. https:// doi. org/ 10. 1016/j. asoc. 2017. 08. 020 (2017).

 27. Riahi, V. & Kazemi, M. A new hybrid ant colony algorithm for scheduling of no-wait flowshop. Oper. Res. 18, 55–74. https:// doi.
org/ 10. 1007/ s12351- 016- 0253-x (2018).

 28. Lin, S.-W., Lu, C.-C. & Ying, K.-C. Minimizing the sum of makespan and total weighted tardiness in a no-wait flowshop. IEEE
Access 6, 78666–78677. https:// doi. org/ 10. 1109/ ACCESS. 2018. 28851 37 (2018).

 29. Zhu, H. et al. Quantum-inspired cuckoo co-search algorithm for no-wait flow shop scheduling. Appl. Intell. 49, 791–803 (2019).
 30. Zhao, F. et al. A hybrid biogeography-based optimization with variable neighborhood search mechanism for no-wait flow shop

scheduling problem. Expert Syst. Appl. 126, 321–339. https:// doi. org/ 10. 1016/j. eswa. 2019. 02. 023 (2019).
 31. Tasgetiren, M. F., Yüksel, D., Gao, L., Pan, Q.-K. & Li, P. A discrete artificial bee colony algorithm for the energy-efficient no-wait

flowshop scheduling problem. Procedia Manuf. 39, 1223–1231. https:// doi. org/ 10. 1016/j. promfg. 2020. 01. 347 (2019).
 32. Zhao, F. et al. A factorial based particle swarm optimization with a population adaptation mechanism for the no-wait flow shop

scheduling problem with the makespan objective. Expert Syst. Appl. 126, 41–53. https:// doi. org/ 10. 1016/j. eswa. 2019. 01. 084 (2019).
 33. Shao, W., Pi, D. & Shao, Z. A pareto-based estimation of distribution algorithm for solving multiobjective distributed no-wait

flow-shop scheduling problem with sequence-dependent setup time. IEEE Trans. Autom. Sci. Eng. 16, 1344–1360 (2019).
 34. Pourhejazy, P., Lin, S.-W., Cheng, C.-Y., Ying, K.-C. & Lin, P.-Y. Improved beam search for optimizing no-wait flowshops with

release times. IEEE Access 8, 148100–148124. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30157 37 (2020).
 35. Zhao, F. et al. A jigsaw puzzle inspired algorithm for solving large-scale no-wait flow shop scheduling problems. Appl. Intell. 50,

87–100. https:// doi. org/ 10. 1007/ s10489- 019- 01497-2 (2020).
 36. Wu, X. & Che, A. Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood

search. Omega 94, 102117. https:// doi. org/ 10. 1016/j. omega. 2019. 102117 (2020).
 37. Zhao, F., He, X. & Wang, L. A two-stage cooperative evolutionary algorithm with problem-specific knowledge for energy-efficient

scheduling of no-wait flow-shop problem. IEEE Trans. Cybern. 51, 5291–5303 (2020).
 38. Xuan, H., Zheng, Q., Li, B. & Wang, X. A novel genetic simulated annealing algorithm for no-wait hybrid flowshop problem with

unrelated parallel machines. ISIJ Int. 61, 258–268. https:// doi. org/ 10. 2355/ isiji ntern ation al. ISIJI NT- 2020- 258 (2021).
 39. Zhao, F., Zhao, J., Wang, L. & Tang, J. An optimal block knowledge driven backtracking search algorithm for distributed assembly

no-wait flow shop scheduling problem. Appl. Soft Comput. 112, 107750. https:// doi. org/ 10. 1016/j. asoc. 2021. 107750 (2021).
 40. Miyata, H. H. & Nagano, M. S. Optimizing distributed no-wait flow shop scheduling problem with setup times and maintenance

operations via iterated greedy algorithm. J. Manuf. Syst. 61, 592–612. https:// doi. org/ 10. 1016/j. jmsy. 2021. 10. 005 (2021).
 41. Shao, W., Shao, Z. & Pi, D. Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem. Comput.

Oper. Res. 136, 105482. https:// doi. org/ 10. 1016/j. cor. 2021. 105482 (2021).
 42. Keskin, K. & Engin, O. A hybrid genetic local and global search algorithm for solving no-wait flow shop problem with bi criteria.

SN Appl. Sci. 3, 628 (2021).
 43. Başar, R. & Engin, O. Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation: Proceedings of the

INFUS 2021 Conference, held August 24–26, 2021, Vol. 1, 607–614 (Springer).
 44. Azerine, A., Boudhar, M. & Rebaine, D. A two-machine no-wait flow shop problem with two competing agents. J. Comb. Optim.

43, 168–199. https:// doi. org/ 10. 1007/ s10878- 021- 00755-9 (2022).
 45. Zeng, Q.-Q. et al. Improved NSGA-II for energy-efficient distributed no-wait flow-shop with sequence-dependent setup time.

Complex Intell. Syst. 9, 825–849. https:// doi. org/ 10. 1007/ s40747- 022- 00830-6 (2023).
 46. Karacan, I., Senvar, O. & Bulkan, S. A novel parallel simulated annealing methodology to solve the no-wait flow shop scheduling

problem with earliness and tardiness objectives. Processes 11, 454 (2023).
 47. Zhao, F. et al. A reinforcement learning-driven brain storm optimisation algorithm for multi-objective energy-efficient distributed

assembly no-wait flow shop scheduling problem. Int. J. Prod. Res. 61, 2854–2872 (2023).
 48. Avci, M. An effective iterated local search algorithm for the distributed no-wait flowshop scheduling problem. Eng. Appl. Artif.

Intell. 120, 105921. https:// doi. org/ 10. 1016/j. engap pai. 2023. 105921 (2023).
 49. Karabulut, K., Kizilay, D., Tasgetiren, M. F., Gao, L. & Kandiller, L. An evolution strategy approach for the distributed blocking

flowshop scheduling problem. Comput. Ind. Eng. 163, 107832. https:// doi. org/ 10. 1016/j. cie. 2021. 107832 (2022).
 50. Hussien, A. G. et al. Boosting whale optimization with evolution strategy and Gaussian random walks: An image segmentation

method. Eng. Comput. https:// doi. org/ 10. 1007/ s00366- 021- 01542-0 (2022).
 51. Khurshid, B. et al. An improved evolution strategy hybridization with simulated annealing for permutation flow shop scheduling

problems. IEEE Access 9, 94505–94522. https:// doi. org/ 10. 1109/ ACCESS. 2021. 30933 36 (2021).
 52. Khurshid, B. et al. Fast evolutionary algorithm for flow shop scheduling problems. IEEE Access 9, 44825–44839. https:// doi. org/

10. 1109/ ACCESS. 2021. 30664 46 (2021).
 53. Maqsood, S. & Khurshid, B. Blocking flow shop scheduling problems using evolution strategies algorithm. In 2023 28th Inter‑

national Conference on Automation and Computing (ICAC), Birmingham, United Kingdom. 1–6. https:// doi. org/ 10. 1109/ ICAC5
7885. 2023. 10275 309 (2023).

 54. Karabulut, K., Öztop, H., Kandiller, L. & Tasgetiren, M. F. Modeling and optimization of multiple traveling salesmen problems:
An evolution strategy approach. Comput. Oper. Res. 129, 105192. https:// doi. org/ 10. 1016/j. cor. 2020. 105192 (2021).

 55. Khurshid, B., Maqsood, S., Omair, M., Nawaz, R. & Akhtar, R. Hybrid evolution strategy approach for robust permutation flowshop
scheduling. Adv. Prod. Eng. Manag. 15, 204–216. https:// doi. org/ 10. 14743/ apem2 020.2. 359 (2020).

 56. Karabulut, K. & Tasgetiren, M. F. An evolution strategy approach to the team orienteering problem with time windows. Comput.
Ind. Eng. 139, 106109. https:// doi. org/ 10. 1016/j. cie. 2019. 106109 (2020).

 57. Repoussis, P. P., Tarantilis, C. D., Bräysy, O. & Ioannou, G. A hybrid evolution strategy for the open vehicle routing problem.
Comput. Oper. Res. 37, 443–455. https:// doi. org/ 10. 1016/j. cor. 2008. 11. 003 (2010).

 58. Srivastava, G. & Singh, A. Boosting an evolution strategy with a preprocessing step: Application to group scheduling problem in
directional sensor networks. Appl. Intell. 48, 4760–4774. https:// doi. org/ 10. 1007/ s10489- 018- 1252-9 (2018).

 59. Nejad, M. G. & Kashan, A. H. An effective grouping evolution strategy algorithm enhanced with heuristic methods for assembly
line balancing problem. J. Adv. Manuf. Syst. 18, 487–509. https:// doi. org/ 10. 1142/ S0219 68671 95002 64 (2019).

 60. Ruiz, R. & Stützle, T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J.
Oper. Res. 177, 2033–2049. https:// doi. org/ 10. 1016/j. ejor. 2005. 12. 009 (2007).

 61. Ding, J.-Y. et al. An improved iterated greedy algorithm with a Tabu-based reconstruction strategy for the no-wait flowshop
scheduling problem. Appl. Soft Comput. 30, 604–613. https:// doi. org/ 10. 1016/j. asoc. 2015. 02. 006 (2015).

 62. Zhao, Z., Zhou, M. & Liu, S. Iterated greedy algorithms for flow-shop scheduling problems: A tutorial. IEEE Trans. Autom. Sci.
Eng. https:// doi. org/ 10. 1109/ TASE. 2021. 30629 94 (2021).

 63. Lin, S.-W., Ying, K.-C. & Huang, C.-Y. Minimising makespan in distributed permutation flowshops using a modified iterated
greedy algorithm. Int. J. Prod. Res. 51, 5029–5038. https:// doi. org/ 10. 1080/ 00207 543. 2013. 790571 (2013).

 64. Ruiz, R., Pan, Q.-K. & Naderi, B. Iterated greedy methods for the distributed permutation flowshop scheduling problem. Omega
83, 213–222. https:// doi. org/ 10. 1016/j. omega. 2018. 03. 004 (2019).

https://doi.org/10.1016/j.asoc.2017.08.020
https://doi.org/10.1007/s12351-016-0253-x
https://doi.org/10.1007/s12351-016-0253-x
https://doi.org/10.1109/ACCESS.2018.2885137
https://doi.org/10.1016/j.eswa.2019.02.023
https://doi.org/10.1016/j.promfg.2020.01.347
https://doi.org/10.1016/j.eswa.2019.01.084
https://doi.org/10.1109/ACCESS.2020.3015737
https://doi.org/10.1007/s10489-019-01497-2
https://doi.org/10.1016/j.omega.2019.102117
https://doi.org/10.2355/isijinternational.ISIJINT-2020-258
https://doi.org/10.1016/j.asoc.2021.107750
https://doi.org/10.1016/j.jmsy.2021.10.005
https://doi.org/10.1016/j.cor.2021.105482
https://doi.org/10.1007/s10878-021-00755-9
https://doi.org/10.1007/s40747-022-00830-6
https://doi.org/10.1016/j.engappai.2023.105921
https://doi.org/10.1016/j.cie.2021.107832
https://doi.org/10.1007/s00366-021-01542-0
https://doi.org/10.1109/ACCESS.2021.3093336
https://doi.org/10.1109/ACCESS.2021.3066446
https://doi.org/10.1109/ACCESS.2021.3066446
https://doi.org/10.1109/ICAC57885.2023.10275309
https://doi.org/10.1109/ICAC57885.2023.10275309
https://doi.org/10.1016/j.cor.2020.105192
https://doi.org/10.14743/apem2020.2.359
https://doi.org/10.1016/j.cie.2019.106109
https://doi.org/10.1016/j.cor.2008.11.003
https://doi.org/10.1007/s10489-018-1252-9
https://doi.org/10.1142/S0219686719500264
https://doi.org/10.1016/j.ejor.2005.12.009
https://doi.org/10.1016/j.asoc.2015.02.006
https://doi.org/10.1109/TASE.2021.3062994
https://doi.org/10.1080/00207543.2013.790571
https://doi.org/10.1016/j.omega.2018.03.004

21

Vol.:(0123456789)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

 65. Huang, J.-P., Pan, Q.-K. & Gao, L. An effective iterated greedy method for the distributed permutation flowshop scheduling problem
with sequence-dependent setup times. Swarm Evol. Comput. 59, 100742. https:// doi. org/ 10. 1016/j. swevo. 2020. 100742 (2020).

 66. Deng, G. et al. A population-based iterated greedy algorithm for no-wait job shop scheduling with total flow time criterion. Eng.
Appl. Artif. Intell. 88, 103369. https:// doi. org/ 10. 1016/j. engap pai. 2019. 103369 (2020).

 67. Chen, S., Pan, Q.-K., Gao, L. & Sang, H.-Y. A population-based iterated greedy algorithm to minimize total flowtime for the
distributed blocking flowshop scheduling problem. Eng. Appl. Artif. Intell. 104, 104375. https:// doi. org/ 10. 1016/j. engap pai. 2021.
104375 (2021).

 68. Zhao, F. et al. A heuristic and meta-heuristic based on problem-specific knowledge for distributed blocking flow-shop schedul-
ing problem with sequence-dependent setup times. Eng. Appl. Artif. Intell. 116, 105443. https:// doi. org/ 10. 1016/j. engap pai. 2022.
105443 (2022).

 69. Li, Y.-Z., Pan, Q.-K., Li, J.-Q., Gao, L. & Tasgetiren, M. F. An adaptive iterated greedy algorithm for distributed mixed no-idle
permutation flowshop scheduling problems. Swarm Evol. Comput. 63, 100874. https:// doi. org/ 10. 1016/j. swevo. 2021. 100874 (2021).

 70. Shao, W., Shao, Z. & Pi, D. Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop schedul-
ing problem. Knowl. Based Syst. 194, 105527. https:// doi. org/ 10. 1016/j. knosys. 2020. 105527 (2020).

 71. Chen, R.-C., Chen, J., Chen, T.-S., Huang, C.-C. & Chen, L.-C. Synergy of genetic algorithm with extensive neighborhood search
for the permutation flowshop scheduling problem. Math. Probl. Eng. 2017, 1–9. https:// doi. org/ 10. 1155/ 2017/ 36308 69 (2017).

 72. Campos, S. C., Arroyo, J. E. C. & Tavares, R. G. International Conference on Intelligent Systems Design and Applications 955–964
(Springer).

 73. Li, J.-Q. et al. An improved artificial bee colony algorithm for addressing distributed flow shop with distance coefficient in a pre-
fabricated system. Int. J. Prod. Res. 57, 6922–6942. https:// doi. org/ 10. 1080/ 00207 543. 2019. 15716 87 (2019).

 74. Tasgetiren, M. F., Pan, Q.-K., Suganthan, P. N. & Chen, A. H. A discrete artificial bee colony algorithm for the total flowtime
minimization in permutation flow shops. Inf. Sci. 181, 3459–3475. https:// doi. org/ 10. 1016/j. ins. 2011. 04. 018 (2011).

 75. Shao, W., Pi, D. & Shao, Z. A hybrid discrete teaching-learning based meta-heuristic for solving no-idle flow shop scheduling
problem with total tardiness criterion. Comput. Oper. Res. 94, 89–105. https:// doi. org/ 10. 1016/j. cor. 2018. 02. 003 (2018).

 76. Zhao, F., Liu, H., Zhang, Y., Ma, W. & Zhang, C. A discrete water wave optimization algorithm for no-wait flow shop scheduling
problem. Expert Syst. Appl. 91, 347–363. https:// doi. org/ 10. 1016/j. eswa. 2017. 09. 028 (2018).

 77. Rechenberg, I. Optimierung technischer Systeme nach Prinzipien der biologischen Evolution (1970).
 78. Schwefel, H.-P. Evolutionsstrategie und numerische Optimierung (Technische Universität, 1975).
 79. Yadav, S. L. & Sohal, A. Comparative study of different selection techniques in genetic algorithm. Int. J. Eng. Sci. Math. 6, 173

(2017).
 80. Paris, P. C. D., Pedrino, E. C. & Nicoletti, M. Automatic learning of image filters using Cartesian genetic programming. Integr.

Comput. Aided Eng. 22, 135–151. https:// doi. org/ 10. 3233/ ICA- 150482 (2015).
 81. Hansen, N. & Ostermeier, A. Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159–195. https://

doi. org/ 10. 1162/ 10636 56017 50190 398 (2001).
 82. Laha, A. et al. Optical Waveguide Hosting Multiple Exceptional Points: Toward selective Mode Conversion. https:// doi. org/ 10. 48550/

arXiv. 1904. 06967 (2019).
 83. Salimans, T., Ho, J., Chen, X., Sidor, S. & Sutskever, I. Evolution strategies as a scalable alternative to reinforcement learning.

Preprint at http:// arXiv. org/ 1703. 03864 (2017).
 84. Glover, F. W. & Kochenberger, G. A. Handbook of Metaheuristics Vol. 57 (Springer, 2006).
 85. Stützle, T. Applying Iterated Local Search to the Permutation Flow Shop Problem (1998).
 86. Montgomery, D. C. Design and Analysis of Experiments (Wiley, 2017).
 87. Reeves, C. R. A genetic algorithm for flowshop sequencing. Comput. Oper. Res. 22, 5–13. https:// doi. org/ 10. 1016/ 0305- 0548(93)

E0014-K (1995).
 88. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285. https:// doi. org/ 10. 1016/ 0377- 2217(93)

90182-M (1993).
 89. Wilcoxon, F. Breakthroughs in Statistics: Methodology and Distribution 196–202 (Springer, 1992).
 90. Smarandache, F. Neutrosophic logic-a generalization of the intuitionistic fuzzy logic. Multispace Multistruct. 4, 396 (2010).

Acknowledgements
The authors would like to thank Reeves for the benchmark problems. Open Access funding provided by the
Qatar National Library (QNL) and authors are grateful for the support of QNL.

Author contributions
B.K. conceived the study; B.K., S.M., Y.K., Q.S.K., and K.N. were the principal investigators; B.K., S.M., Y.K.,
Q.S.K., and K.N. directed the overall study design; B.K. and S.M. performed the experiments; B.K., S.M., Y.K.,
Q.S.K., and K.N. analyzed the data; S.M. performed the supervision; B.K. wrote the manuscript. All authors
discussed and interpreted the results. All authors reviewed the manuscript.

Funding
Open Access funding is provided by the Qatar National Library (QNL).

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1016/j.swevo.2020.100742
https://doi.org/10.1016/j.engappai.2019.103369
https://doi.org/10.1016/j.engappai.2021.104375
https://doi.org/10.1016/j.engappai.2021.104375
https://doi.org/10.1016/j.engappai.2022.105443
https://doi.org/10.1016/j.engappai.2022.105443
https://doi.org/10.1016/j.swevo.2021.100874
https://doi.org/10.1016/j.knosys.2020.105527
https://doi.org/10.1155/2017/3630869
https://doi.org/10.1080/00207543.2019.1571687
https://doi.org/10.1016/j.ins.2011.04.018
https://doi.org/10.1016/j.cor.2018.02.003
https://doi.org/10.1016/j.eswa.2017.09.028
https://doi.org/10.3233/ICA-150482
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.48550/arXiv.1904.06967
https://doi.org/10.48550/arXiv.1904.06967
http://arXiv.org/1703.03864
https://doi.org/10.1016/0305-0548(93)E0014-K
https://doi.org/10.1016/0305-0548(93)E0014-K
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/0377-2217(93)90182-M
www.nature.com/reprints

22

Vol:.(1234567890)

Scientific Reports | (2024) 14:2376 | https://doi.org/10.1038/s41598-023-47729-x

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	A hybridization of evolution strategies with iterated greedy algorithm for no-wait flow shop scheduling problems
	Literature review
	Problem statement
	Methodology
	Evolution strategies
	Initial solution
	Mutation operator
	Reproduction operator
	Survivor selection operator
	Termination criteria
	Hybrid evolution strategies— iterated greedy algorithm (HES-IG)

	Iterated greedy algorithm
	Destruction
	Construction
	Local search
	Acceptance rejection criteria

	Parameter optimization for ES algorithm
	Parameter optimization for IG algorithm

	Results
	Experimental setup
	Results comparison for Reeves benchmark problems
	Results comparison for Taillard benchmark problems
	Wilcoxon signed rank test

	Conclusion, future work, and limitations
	References
	Acknowledgements

