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The effect of speech pathology 
on automatic speaker verification: 
a large‑scale study
Soroosh Tayebi Arasteh 1,2,3*, Tobias Weise 1,2, Maria Schuster 4, Elmar Noeth 1, 
Andreas Maier 1 & Seung Hee Yang 2

Navigating the challenges of data‑driven speech processing, one of the primary hurdles is accessing 
reliable pathological speech data. While public datasets appear to offer solutions, they come with 
inherent risks of potential unintended exposure of patient health information via re‑identification 
attacks. Using a comprehensive real‑world pathological speech corpus, with over n =3800 test 
subjects spanning various age groups and speech disorders, we employed a deep‑learning‑driven 
automatic speaker verification (ASV) approach. This resulted in a notable mean equal error rate (EER) 
of 0.89± 0.06% , outstripping traditional benchmarks. Our comprehensive assessments demonstrate 
that pathological speech overall faces heightened privacy breach risks compared to healthy speech. 
Specifically, adults with dysphonia are at heightened re‑identification risks, whereas conditions like 
dysarthria yield results comparable to those of healthy speakers. Crucially, speech intelligibility does 
not influence the ASV system’s performance metrics. In pediatric cases, particularly those with cleft lip 
and palate, the recording environment plays a decisive role in re‑identification. Merging data across 
pathological types led to a marked EER decrease, suggesting the potential benefits of pathological 
diversity in ASV, accompanied by a logarithmic boost in ASV effectiveness. In essence, this research 
sheds light on the dynamics between pathological speech and speaker verification, emphasizing its 
crucial role in safeguarding patient confidentiality in our increasingly digitized healthcare era.

Background
Speech is a biomarker that is extensively explored for the development of healthcare applications because of its 
low cost and non-invasiveness1. With the advances in deep learning (DL), data-driven methods have gained a lot 
of attention in speech processing in  healthcare2. For example, in the medical domain, speech biomarker reflects 
objective measurement that can be used for accurate and reproducible diagnosis. From  diagnosis3–6 to  therapy7–9, 
pathological speech could be a rich source for different data-driven applications in healthcare. This is critical 
to the rapid and reliable development of medical screening, diagnostics, and therapeutics. However, accessing 
pathological speech data for utilization in computer-assisted methods is a challenging and time-consuming 
process because of patient privacy concerns leading to the fact that most studies only investigated small cohorts 
due to the resulting lack of  data10.

Related works
Pathological speech has garnered significant attention in DL-based automatic analyses of speech and voice dis-
orders. Notably, Vásquez-Correa et al.11 broadly assessed Parkinson’s disease, while Rios-Urrego et al.12 delved 
into evaluating the pronunciation skills of Parkinson’s disease patients. Such works emphasize the potential of 
pathological speech as an invaluable resource for Parkinson’s disease analysis. Additionally, numerous studies 
have employed pathological speech for DL-based analyses of Alzheimer’s disease. Pérez-Toro et al.13 illustrated 
the efficacy of the Arousal Valence plane for discerning and analyzing depression within Alzheimer’s disease. 
Pappagari et al.4 fused speaker recognition and language processing techniques for assessing the severity of 
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Alzheimer’s disease. Furthermore, García et al.’s  work14 delved into dysphonia assessment, Kohlschein et al.15 
addressed aphasia, Bhat et al.16 explored dysarthria, and Gargot et al.17 investigated Autism Spectrum Disorders.

The burgeoning role of pathological speech in healthcare is evident, especially as computer-assisted, data-
driven methods continue to flourish. However, this growth is tempered by the challenges in accessing patho-
logical speech data. Patient privacy concerns make this not only a daunting task but also a protracted endeavor. 
Within this framework emerges a pivotal question: Does pathological speech, when examined as a biomarker, 
possess a heightened susceptibility to re-identification attacks compared to healthy speech? Addressing this neces-
sitates the incorporation of ASV-a tool that verifies if an unrecognized voice belongs to a specific individual-to 
ascertain the privacy levels inherent to healthy speech  data18.

Laying the groundwork for understanding biomarkers in clinical research, Strimbu et al.19 and Califf et al.20 
have proffered working definitions and established a foundational framework. Delving deeper, Marmar et al.21 
elucidated the diagnostic potential of speech-based markers, particularly in identifying posttraumatic stress 
disorder, while Ramanarayanan et al.22 unpacked both the opportunities and the impediments associated with 
harnessing speech as a clinical biomarker. Remarkably, existing literature remains silent on the interplay between 
speech pathology and ASV. Our study is thus positioned to fill this void, venturing to discern the relative vulner-
ability of pathological speech to re-identification in contrast with its healthy counterpart.

Main contributions
In this study, we undertake a detailed look at how pathological speech affects ASV. We use a large and real-world 
 dataset23 of around 200 hours of recordings that includes both pathological and healthy recordings. Our research 
focuses on text-independent speaker verification (TISV), to capture a broader range of  scenarios24,25. Considering 
the many factors that can sway ASV results, we made efforts to keep various conditions consistent by: 

1. Equalizing the training and test set sizes,
2. ensuring consistent sound quality across recordings,
3. matching age distributions within different subgroups,
4. regulating background noise,
5. controlling for the type of microphone utilized and the recording environment, and
6. grouping by specific pathologies.

In the sections that follow, we break down our findings methodically:

• We start with broad-spectrum experiments to paint a comprehensive picture of our ASV system’s prowess 
using the entire pathological dataset.

• Subsequently, our exploration narrows, dissecting the influence of specific pathologies on ASV for both adults 
and children.

• We then examine how combining data from different speech problems affects ASV. We also look into how 
the size of the training dataset influences ASV performance.

• Concluding our findings, we assess the influence of speech intelligibility on ASV’s performance.

We assume that equal error rate (EER) is a measure of anonymity in the dataset. The lower the EER, the higher 
the vulnerability of the respective group. This is also a common choice in speaker verification  challenges18. 
Furthermore, we use word recognition rate (WRR) as a measure of speech intelligibility as it demonstrated high 
and significant correlations in many previous  studies10,23,26,27. The lower the WRR the less intelligible, the speech 
of the persons in the respective group.

Our goal is to uncover the connection between pathological speech conditions and speaker verification’s 
success rate. We show evidence that the distinct features of pathological speech, when paired with different 
recording conditions, influence speaker verification outcomes.

Results
Pathology influences ASV performance
When examining pathological recordings from both adult and child subsets, our results showed a mean EER 
of 0.89± 0.06 %. For this, n =2064 speakers were used for training and n =517 for testing. Notably, this EER is 
lower than common values found in datasets such as  LibriSpeech30 or VoxCeleb1 &231,32. This outcome was the 
average from 20 repeated experiments to counteract the potential biases of random sampling. To ensure an equi-
table comparison across groups, each subgroup was adjusted in terms of age distribution and speaker numbers. 
After employing standard training and evaluation, we then evaluated the speaker verification outcomes for each 
subgroup against control groups.

Adults: Adult patients were divided into three categories: “dysglossia-dnt”, “dysarthria-plant”, and “dyspho-
nia-logi”. For benchmarking, n = 85 healthy individuals formed the control group, labeled as “ctrl-plant-A”. 
When examining EER values, both “dysglossia-dnt-85” ( 3.05± 0.74% ) and “dysarthria-plant-85” ( 2.91± 1.09% ) 
showed no significant difference from the control group “ctrl-plant-A-85” ( 3.12± 0.94% ) with P = 0.786 and 
P = 0.520 , respectively. In contrast, the “dysphonia-logi-85” group, at an EER of 2.40± 0.84% , was significantly 
different from the control, with a P = 0.015 . Refer to Fig. 1 for a visual representation of these findings.

Children: Children were divided into two categories, “CLP-dnt” and “CLP-plant”, both representing patients 
with cleft lip and palate (CLP). Additionally, a control group of n = 1662 healthy children, “ctrl-plant-C”, was 
used. As for the EER values, “CLP-dnt-124” yielded ( 5.25± 0.90% , which was not significantly different from the 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20476  | https://doi.org/10.1038/s41598-023-47711-7

www.nature.com/scientificreports/

control group’s 5.72± 1.05 (P= 0.134 ). However, “CLP-plant-124” stood out at 7.82± 0.91% , differing signifi-
cantly from the control’s 5.72± 1.05% (P< 0.001 ). Figure 2 offers a detailed visual comparison among the groups.

Figure 1.  Evaluation results of speaker verification on the adults for individual groups for 20 repetitions. 
During each repetition, n = 85 speakers are sampled for each group and n = 68 of them were assigned to training 
and n = 17 speakers to test. All the values are given in percent. (a) Equal error rate (EER) values. (b) Word 
recognition rate (WRR) values. dysglossia Patients with dysglossia who underwent prior maxillofacial surgery,  
dysarthria Patients diagnosed with dysarthria,  dysphonia Patients with voice disorders,  CLP children with cleft 
lip and palate,  dnt recordings from the “dnt Call 4U Comfort”  headset27,  plant recordings via Plantronics Inc. 
 headset28,  logi: recordings via Logitech International S.A.  headset29,  ctrl control group. Numbers appended, 
such as “-85” in “dysglossia-dnt-85”, represent the total speaker count for that experiment.

Figure 2.  Evaluation results of speaker verification on the children for individual groups for 20 repetitions. 
During each repetition, 124 speakers are sampled for each group and 99 of them were assigned to training and 
25 speakers to test. All the values are given in percent. (a) Equal error rate (EER) values. (b) Word recognition 
rate (WRR) values.  CLP children with cleft lip and palate,  dnt recordings from the “dnt Call 4U Comfort” 
 headset27,  plant recordings via Plantronics Inc.  headset28,  ctrl control group. Numbers appended, such as “-124” 
in “CLP-dnt-124”, represent the total speaker count for that experiment.
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Pathological diversity in speakers leads to substantial reduction in ASV error rate
In our pursuit to understand the influence of pathological diversity on ASV, various datasets were combined, 
maintaining the speaker count for training and testing as for the children (see Table 2), with an age distribution 
to match. Upon combining the variations from the “all-children-124” set, we noticed a notable improvement in 
average EER. Specifically, it stood at 4.80± 0.98% , which was considerably better than the control group “ctrl-
plant-C-124” that recorded an EER of 5.72± 1.05% (P= 0.006 ). This data highlights the potential benefits of 
integrating multiple sources of variation in reducing error rates.

Further, when leveraging larger training sets infused with pathological diversity (see Table 2), the EER for the 
mixed pathological group “CLP-dnt-plant-500” was 2.88± 0.25% . In comparison, the EER for the healthy group 
“ctrl-plant-C-500” was 3.04± 0.17% (P= 0.020 ). This reinforces the premise that the pathological group, with 
its inherent diversity, offers an advantage in speaker verification over the relatively homogenous healthy group.

Increase in training speaker number yields logarithmic enhancement in ASV performance
Exploring the impact of training set size on ASV performance, we integrated both pathological and healthy 
speakers from a comprehensive pool of n =3,849. Various speaker groups were drawn from this collective, and 
they underwent our standard training and evaluation processes.

The “all-spk-50” dataset, which comprised 50 speakers, recorded an EER of 5.19± 1.63% . With an 
increased speaker count in the “all-spk-500” dataset, the EER was reduced to 1.87± 0.19% , marking a signifi-
cant improvement with a P < 0.001 . Extending the dataset to 1500 speakers (“all-spk-1500”), the EER further 
decreased to1.15± 0.10% , surpassing the performance of the previous group with a P < 0.001 . When the data-
set was expanded to 3,000 speakers (“all-spk-3000”), the EER diminished to 0.90± 0.05% , outperforming the 
1,500-speaker dataset with a P < 0.001.

This decrement in EER as the number of training speakers increased is visually captured in Fig. 3, which 
underscores the logarithmic reduction of the error rate with an augmented training set size.

Intelligibility of patients is not an influencing factor in ASV
To explore the relationship between intelligibility of the speakers and ASV, we computed correlation coefficients 
between EER results (representing speaker verification metric) and WRR values (indicating speech intelligibil-
ity) of all the experiments. Figure 4 illustrates the correlation coefficients between error rates and recognition 
rates of all the experiments. We observed that the correlation coefficients in all cases were very small. Notably, 
as the number of speakers increased, this correlation diminished even further. Specifically, in the “all-spk-50” 
experiment-wherein all healthy and pathological speech signals from both children and adults were fused and a 
random sample of 50 speakers was taken-the correlation coefficient between EER and WRR stood at 0.22± 0.30 . 
For larger sample sizes, “all-spk-500” had a coefficient of 0.04± 0.09 , “all-spk-1500” showed 0.01± 0.06 , and 
the largest sample, “all-spk-3000”, exhibited an almost non-existent correlation of 0.00± 0.04 . This data strongly 
indicates that the intelligibility of a patient’s speech does not wield substantial influence over the performance 
of an ASV system.

Discussion
This study, drawing from in-depth analysis of recordings of both pathological and healthy subjects, offers strong 
evidence that certain speech pathologies might serve as viable biomarkers in automatic speaker verification 
(ASV). Intriguingly, certain pathological speech forms demonstrated a heightened vulnerability, shedding light 
on the potential risks associated with patient re-identification. Using a state-of-the-art deep learning framework 
for training and evaluation, our research dove deep into these complexities.

Figure 3.  EER results utilizing different training speaker numbers. (a) The original values. The EER values are 
5.19, 1.87, 1.15, and 0.90 for the cases with n =50, 500, 1500, and 3000 speakers, respectively. (b) The resulting 
curve after logarithmic least squares regression according to y = 9.1543237903− 1.0809973418 · ln x . The 
regression coefficient of determination (R2 ) equals 0.95. We observe that increasing total training speaker 
numbers, leads to logarithmic improvement of the ASV performance.
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To objectively gauge the impact of pathology on ASV, rigorous controls were established to address potential 
confounders, such as age distribution, recording conditions, microphone types, audio clarity, and speech intel-
ligibility. Analyzing pathological recordings from n =2581 adults and children, the results illustrated a mean EER 
of 0.89± 0.06 %. Strikingly, this EER is appreciably lower than that in non-pathological datasets like  LibriSpeech30 
or VoxCeleb1 &  231,32. To circumvent biases from random sampling, we derived this result from an average of 
20 repeated trials.

Data from children yielded intriguing insights. Pathological children, on average, exhibited higher EER values 
than their healthy peers. For instance, the “CLP-plant-124” subgroup displayed a 27% surge in EER, under identi-
cal recording conditions as the control group. Conversely, adult data showed decreased error rates for those with 
speech pathologies. This disparity could stem from the ASV model’s inclination towards adult speech patterns, 
coupled with the evolving nature of children’s speech influenced by cognitive development.

Our exploration of the relationship between speech pathologies and ASV efficacy yielded further illuminat-
ing findings. The integration of diverse pathological voices into the dataset notably enhanced ASV accuracy. 
For example, the average EER experienced a significant improvement when varied pathologies from the “all-
children-124” set were included, performing better than the control group. This suggests that incorporating 
multiple sources of variability could be pivotal in refining ASV outcomes.

Moreover, the trend of enhanced ASV performance persisted when the training sets were enriched with 
pathological diversity. For instance, the mixed pathological group’s EER was lower than that of the healthy group, 
emphasizing the potential advantage of pathological diversity in speaker verification.

Delving into the effects of training set size on ASV, we observed that expanding the speaker pool, to include 
both pathological and healthy voices, consistently boosted ASV accuracy. For example, with the increase in 
speakers in datasets like “all-spk-500”, “all-spk-1500”, and “all-spk-3000”, there was a consistent drop in EER. 
Such an incremental improvement with increasing dataset size hints at the potential of large datasets in drasti-
cally enhancing ASV efficacy.

Diving deeper into the potential variables that could influence ASV, we probed the intricacies of speech 
intelligibility. Analyzing the correlation between EER results (indicating ASV performance) and WRR values 
(indicating speech intelligibility) across experiments, we uncovered intriguing patterns. The consistently minimal 

Figure 4.  Correlation coefficients between EER values and WRR values for all the experiments.  dysglossia 
patients with dysglossia who underwent prior maxillofacial surgery,  dysarthria patients diagnosed with 
dysarthria,  dysphonia patients with voice disorders,  CLP children with cleft lip and palate,  dnt recordings 
from the “dnt Call 4U Comfort”  headset27,  plant recordings via Plantronics Inc.  headset28,  logi recordings via 
Logitech International S.A.  headset29,  ctrl control group.  The labels “-A” and “-C” respectively indicate adult 
and children subsets. Numbers appended, such as “-85” in “dysglossia-dnt-85”, represent the total speaker count 
for that experiment. “all-spk” designates experiments combining all dataset speech signals from both adults and 
children, and both pathological and healthy subjects.
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correlation values, especially in larger speaker samples, unequivocally underline that a speaker’s intelligibility 
does not significantly sway ASV system outcomes. This observation challenges the often-presumed importance 
of speech clarity in ASV systems, suggesting that even if a speaker’s utterances are not distinctly clear, it might 
not substantially hamper the system’s verification accuracy. This revelation could have profound implications, 
especially in scenarios where speech anomalies are prevalent.

Our study stands out due to its novel emphasis on the intersection of speech pathologies and ASV. While a 
significant portion of recent ASV research has dedicated efforts to improve algorithms and tackle speaker veri-
fication challenges by utilizing well-established non-pathological datasets-such as  LibriSpeech30 (EER: 3.85% 
on the ’test-clean’ subset with n = 40 test speakers and 3.66% on ’test-other’ subset with n = 33 test  speakers33), 
VoxCeleb  131 (EER: 7.80% with n=40 test speakers), and VoxCeleb  232 (EER: 3.95% with n = 40 test speakers)-there 
is a conspicuous absence of studies that delve into the relationship between speech pathologies and ASV. In our 
initial exploration, we identified a substantially low mean EER of 0.89± 0.06 % when analyzing pathological 
speech patterns. While our research introduces a unique dimension to ASV by examining speech pathologies, 
our results are not directly comparable to those derived from non-pathological conventional datasets because 
of the inherent differences in the characteristics and challenges posed by pathological speech patterns, record-
ing conditions, testing criteria, text-independent or dependent nature of ASV task, etc. Nonetheless, our study 
lays the groundwork for a more profound understanding of ASV systems, particularly in contexts permeated 
by speech anomalies.

Our study had limitations. First, due to the constrained availability of adult subjects, we were unable to har-
monize age distributions among individual adult sub-groups, potentially narrowing the generalizability of our 
findings within adult demographics. To enhance clarity and depth in comparative results, securing additional 
utterances from both patient and healthy adult populations in future studies is paramount. Second, despite 
utilizing a robust, large-scale dataset sourced from an extensive array of participants, our pathological  corpus23 
was circumscribed to specific speech pathologies and voice disorders, namely dysglossia following maxillofa-
cial surgery, dysarthria, dysphonia, and cleft lip and palate. Subsequent research could potentially broaden this 
dataset to encompass additional conditions such as  aphasia15. Furthermore, our pathological  corpus23, though 
diverse in its recording locations - spanning cities like (i) Erlangen, Bavaria, Germany, (ii) Nuremberg, Bavaria, 
Germany, (iii) Munich, Bavaria, Germany, (iv) Stuttgart, Baden-Württemberg, Germany, and (v) Siegen, North 
Rhine-Westphalia, Germany - exclusively features German-language utterances. While we expect that language 
may not correlate with the susceptibility of pathological speech to re-identification, it remains essential to con-
firm these findings across multiple languages to validate and generalize our results. Lastly, although we have 
illuminated the effects of speech pathology across distinct pathology and voice disorder groupings, an important 
area warranting deeper exploration is the examination at an individual level. In our future direction, this will 
be a focal area of emphasis.

In conclusion, our findings elucidate the complex relationship between specific speech pathologies and their 
impact on ASV. We have pinpointed pathologies such as dysphonia and CLP as warranting increased attention 
due to their amplified re-identification risks. Contrary to prevalent beliefs, our study also reveals that pristine 
speech clarity is not pivotal for ASV’s effective operation. The diversity of datasets plays a crucial role in aug-
menting ASV performance, a noteworthy insight for future ASV developments. However, as the demand for 
open-source speech data rises, our study emphasizes the critical need for the development or refinement of 
anonymization techniques. While research in the domain of anonymization is evolving, as indicated by works 
 like18,34–36, there remains a pressing need for techniques specifically attuned to pathological speech. It is impera-
tive for the scientific community to strike a harmonious balance between maximizing the utility of data and 
safeguarding the privacy and rights of individuals.

Methods
Ethics declarations
The study and the methods were performed in accordance with relevant guidelines and regulations and approved 
by the University Hospital Erlangen’s institutional review board (IRB) with application number 3473. Informed 
consent was obtained from all adult participants as well as from parents or legal guardians of the children.

Pathological speech corpus
Initially, we gathered a total of 216.88 hours of recordings from n =4121 subjects using  PEAKS23, a prominent 
open-source tool. Given PEAKS’ extensive use in scientific circles across German-speaking regions since 2009, 
its database offers a comprehensive assortment of recordings reflecting a multitude of conditions. To arrive at 
the finalized dataset, the following steps of intricate analysis were executed:

(i) Recordings missing data points such as WRR, diagnosis, age, microphone, or recording environment were 
purged from the collection. (ii) Recordings that were noisy or of poor quality were also discarded. (iii) Any data 
categorized as ’test’ or deemed irrelevant by examiners were omitted. (iv) Segments of recordings containing the 
examiner’s voice or those from multiple speakers were excised. (v) Leveraging PEAKS’ ability to automatically 
segment recordings into shorter utterances (ranging from 2 to 10 seconds based on voice activity), speakers that, 
post these steps, were left with fewer than 8 utterances were excluded. (vi) Finally, recognizing age as a potentially 
influential variable, the dataset was bifurcated into two major categories: adults and children. This segregation 
was vital to ensure nuanced analyses given the distinctive characteristics and potential performance deviations 
associated with these age groups.

In the end, a total of n =3849 participants were included in this study. Table 1 shows an overview and the 
statistics of the data subsets, i.e., the adults and children. The utilized dataset contained 198.82 hours of record-
ings from n = 2102 individuals with various pathologies and n =1747 healthy subjects. To ensure our results are 
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reliable, we carefully sorted these recordings based on pathology types and recording settings. The utterances 
were recorded at 16kHz sampling frequency and 16 bit  resolution23. All the subjects were native German speakers, 
using different dialects including the standard German (“Hochdeutsch”) as well as local dialects.

Adults
Subjects above the age of 20 were included in the adults subset of our dataset. n =1,502 patients read “Der Nor-
dwind und die Sonne”, the German version of the text “The North Wind and the Sun”, a fable from Aesop. It is 
a phonetically rich text with 108 words, of which 71 are  unique23. Our adult patient cohort had an age range of 
21 to 94 years (mean 61.40± 13.34 and median 62.49). Figure 5a shows the age histogram of the three patient 
groups of adults used in this study (“dysglossia-dnt”, “dysarthria-plant”, and “dysphonia-logi”).

“dysglossia-dnt” represents the group of patients who had dysglossia, underwent a maxillofacial surgery 
before the pathology assessment, and all were recorded using the “dnt Call 4U Comfort”  headset27. Out of all 
the available utterances, we selected those that were recorded using the same microphone. “dysarthria-plant” 

Table 1.  Dataset statistics used in this study. The table provides details on the total number of speakers, 
gender distribution, utterance count, total duration in hours, age range, and word recognition rates (WRRs). 
The corpus is divided into two groups: adults (those aged over 20 years) and children (those aged 20 years 
or younger). Both groups encompass control subsets (“ctrl-plant”) comprising healthy subjects.   dysglossia 
patients with dysglossia who had prior maxillofacial surgery before assessment,  dysarthria patients diagnosed 
with dysarthria,  dysphonia patients with voice disorders,  CLP children diagnosed with cleft lip and palate,  
dnt recordings using the “dnt Call 4U Comfort”  headset27,  plant recordings using a specific Plantronics 
Inc.  headset28,  logi recordings using a specific Logitech International S.A.  headset29,  ctrl control group. The 
suffix “-A” denotes the adult subset, whereas “-C” pertains to the children subset. Age and WRR metrics are 
expressed as mean ± standard deviation.

Total num speakers
Num female 
speakers Num male speakers

Total num 
utterances

Total duration 
[hours]

Mean ± std dev age 
[years]

Mean ± std dev 
WRR [%]

Adults

 dysglossia-dnt 883 245 638 21,338 41.21 60.91± 11.95 62.61± 15.96

 dysarthria-plant 533 258 275 7128 13.37 62.70± 15.29 69.11± 12.70

 dysphonia-logi 86 10 76 900 1.67 59.28± 10.67 51.78± 15.84

 Sum patients 1502 513 989 29,366 56.25 61.40± 13.34 63.37± 15.78

 ctrl-plant-A 85 42 43 891 1.60 23.93± 15.62 73.72± 15.69

Children

 CLP-dnt 476 216 260 16,964 34.63 9.69± 3.98 48.28± 17.30

 CLP-plant 124 58 66 4120 7.88 9.27± 2.58 57.61± 13.86

 Sum patients 600 264 326 21,084 42.51 9.58± 3.71 50.12± 17.07

 ctrl-plant-C 1662 900 761 54,896 98.46 12.16± 3.72 65.87± 12.44

Figure 5.  Age histograms of the patient groups. (a) The adults; (b) The children group. dysglossia patients 
with dysglossia who underwent prior maxillofacial surgery.  dysarthria patients diagnosed with dysarthria,   
dysphonia patients with voice disorders,  CLP children with cleft lip and palate,  dnt recordings from the “dnt 
Call 4U Comfort”  headset27,  plant recordings via Plantronics Inc.  headset28,  logi recordings via Logitech 
International S.A.  headset29.
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is a group of patients who had dysarthria and underwent speech therapy and all were recorded using a specific 
headset from Plantronics Inc.28. “dysphonia-logi” represents the patients who had voice disorders and all were 
recorded using a specific headset from Logitech International S.A.29. Finally, as a control group (“ctrl-plant-A”), 
n = 85 healthy individuals were asked to undergo the test using the same Plantronics  headset28.

Children
Six hundred children with an age range of 2− 20 years old (mean 9.58± 3.71 and median 9.12) were included 
in the study. The test, namely the PLAKSS test, consisted of slides that showed pictograms of the words to be 
named. In total, the test contained 97 words which included all German phonemes in different positions. Due 
to the fact that some children tended to explain the pictograms with multiple words, and some additional words 
were uttered in between the target words, the recordings were automatically segmented at pauses that were 
longer than  1s23. Figure 5b illustrates the age histogram of the two patient groups of children used in this study 
(“CLP-dnt” and “CLP-plant”).

“CLP-dnt” represents children with cleft lip and palate (CLP), which is the most common malformation of the 
head with incomplete closure of the cranial vocal  tract27,37–39, which all were recorded using the same “dnt Call 
4U Comfort”  headset27 as for the adults. Finally, as a control group (“ctrl-plant-C”), n =1,662 healthy children 
were asked to undergo the test with similar recording conditions as in “ctrl-plant-A”.

Experimental design
Table 2 shows an overview of the different experiments performed in this study.

Analysis of impact of pathology on ASV performance
Initially, the study aimed to analyze the performance of automatic speaker verification (ASV) systems on record-
ings from individuals with various speech pathologies. For each category of adults, recordings were sourced 
from 85 predetermined speakers. As reflected in Table 1, a precise age match for adults was challenging due to 
the limited recordings available. Nonetheless, 20% of the speakers were assigned to the test set and 80% to the 
training set. This selection and allocation process was iterated 20 times. For the children’s group, given the limited 
population size of the “CLP-plant” subgroup as seen in Table 1, recordings from n = 124 speakers were chosen, 
aiming for an average age close to 9.30± 2.60 . These speakers were similarly divided, with 20% for testing and 
80% for training, and this procedure was repeated 20 times.

Effect of pathological diversity
The study further investigated the influence of pathology diversity on speaker verification performance. Con-
sistent with data in Fig. 2, the same number of speakers for both training and testing was maintained, with a 
focus on closely matching age distribution. By pooling all patient data, the study contrasted the results against 
a control group. As indicated in Table 1, for children, both age and size consistency were achievable due to the 
extensive recordings from healthy subjects. Following the established protocol, 20 iterations were conducted 
where n = 400 speakers with a mean age of 10.29± 0.13% and a mean total duration of 26.55± 0.58% were 

Table 2.  Overview of the experiments performed in this study.  dysglossia patients with dysglossia who 
underwent prior maxillofacial surgery,  dysarthria patients diagnosed with dysarthria,  dysphonia patients 
with voice disorders,  CLP children with cleft lip and palate,  dnt recordings from the “dnt Call 4U Comfort” 
 headset27,  plant recordings via Plantronics Inc.  headset28,  logi recordings via Logitech International S.A. 
 headset29,  ctrl control group. The labels “-A” and “-C” respectively indicate adult and children subsets. 
Numbers appended, such as “-85” in “dysglossia-dnt-85”, represent the total speaker count for that experiment. 
“all-spk” designates experiments combining all dataset speech signals from both adults and children, and both 
pathological and healthy subjects.

Experiment name Total num speakers Subset Pathology Microphone

dysglossia-dnt-85 85 Adults Dysglossia dnt Call 4U

dysarthria-plant-85 85 Adults Dysarthria Plantronics

dysphonia-logi-85 85 Adults Dysphonia Logitech

ctrl-plant-A-85 85 Adults None (healthy) Plantronics

CLP-dnt-124 124 Children CLP dnt Call 4U

CLP-plant-124 124 Children CLP Plantronics

ctrl-plant-C-124 124 Children None (healthy) Plantronics

all-children-124 124 Children Mixture of CLP & healthy dnt Call 4U & Plantronics

CLP-dnt-plant-500 500 Children CLP dnt Call 4U

ctrl-plant-C-500 500 Children None (healthy) Plantronics

all-spk-50 50 Adults & children Mixture of all & healthy Mixture of all

all-spk-500 500 Adults & children Mixture of all & healthy Mixture of all

all-spk-1500 1500 Adults & children Mixture of all & healthy Mixture of all

all-spk-3000 3000 Adults & children Mixture of all & healthy Mixture of all
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selected for training. Meanwhile, 100 speakers with a mean age of 10.05± 0.48% and a mean total duration of 
6.80± 0.30% were designated for testing from the combined “CLP-dnt” and “CLP-plant” patient groups. Concur-
rently, 400 speakers with a mean age of 11.72± 0.10% and a mean total duration of 24.08± 0.55% for training 
and n = 100 speakers with a mean age of 11.70± 0.33% and a mean total duration of 6.03± 0.32% for testing 
were chosen from the “ctrl-plant-C” group.

Training size’s influence
This section explored the effect of training set size on ASV system performance. Using recordings from different 
patient groups alongside a control set, the selection was determined by age and recording duration. To specifically 
assess training size impact, all n = 3849 available pathological and healthy speakers were amalgamated. Different 
quantities of speakers were randomly chosen for the routine training and evaluation steps: n = 50 , 500, 1500, 
and 3000 speakers. For each group, 20% was allocated to the test set and 80% to the training set. Each sampling 
and evaluation cycle was reiterated 20 times to consider random variations.

Intelligibility’s effect
The final phase was a correlation analysis, aiming to discern the relationship between speaker clarity (meas-
ured by intelligibility metrics) and ASV system performance metrics. This correlation explored the connection 
between EER results and WRR values throughout all experimental stages, offering insights into pathological 
speech nuances within speaker verification systems.

DL‑based ASV system
Although DL-based methods, generally, outperform the classical speaker recognition methods, for instance, the 
i-vector  approach40–42, in the context of text-independent speaker verification (TISV), the i-vector framework and 
its variants are still the state-of-the-art in some of the  tasks43–46. However, i-vector systems showed performance 
degradation when short utterances are met in enrollment/evaluation  phase44. Given that the children subset 
of our corpus contains a large amount of utterances with short lengths (less than 4 s), due to the nature of the 
PLAKSS test it makes sense for us to select a generalized TISV model, which can address our problem better. 
According to the results reported  in44,47,48, end-to-end DL systems achieved better performance compared to the 
baseline i-vector  system41, especially for short utterances. A major drawback of these systems is the time and cost 
required for training. Because of the nature of this study, we aimed at performing a considerable number of differ-
ent experiments. Therefore, having a state-of-the-art end-to-end TISV model, which requires less training time 
is crucial. Thus, we chose to utilize the Generalized End-to-End (GE2E) TISV model proposed by Wan et al.49, 
which enabled us to process a large number of utterances at once and greatly decreased the total training and 
convergence  time33. The final embedding vector (d-vector) eji was the L2 normalization of the network output and 
represents the embedding vector of the jth speaker’s ith utterance. The centroid of the embedding vectors from 
the jth speaker [ej1, . . . , ejM ] cj was defined as the arithmetic mean of the embedding vectors of the jth speaker.

The similarity matrix Sji,k was defined as the scaled cosine similarities between each embedding vector eji 
to all centroids ck (1 ≤ j, k ≤ N  , and 1 ≤ i ≤ M) . Furthermore, removing eji when computing the centroid of 
the true speaker made training stable and helps avoid trivial  solutions49. Thus, the similarity matrix could be 
written as following:

with w and b being the trainable weights and biases. As we can see, unlike most of the end-to-end methods, 
rather than a scalar value, GE2E builds a similarity matrix that defines the similarities between each eji and all 
centroids ck.

We put a SoftMax on Sji,k for k = 1, . . . ,N that makes the output equal to one if k = j , otherwise makes the 
output equal to zero. Thus, the loss on each embedding vector eji could be defined as:

Finally, the GE2E loss LG is the mean of all losses over the similarity matrix ( 1 ≤ j ≤ N , and 1 ≤ i ≤ M):

Training steps
By specifying a set of clear training and evaluation steps for all the experiments, we aimed at standardizing our 
experiments and preventing influences of non-pathology factors. We followed a similar data pre-processing 
scheme as  in33,49,50 and pruned the intervals with sound pressures below 30 db. Afterward, we performed voice 
activity  detection51 to remove the silent parts of the utterances, with a window length of 30 ms, a maximum 
silence length of 6 ms, and a moving average window of the length 8 ms. Removing silent parts, we ended up with 
partial utterances of each utterance, where we merely chose the partial utterances which have a minimum length 
of 1825 ms for training, due to the fact that our dataset contained utterances with a 16 kHz sampling rate. Our 
final feature representations were 40-dimensional log-Mel-filterbank energies, where we used a window length 

(1)Sji,k =

{

w · cos(eji , c
(−i)
j )+ b if k = j

w · cos(eji , ck)+ b otherwise,

(2)L(eji) = −Sji,j + log

N
∑

k=1

exp(Sji,k).

(3)LG =
1

M · N

∑

j,i

L(eji).
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of 25 ms with steps of 10 ms and, i.e., a short time Fourier transform (STFT) of size of 512. To prepare training 
data batches, similar  to49, we selected N different speakers and fetched M different utterances for every selected 
speaker to create a training batch. Furthermore, while we could have batches with different partial utterance 
lengths, due to the fact that all the partial utterances of each training batch should have the same  length49, we 
randomly segmented all the partial utterances of each training batch to have the same length. All the procedures 
to pre-process raw input waveforms and prepare training batches are explained in Algorithm 1.

Our network architecture, which is shown in Fig. 6, consisted of 3 long short-term memory (LSTM)  layers52 
with 768 hidden nodes followed by a linear projection layer in order to get to the 256-dimensional embedding 
 vectors53. The L2 norm of gradient was clipped at  354. In order to prevent coincidental training cases, the Xavier 
normal  initialization55 was applied to the network weights and the biases were initialized with zeros for all the 
experiments. The  Adam56 optimizer was selected to optimize the model. Depending on each individual experi-
ment and more specifically, its training set, we chose a different learning rate per experiment from 10−5 to 10−4 , 
in a way that the network converges the best. For all of the experiments, during training, we selected N = 16 
speakers and M = 4 partial utterances per speaker. Moreover, no pre-trained model was used during training 
of each experiment, and we always started training from scratch with the same initialization.

Evaluation method
For the evaluation of the trained networks, we followed the same data pre-processing steps as for training, with 
the only difference that, during evaluation, we concatenated all the partial utterances corresponding to each 
utterance before feeding them to the network. Then, as proposed by Wan et al.49, we applied a sliding window 
of a fixed size (160 frames) with 50% overlap to the concatenated utterances and performed an element-wise 
averaging on the d-vectors to get the final d-vector representation of the test utterance. Furthermore, Tayebi 
 Arasteh33 showed that the choice of the parameter M for evaluation is an influencing factor in the resulting 
prediction, i.e., the more enrollment utterances, usually, the better prediction for test utterances. Therefore, we 
decided to report the results for M = 2 , where we have only one enrollment utterance (during the calculation of 
centroid of the true speaker, we excluded the utterance itself as proposed by Wan et al.49), as we did not see large 
deviations for other choices of M in results which cannot be reported here for brevity. The results for M = 4 are 

Algorithm 1.  Training data preparation steps.

Figure 6.  The architecture of the utilized text-independent speaker verification model. The inputs of the 
network are 40-dimensional log-Mel-filterbank energies, which are the results of performing data pre-
processing steps on raw utterances. The numbers above each arrow represent the feature dimensions at each 
step. The final 256-dimensional d-vectors are the L2 normalization of the network outputs.
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reported in the supplementary information (see Table S1). For each experiment, we chose the batch size N to 
be equal to the total number of the test speakers during evaluation. To prevent the effect of random sampling 
in choosing recordings of training and testing for different experiments, we repeated each experiment 20 times 
and calculated the statistics accordingly. All the steps to pre-process raw input waveforms for enrollment and 
evaluation as well as the steps for preparing final d-vectors are stated in Algorithm 2.

Quantitative analysis metric
As our main quantitative evaluation metric, we chose EER, which is used to predetermine the threshold values 
for its false acceptance rate (FAR) and its false rejection rate (FRR)57,58. It looks for a threshold for similarity 
scores where the proportion of genuine utterances which are classified as imposter, i.e., the FRR is equal to the 
proportion of imposters classified as genuine, i.e., the  FAR33. The similarity metric, which we use here, is the 
cosine distance score, which is the normalized dot product of the speaker model and the test d-vector:

The higher the similarity score between eji and ck is, the more similar they are. We report the EER values in 
percent throughout this paper.

Statistical analysis
Descriptive statistics are reported as median and range, or mean ± standard deviation, as appropriate. Normality 
was tested using Shapiro-Wilk  test59. A two-tailed unpaired t-test was used to compare two groups of EER data 
with Gaussian distributions. A P � 0.05 was considered statistically significant.

Hardware
The hardware used in our experiments were Intel CPUs with 18 and 32 cores and 32 GB RAM and Nvidia GPUs 
of GeForce GTX 1080 Ti, V100, RTX 6000, Quadro 5000, and Quadro 6000 with 11 GB, 16 GB, 24 GB, 32 GB, 
and 32 GB memories, respectively.

Data availability
The speech dataset used in this study is not publicly available as it is internal data of patients of the University 
Hospital Erlangen. A reasonable request to the corresponding author is required for accessing the data on-site 
at the University Hospital Erlangen in Erlangen, Bavaria, Germany.

Code availability
The full source code including training and evaluation of the recurrent neural networks, data pre-processing 
and feature extraction steps, and analysis of the results are publicly available at https:// github. com/ tayeb iaras teh/ 
patho logy_ ASV. All the code is developed in Python 3.9. The PyTorch 1.13 framework is used for deep learning.

(4)cos(eji , ck) =
eji · ck

�eji� · �ck�
.

Algorithm 2.  Enrollment and evaluation data preparation followed by d-vector creation steps.

https://github.com/tayebiarasteh/pathology_ASV
https://github.com/tayebiarasteh/pathology_ASV
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