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Predicting stereotactic 
radiosurgery outcomes 
with multi‑observer qualitative 
appearance labelling versus MRI 
radiomics
David A. DeVries 1,2*, Terence Tang 3, Ali Albweady 4, Andrew Leung 5, Joanna Laba 3,6, 
Carol Johnson 2, Frank Lagerwaard 7, Jaap Zindler 8,9, George Hajdok 1 & Aaron D. Ward 1,2,6

Qualitative observer‑based and quantitative radiomics‑based analyses of T1w contrast‑enhanced 
magnetic resonance imaging (T1w‑CE MRI) have both been shown to predict the outcomes of brain 
metastasis (BM) stereotactic radiosurgery (SRS). Comparison of these methods and interpretation of 
radiomics‑based machine learning (ML) models remains limited. To address this need, we collected a 
dataset of n = 123 BMs from 99 patients including 12 clinical features, 107 pre‑treatment T1w‑CE MRI 
radiomic features, and BM post‑SRS progression scores. A previously published outcome model using 
SRS dose prescription and five‑way BM qualitative appearance scoring was evaluated. We found high 
qualitative scoring interobserver variability across five observers that negatively impacted the model’s 
risk stratification. Radiomics‑based ML models trained to replicate the qualitative scoring did so with 
high accuracy (bootstrap‑corrected AUC = 0.84–0.94), but risk stratification using these replicated 
qualitative scores remained poor. Radiomics‑based ML models trained to directly predict post‑SRS 
progression offered enhanced risk stratification (Kaplan–Meier rank‑sum p = 0.0003) compared to using 
qualitative appearance. The qualitative appearance scoring enabled interpretation of the progression 
radiomics‑based ML model, with necrotic BMs and a subset of heterogeneous BMs predicted as 
being at high‑risk of post‑SRS progression, in agreement with current radiobiological understanding. 
Our study’s results show that while radiomics‑based SRS outcome models out‑perform qualitative 
appearance analysis, qualitative appearance still provides critical insight into ML model operation.

Brain metastases (BMs) form when cancer spreads to the brain, and are a hallmark of advanced disease. As 
improvements in cancer treatments have increased patients’ life expectancies, their risk of developing BMs at 
some point during the course of their disease has increased to 10–20%1. Given the symptoms and risks associated 
with BMs, and the short median survival of 8–16  months2 associated with BMs, it is critical that BM patients 
receive the most appropriate treatment as soon as possible.

Treatment options for BMs currently include surgical resection, whole brain radiation therapy (WBRT), or 
stereotactic radiosurgery (SRS)3,4. Surgical resection is recommended for patients with a favourable prognosis 
who present with few and accessible BMs. WBRT irradiates the entire brain and is non-invasive, avoiding 
standard surgical risk, but has a higher prevalence of neurocognitive decline post-treatment. In contrast, SRS 
limits the risk of neurocognitive toxicity by targeting only the BMs with radiation delivered with high doses in 
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1–3  fractions5. Stereotactic radiotherapy (SRT) is similar to SRS, except that it is delivered in more than three 
fractions, usually to larger BMs or post-surgical cavities.

SRS is highly effective, but up to 30% of treated BMs can progress post-SRS, constituting a treatment  failure5. 
Escalation of SRS dose may reduce this failure rate, but may also increase the risk of  toxicity6,7. Therefore, devel-
oping predictive models of BM response to SRS would aid in decision making to balance the risk of treatment 
failure and toxicity.

Previous studies have used qualitative interpretation of BM appearance in pre-treatment contrast-enhanced 
T1-weighted magnetic resonance imaging (T1w-CE MRI) or X-ray computed tomography to predict the out-
come of  WBRT8 and  SRS9–13. These studies labelled BMs as either being “homogeneous”, “heterogeneous”, or 
“ring-enhancing”, and generally found that “homogeneous” BMs had the lowest risk of progression post-SRS, 
followed by “heterogeneous”, and then finally “ring-enhancing” BMs. It was hypothesized that the uniform uptake 
of contrast by a BM’s vasculature shown by “homogeneous” enhancement indicates strong oxygenation, which 
is linked to enhanced cell kill from radiation exposure.

Rodrigues et al.14 presented a more advanced BM qualitative appearance interpretation using five (instead of 
three) qualitative labels: “homogeneous”, “heterogeneous”, “cystic (simple)”, “cystic (complex)”, and “necrotic”. 
In a recursive partitioning analysis (RPA) on multiple outcome predictors, they produced a model (henceforth 
referred to as “the RPA model”) that stratified BMs by risk of progression post-SRS using the SRS dose and frac-
tionation prescription, and BM appearance (Fig. 1a). The BMs receiving a less aggressive SRS prescription were 
at a higher risk of progression, and within this group, BMs labelled as “heterogeneous” or “necrotic” were at the 
highest risk of progression. In contrast to the other appearance scoring approaches described above, this RPA 
model was specifically developed for outcome prediction using multiple variables and uses the most descriptive 
qualitative appearance labels to date, and so represents the most advanced predictive model of progression post-
SRS using qualitative appearance scoring. While this RPA model has potential clinical benefit, the interobserver 
variability of the qualitative appearance labelling has not yet been measured.

Figure 1.  Models used for risk stratification of BMs for progression post-SRS. Each model stratifies BM into 
four risk groups, with group “1” intended to be BMs at the lowest risk for progression and each next group being 
at higher risk for progression. (a) Shows the original RPA model. The “Clinician Observer” could be any of the 
five observers, as well as the expert observer consensus. (b) Shows the replacement of the “Clinician Observer” 
in (a) with the five radiomic appearance label experiments’ results, each using one of the five appearance 
labels scored by either Expert 1 or the expert consensus. (c) Shows the integration of the radiomic progression 
experiment results into the RPA model structure. While the left and right branches use the same experimental 
results from a single ML experiment using the entire dataset, they use different ROC operating points to 
separate “low” versus “high” probabilities of progression. The direct model in (d) is no longer based on the RPA 
model, but rather only on the radiomic and clinical progression experiment’s results. Three ROC operating 
points (one at each split in the tree) were used to assign a risk group for a BM’s given probability of progression. 
Supplementary Fig. S2 provides further details on the ML experiments used for (b–d) and how ROC operating 
points were chosen for the probability splits in (c) and (d). Abbreviation: fx (fractions).
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More recently, machine learning (ML) and quantitative radiomic analysis of MRI have also been used to suc-
cessfully predict outcomes of  SRS15–23, post-surgical  SRS24, and  SRT25–28. Radiomics involves extracting quantita-
tive features from medical images, which are then typically coupled with complex ML models to predict a value 
of  interest29,30. While these radiomic-based ML models provide objective, quantitative, automated, and highly 
accurate prediction of SRS outcomes, their complexity and the abstract nature of their underlying radiomic 
features causes their operation to remain largely uninterpretable. ML models can be used clinically without 
complete interpretation of their operation, but this lack of model interpretation can make clinical translation 
and future research hypothesis generation more difficult.

Comparison between qualitative and quantitative approaches to BM SRS outcome prediction is also impor-
tant. Kawahara et al.18 and Gutsche et al.16 both produced radiomic ML models predicting post-SRS progression, 
and compared them to a simple qualitative model using only the three-way “homogeneous”, “heterogeneous”, 
or “ring-enhancing” appearance labelling. Both found their ML models to be superior to the qualitative models, 
which were found to have low accuracy (44–62%). Neither study examined the more specific five-way appear-
ance labelling of the RPA model, the more clinically relevant multi-variable RPA model using this labelling, nor 
performed risk stratification analysis to directly compare their results to the original BM qualitative appearance 
studies. Radiomic ML model operation could also be interpreted using qualitative appearance labels, allow-
ing for model behaviour to be linked to biological hypotheses, encouraging clinical translation and informing 
research efforts.

Given the open questions surrounding the use and comparison of qualitative and quantitative MRI analysis 
for BM SRS outcome prediction, we conducted a study that uses established MRI radiomic techniques and 
presents novel analysis that examines the interobserver variability of qualitative appearance labelling, compares 
qualitative and quantitative techniques, and uses qualitative appearance labels to interpret complex radiomic 
models. Our study therefore addresses the following research questions:

1. What is the interobserver variability of the BM qualitative appearance scoring used by the RPA model?
2. Does the interobserver variability in appearance scoring decrease the RPA model’s ability to stratify BMs for 

risk of post-SRS progression?
3. Can radiomics-based ML models replicate the qualitative appearance labelling performed by clinicians, and 

what impact do these models’ inaccuracies have on risk stratification using the RPA model?
4. Do radiomics-based ML models directly predicting post-SRS progression provide enhanced risk stratifica-

tion compared to qualitative appearance-based models?
5. Do BMs of different qualitative appearance labels have different probabilities of post-SRS progression pre-

dicted by radiomics-based ML models?
6. Are the feature importance scores of radiomics-based ML models correlated with biologically-relevant quali-

tative appearance labels?

Methods
Study sample
Our study’s sample consisted of 99 patients randomly selected from the original cohort studied by Rodrigues 
et al.14, for which the pre-treatment T1w-CE MRI was made available. The original cohort was collected retro-
spectively at the Amsterdam University Medical Centre (AUMC, The Netherlands), and so excluded patients with 
highly symptomatic BMs or poor prognosis. For the retrospective data collection, only patients who received first-
line SRS for newly diagnosed, radiologically confirmed BMs were included. Any patients without pre-treatment 
or follow-up MRI were excluded. All patients were treated between 2003 and 2011 using linear-accelerator based 
SRS on a Novalis/Novalis TX unit (BrainLAB, Feldkirchen, Germany). BMs were prescribed 15, 18, or 21 Gy 
in one fraction, or 24 Gy in three fractions, with smaller BMs receiving the more aggressive prescriptions. Up 
to three BMs were treated concurrently per patient, and so a total of n = 123 BMs were individually analyzed.

Clinical features and study endpoint
For each patient and BM, a set of 12 clinical features was available. These features were patient sex, age, primary 
cancer active status, primary cancer site, primary cancer histology, extracranial metastases status, systemic 
therapy status, neurological symptoms response to corticosteroids, and Eastern Cooperative Oncology Group 
(ECOG) score, along with per BM volume, location (supra vs. infratentorial), and SRS prescription. Supple-
mentary Table S1 provides a summary of all the clinical features and their distributions for our study sample. 
Since Kaplan–Meier (KM) analysis was performed, post-SRS survival or follow-up length per patient was also 
collected to provide censorship data.

For each BM, post-SRS progression was defined radiographically using longitudinal post-treatment MRI. As 
the original dataset was collected before the introduction of the standardized Response Assessment in Neuro-
Oncology Brain Metastases (RANO-BM)  protocol31, a non-standard measurement technique was used. In this 
technique, each BM’s maximum diameters in three perpendicular directions (superior-inferior, mediolateral, 
posterior-anterior) were measured by a single, expert radiation oncologist and then their product was taken. If 
this product increased by ≥ 25% in any of the follow-up MRI post-SRS, the BM would be scored as “progression” 
(or positive/+) and scored as “no progression” (or negative/−) otherwise, defining a binary progression label. The 
RANO-BM protocol requires a maximum diameter across the BM without exiting the BM to be measured, and 
so RANO-BM scores could not be calculated from the existing progression scoring technique.

A confounder in all BM studies that use radiographically-defined endpoints is pseudo-progression, in which 
a BM can appear to grow in size, but this growth is unrelated to true cancerous  progression6. All BMs scored 
as progression were reviewed by an expert clinician, who used longitudinal MRI and accompanying patient 
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medical records to determine if pseudo-progression was present. If pseudo-progression had occurred, the BM 
was rescored as “no progression” (−).

Imaging data and radiomic features
For each patient, pre-treatment T1w-CE MRI and BM region-of-interest (ROI) contours were collected. T1w-CE 
MRI was acquired pre-SRS for radiation treatment planning. Five scanner models were represented in our study 
sample, across which a total of eight different acquisition orientation and voxel size configurations were used 
(see Supplementary Table S2 for full details). Each BM’s ROI was defined by the gross tumour volume (GTV) 
planning contour that was manually drawn in three-dimensions by an expert clinician using the outer edge of 
the MRI contrast enhancement.

The MRI data was pre-processed and then radiomic features were extracted for each BM’s ROI. To account 
for variability in voxel resolution and intensity scaling across MR scanner models, the MRI data was pre-pro-
cessed by first using the mean and standard deviation of all voxel values within the brain to apply a Z-score 
normalization at three standard  deviations32. The image was then linearly interpolated to a common voxel 
size of 0.5 × 0.5 × 0.5  mm3, as 0.5 mm was the smallest voxel dimension present in the dataset (Supplementary 
Table S2). After pre-processing, 107 radiomic features were extracted from the MRI for each BM’s ROI using 
PyRadiomics v3.0.129 in Python v3.6.13 with 64 intensity bins used where applicable (full feature list in Sup-
plementary Table S3).

Machine learning experimental design
Our ML experiments were all conducted using Matlab 2019b v9.7.0.1190202 (The Mathworks Inc., Natick, USA) 
based on a common template. This template consisted of a random decision forest (RDF) model that was trained 
and tested using a 250-iteration bootstrapped resampling technique across patients to avoid data leakage. During 
each iteration, the training dataset would be used to perform inter-feature correlation filtering, hyper-parameter 
optimization, and training of the RDF, which then would be tested using the iteration’s testing dataset (further 
details in Supplementary Figure S1 and Table S4).

For each ML experiment performed in our study, error metrics were calculated by aggregating the prediction 
probabilities of each testing dataset across all bootstrapped iterations. We used these probabilities to form an 
average receiver operating characteristic (ROC) curve with associated 95% confidence interval (CI) and area 
under the ROC (AUC). The average AUC from a bootstrapped resampling experiment is known to underestimate 
performance, and so we separately reported the common AUC 0.632+  correction33. To calculate the misclassification 
rate (MCR), false negative rate (FNR), and false positive rate (FPR), an operating point on the ROC curve needed 
to be chosen without using the ROC curve itself to prevent bias. To do so, the predicted probabilities of the train-
ing dataset out-of-bag samples from the RDF training process were aggregated across bootstrapped iterations to 
form an ROC curve based on the training datasets. The upper-left operating point with the shortest distance to 
point (0, 1) on this ROC curve was found and then transferred to the testing datasets’ ROC curve, allowing the 
MCR, FPR, and FNR with associated 95% CIs to be calculated (see Supplementary Figure S1 for more details).

Qualitative appearance interobserver variability
To investigate the question of interobserver variability in appearance labelling and replicability of the RPA 
model (research question 1), we recruited four clinicians from the London Health Sciences Centre (LHSC) in 
Canada (see Table 1) to repeat the labelling of each BM to compare against Rodrigues et al.’s original observer 
(henceforth referred to as “Expert 1”)14. This new set of clinicians relabelled all BMs as “homogeneous”, “het-
erogeneous”, “cystic (simple)”, “cystic (complex)”, or “necrotic” using only the same pre-treatment T1w-CE MRI 
available originally to Expert 1. We developed a custom application in Slicer v4.11.2021022634 that was used to 
sequentially display interactive axial, sagittal, and coronal views of each BM to the observers and record their 
appearance labelling results. After the appearance labelling, confusion matrices across the five appearance labels 
were created for each possible pair of observers, agreement rates were calculated (number of BMs with same 
appearance label from both observers divided by total number of BMs), and Fleiss’ kappa test was performed 
using SAS v9.4 (SAS Institute Inc., Cary, USA).

To address research question 2, we then applied the RPA model to each BM (Fig. 1a), but with the appear-
ance labels from each observer. KM analysis of the BM risk of progression stratification was then performed 
per observer and SAS was used to perform the KM log-rank test across all groups. The appearance labels across 
the three expert observers were also used to generate a set of “expert consensus” qualitative labels, in which 

Table 1.  Study observers that provided qualitative appearance labels for all BMs.

Observer Clinical speciality Medical centre Initials

Expert 1 Radiation Oncology VUMC, The Netherlands J.Z

Expert 2 Radiation Oncology LHSC, Canada J.L

Expert 3 Neuro-radiology LHSC, Canada A.L

Trainee 1 Radiation Oncology LHSC, Canada T.T

Trainee 2 Neuro-radiology LHSC, Canada A.A
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BMs received the common label chosen by a majority of the expert observers. Separate KM analysis was also 
performed using this expert consensus labelling with the RPA model.

Qualitative appearance machine learning models
We explored research question 3 on replicating qualitative appearance labelling with ML by first using the 
BM qualitative appearance labels from Expert 1 to train ML models. As shown in Supplementary Fig. S2a, 
bootstrapped resampling ML experiments based on the previously described template were performed using 
the radiomics features as model input and one of the appearance labels as the model output. Therefore, an ML 
experiment was performed to label BMs as “homogeneous” or “not homogeneous”, another for labelling them as 
“heterogeneous or “not heterogeneous”, and similarly for the remaining appearance labels. The term “radiomic 
Expert 1 appearance experiments” is defined here to refer to these ML experiments. A binary model was trained 
for each of the five qualitative appearance labels. Binary models were used instead of a single five-way model as 
it allowed for the radiomic signature of each appearance label to be individually analyzed. This design decision 
therefore allows the model interpretation analysis described in a subsequent section to be performed for each 
qualitative appearance.”

The results of the five radiomic Expert 1 appearance experiments were first used to calculate error metrics 
associated with replicating each appearance label. For each experiment, the testing dataset prediction probabilities 
could be aggregated across the bootstrapped iterations to provide an average prediction probability per BM. The 
distance of this average probability per BM from each experiment’s optimal ROC operating point could then 
be found, and the maximum value taken across the five appearance label experiments to assign a qualitative 
appearance label to each BM (see Supplementary Fig. S2a). The RPA model was then used again, except with 
the appearance labels assigned by the ML models (as shown in Fig. 1b), and the same KM analysis performed. 
This entire methodology was then repeated in additional experiments to also explore using the expert consensus 
appearance labels to train the ML models instead of the appearance labels from Expert 1. These experiments will 
be referred to as the “radiomic consensus appearance experiments”.

Post‑SRS progression machine learning models
To address research question 4, we then examined the scenario in which instead of training ML models to provide 
qualitative appearance labels, the radiomic features would be used to directly predict if a BM would progress 
post-SRS. A ML model would therefore be unconstrained by trying to replicate clinician-based qualitative appear-
ance labels and be able to find arbitrary radiomic signatures that were the most predictive of BM SRS response. 
This is the same technique employed by other ML studies, and so allowed our study to compare between the 
qualitative-based and quantitative-based approaches to SRS outcome prediction.

First, an ML experiment was conducted using only the radiomic features as the model input and BM post-SRS 
progression as the output using the common experiment template (see Supplementary Fig. S2c). This experiment 
will be henceforth referred to as the “radiomic progression experiment”. Error metrics were calculated from the 
experiment results along with average predicted probabilities of progression per BM across the bootstrapped 
iterations. As shown in Fig. 1c, the SRS dose and fractionation prescription split from the RPA model was still 
used to provide the first stratification of BMs, but after this the average predicted probability of progression 
from the ML experiment replaced the qualitative appearance labels to perform the final stratification splits. To 
provide comparison to the other RPA model results, the same KM analysis was performed on this new BM risk 
stratification.

Next, a second ML experiment was conducted using both the radiomic and clinical features to predict post-
SRS progression, henceforth referred to as the “radiomic and clinical progression experiment” (see Supplemen-
tary Fig. S2d). This approach allowed for the RPA model to be completely unused, with the ML model instead 
being able to completely optimize the use of clinical and radiomic features to make its post-SRS progression 
predictions. To provide comparison to the RPA models results, a stratification with four risk groups was still 
performed, and so a two-layer splitting of BMs based on their average predicted progression probability from 
the ML experiment was used, as shown in Fig. 1d.

Post‑SRS progression machine learning model interpretation
To answer research question 5 and gain insight into the radiomic signature from the radiomic progression experi-
ment, we first analyzed if the predicted probabilities from the radiomic progression experiment’s ML models were 
related to the more interpretable qualitative appearance labels. To do so, we took the average predicted probabili-
ties of post-SRS progression per BM and then grouped them based on the expert consensus appearance labels 
(see Supplementary Fig. S2b). The statistical distributions of the predicted probabilities per appearance label were 
then compared using the Kruskal–Wallis test to compare distribution separation across all appearance labels.

We also analyzed the feature importance scores inherently provided by the RDFs trained within our experi-
ments to investigate research question 6 by examining if any features were important in both the radiomic 
progression experiment and the radiomic consensus appearance experiments. For a given experiment, the RDF 
importance scores were normalized between 0 and 1 for each bootstrapped iteration, with 1 representing the 
most important feature. Features that were removed before model training by the inter-feature correlation fil-
ter received a score of 0. Each feature’s scores were then averaged across all bootstrapped iterations, and then 
renormalized between 0 and 1. We then selected the highly important features from the radiomic progression 
experiment (importance score ≥ 0.75) and determined whether these features were similarly important for any 
of the radiomic consensus appearance experiments.

Lastly, the identified highly important features underwent accumulated local effects (ALE) analysis. ALE 
analysis provides plots for each feature in which the change in a complex ML model’s predicted probability (of 
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post-SRS progression or an appearance label) is shown on the y-axis as a function of the change in the feature’s 
value along the x-axis, spanning from the feature’s minimum to maximum value represented in the dataset. ALE 
plots therefore show if a feature leads to an increase or decrease in a model’s predicted probability (negative or 
positive ALE plots values), as well as at which values of the feature these changes in predicted probability occur. 
The calculation details for ALE plots are given in the following  references35,36, which we applied by calculating 
a feature’s ALE values for each bootstrapped iteration in an experiment, and then averaging across iterations to 
get a single ALE plot per feature. This calculation was performed for each highly important feature across the 
six radiomic progression and consensus appearance experiments. For a single feature, the ALE plots of post-SRS 
progression and a given qualitative appearance were compared by taking the Pearson correlation coefficient (ρ) 
between them. If a strong positive correlation coefficient was found, then the feature predicted both progression 
and the qualitative appearance for the same values of the feature.

Ethics declaration
The collection and analysis of the retrospective patient data used in this study was approved by the AUMC Medi-
cal Ethical Review Committee and was conducted within the approved guidelines. As the study was retrospective 
on a cohort of deceased patients, written consent from study participants was waived by the AUMC Medical 
Ethical Review Committee.

Results
Qualitative appearance interobserver variability
Using the 123 BM sub-sample from the original Rodrigues et al.  study14, we re-established the baseline per-
formance of the RPA model using the BM appearance labels from Expert 1 as shown in Fig. 2a’s KM analysis 
for progressive disease. As would be expected, the KM results closely matched those of the original study and 
demonstrated statistically significant risk stratification, though at a lower level of significance due to the reduced 
number of samples. This first result therefore acted as a validated baseline of risk stratification performance 
against which to compare further results.

When observers relabelled the BM qualitative appearances, agreement with Expert 1’s labels ranged between 
32.5 and 50.4% (see Table 2). The relabelling observers’ results were also compared to each other, with Expert 2, 
Expert 3, and Trainee 2 showing higher agreement rates between 61.8 and 65.9% (Table 2). Across all observers, 
Fleiss’ kappa test confirmed low agreement at κ = 0.38, with κ = 0.33 across only expert observers. The labelling 
confusion matrices showed that across all observers, 32.5% of disagreements involved “heterogeneous” labels, 
23.8% included “necrotic” labels, and the remaining labels were each involved in 14.1–15.0% of disagreements 
(all data in Supplementary Table S5). Similarly, when considering only the expert observers, the disagreement 
rates were 30.9% “heterogeneous”, 23.6% “necrotic”, and 13.6–16.2% for each of the other labels. Analysis of the 
most common disagreements across all observers was also performed (Supplementary Table S6a). This analysis 
revealed that the highest rates of disagreement were between heterogenous and necrotic appearances (25.3% 
of disagreements), followed by mislabelling between heterogeneous and homogeneous appearances (21.4%). 
The results were similar across only the expert observers (Supplementary Table S6b), with 24.6% of disagree-
ments between heterogeneous and homogeneous appearances, and 24.1% between heterogeneous and necrotic 
appearances.

We found the labelling disagreement between observers impacted the RPA model risk stratification, with the 
additional expert observers (Experts 2 and 3) having KM log-rank test p-values an order of magnitude greater 
than Expert 1 (Expert 2: 0.02, Expert 3: 0.03), and Trainees 1 and 2 achieving more comparable results (Trainee 1: 
0.003, Trainee 2: 0.005). KM plots per observer are given in supplementary Fig. S3, but in summary, all observers 
produced a high-risk group with a 45.2–53.3% final risk of progression post-SRS, but the remaining three risk 
groups highly varied in amount of separation and final levels of progression risk.

The expert consensus appearance labelling showed a similar risk stratification to Expert 1 (Fig. 2b) at a 
comparable level of statistical significance (p = 0.009 vs. p = 0.007 for Expert 1). Risk groups 2 and 3 displayed 
slightly decreased separation for the expert consensus labelling, and the highest risk group (group 4) did not 
reach the same end level of risk at 18 months for the expert consensus (49.8%) compared to Expert 1 (54.4%).

Qualitative appearance machine learning models
The radiomic Expert 1 appearance experiments showed varied accuracies when using radiomic features to per-
form each appearance labelling. The “homogeneous” results showed the highest AUC 0.632+ = 0.92, while AUC 0.632+ 
values of 0.77, 0.83, 0.88, and 0.72 were achieved for the “heterogeneous”, “cystic (simple)”, “cystic (complex)”, 
and “necrotic” labels respectively (full error metrics in Supplementary Fig. S4). As can be seen in Fig. 2c, when 
these qualitative appearance ML model results were used with the RPA model (as per Fig. 1b), the KM risk curves 
were negatively impacted considerably (p = 0.08).

The radiomic consensus appearance label experiments showed all appearances achieved AUC 0.632+ ≥ 0.84 
(Fig. 3). “Cystic (complex)” was labelled with the lowest MCR = 14.1% and highest AUC 0.632+ = 0.95. “Homogene-
ous”, “heterogeneous”, and “necrotic” were labelled with similar accuracy (AUC 0.632+ 0.84–0.85), with the highest 
MCR reported for “heterogeneous” (26.6%). The observed inaccuracy also negatively impacted the RPA model 
risk stratification (Fig. 2d), but statistical significance was retained (p = 0.04).

Post‑SRS progression machine learning models
The radiomic progression experiment directly predicted progression using only radiomic features with AUC 
0.632+ = 0.74. When using direct progression prediction instead of the qualitative appearance labels with the RPA 
model (as per Fig. 1c), the KM analysis revealed enhanced risk stratification (Fig. 2e, p = 0.0003). In particular, 
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the analysis produced the risk groups with the lowest and highest risk of post-SRS progression (6.6% and 58.5%, 
respectively). Interestingly, risk group 2 was at higher risk for progression compared to group 3, the inverse of 
the RPA model.

The radiomic and clinical progression experiment achieved AUC 0.632+ = 0.77, and when used to stratify BMs 
into risk groups (as per Fig. 1d), improved stratification was achieved compared to the RPA model results 
(Fig. 2f, p = 0.0006), with the results comparable to the previous stratification using the radiomic progression 
experiment (Fig. 2e).

Post‑SRS progression machine learning model interpretation
We found that the average probability of post-SRS progression values per BM from the radiomic progression 
experiment were significantly different when compared across all appearance labels (Fig. 4a, Kruskal–Wallis 
p = 0.0005). BMs labelled “homogeneous” by expert consensus were associated with the lowest median progres-
sion probabilities, while “necrotic” had the highest. “Heterogeneous” demonstrated the largest interquartile 

Figure 2.  KM analysis for risk of a BM progressing post-SRS for the six primary risk stratification models 
evaluated (a–f). The risk group number for each risk curve is labelled on the right y-axis, and the number of 
BMs at risk per 3-month follow-up interval is given below each x-axis. The stated p-values are from the log-rank 
test performed over all risk groups.
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range, nearly twice that of any other label. Ad hoc Wilcoxon rank-sum tests were then performed between pairs 
of labels, with three showing a significant difference (α = 0.005 after Bonferroni correction for 10 comparisons): 
“homogeneous” versus “cystic (complex)” or “necrotic”, and “cystic (simple)” versus “necrotic” (Fig. 4a).

The large “heterogeneous” probability interquartile range motivated further analysis between BMs that did 
progress post-SRS (+) and those that did not (−) for each appearance label. Wilcoxon rank-sum tests between the 
average predicted progression probabilities of + and − BMs for each appearance label found only “heterogeneous” 
labelled BMs to be significantly different, both with and without a Bonferroni correction for five comparisons. The 
“heterogeneous” BMs that did not progress had lower predicted probabilities of progression, while the BMs that 
did progress had a median predicted probability value greater than that of the “necrotic” BMs (Fig. 4b). Ad hoc 
Wilcoxon rank-sum tests between the + and − “heterogeneous” BMs and other appearance labels found that after 
a correction for eight comparisons, the − “heterogeneous” BMs were significantly different from the “necrotic” 
BMs, while + “heterogeneous” was significantly different from “homogeneous” and “cystic (simple)” (Fig. 4b).

Our feature importance analysis revealed 13 radiomic features that were highly important in the radiomic 
progression experiment. Ten of these features were second-order texture features, while two were first order 
statistical features, and one was a shape and size-based feature, as shown in Table 3. When compared to each 
radiomic consensus appearance experiment’s feature importance analysis, “necrotic” was found to have the 

Table 2.  Qualitative appearance labelling agreement rates between all pairs of observers.

Observer
Expert 

1
Expert

2
Expert

3
Trainee

1
Trainee

2

100.0% 50.4% 32.5% 43.1% 48.8%
Expert

1

re
vr

es
b

O

100.0% 61.8% 56.9% 65.9%
Expert

2

100.0% 50.4% 61.8%
Expert

3

100.0% 50.4%
Trainee

1

100.0%
Trainee

2

Figure 3.  Error metrics from the radiomic consensus appearance experiments. As each appearance label 
(e.g. “homogeneous”) had specific models trained to make a binary labelling decision (e.g. “homogeneous” or 
“not homogeneous”), error metrics for each appearance label are presented. The error bars for the non-AUC 
0.632+ error metrics represent the 95% confidence interval of each value determined from the 250 bootstrapped 
resampling iterations.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20977  | https://doi.org/10.1038/s41598-023-47702-8

www.nature.com/scientificreports/

highest median feature importance score across the same 13 features (0.70), with nine of the features also being in 
the top 13 most important features for labelling “necrotic” (see Table 3). “Homogeneous” and “cystic (complex)” 
both had median importance scores near 0.60, and the remaining appearance labels were lower again near 0.50.

ALE plot analysis showed that the behaviour of many features used for labelling “necrotic” and “cystic (com-
plex)” qualitatively matched that of features predicting progression, as shown in Fig. 5 and Supplementary Fig. S5. 
This observation was borne out quantitatively, with the “necrotic” and “cystic (complex)” labels having the highest 
median ALE ρ values of 0.83 and 0.79, respectively (Table 3). Only for the “homogeneous” label were the features 
found to be negatively correlated with predicting progression with median ALE ρ =  − 0.39. “Necrotic” also had 
the lowest interquartile range of ALE ρ values at 0.20, while “heterogeneous” had the largest at 1.31 (Table 3).

Discussion
Our study found that interobserver variability of BM qualitative appearance labelling is high, but that an expert 
consensus produced similar risk stratification results to the original results using Expert 1’s labels and was 
more readily replicated by radiomics-based ML models (AUC 0.632+ 0.84–0.94 across appearance labels). We also 
found that radiomics-based ML models directly predicting progression provided enhanced risk stratification 
compared to using qualitative appearance labelling, and that their radiomics signature was correlated with those 
of qualitative appearance labels.

The high interobserver variability in appearance labelling highlights the difficultly of using subjective, 
observer-based models. Across the observers, expertise level did not clearly impact variability, demonstrating 
the inherent uncertainty in the task. Differentiating between “heterogeneous” and “necrotic” appearances was 
the most difficult across all observers, likely due to both appearances presenting with areas of hypointensity in 
the T1w-CE MRI, and therefore requiring a subtle call of whether necrosis is present. Gutsche et al.’s study using 
three appearance labels (“homogeneous”, “heterogeneous”, or “ring-enhancing”) employed three observers with 
much higher interobserver agreement (κ = 0.75 vs. κ = 0.33–0.38)16. This is not entirely unexpected, as the three 
appearance labels used by Gutsche et al. did not require observers to make the difficult distinction between 
“heterogeneous” and “necrotic”. Differentiating between “heterogeneous” and “homogeneous” appearances was 
also very difficult, likely due to each observer choosing their own criteria on how much variability in the BM 
enhancement would define the border between “heterogeneous” and “homogeneous”.

The RPA model was somewhat resistant to interobserver variability, likely due to the first-level split based on 
the observer-independent SRS dose and fractionation and grouping of two or three appearance labels for each 
risk group. Despite this, the interobserver variability was high enough that model performance in turn varied 
widely, demonstrating the difficultly of using a single-observer model in practice. The highest-risk RPA group 
was the most stable, benefiting from “heterogeneous” and “necrotic” BMs being in the same risk group, which 
negated the effect of the high rate of interobserver disagreement observed specifically for this distinction. The 
lowest risk group was also quite stable, since this group contained “homogeneous” and “heterogeneous” BMs, 
again negating the effect of the high rate of interobserver disagreement between these two appearances. Despite 
the stability of these two risk groups, the overall predictive ability of the RPA model across all risk groups was 

Figure 4.  Comparison of the average predicted probability of progression for each BM from the radiomic 
progression experiment when grouped by qualitative appearance, as labelled by expert consensus. (a) Shows 
the comparison for each of the five appearance labels, with whiskers indicating the extreme values and outliers 
classified as being 1.5 × the interquartile range from the 25th or 75th percentile. The Kruskal–Wallis test 
across all groups found p = 0.0005, with ad hoc Wilcoxon rank-sum p-values shown on the plot for statistically 
significant comparisons (after Bonferroni correction). (b) Shows the splitting of the “Heterogeneous” 
distribution in (a) based on whether the BMs progressed or did not progress post-SRS, with the Wilcoxon 
rank-sum test p-value shown. Ad hoc Wilcoxon rank-sum tests between the “Heterogeneous (No Progression)” 
and “Heterogeneous (Progression)” distributions with the other appearance labels found that “Heterogeneous 
(No Progression)” was significantly different from the “Necrotic” BMs (p = 0.002), while “Heterogeneous 
(Progression)” was significantly different from the “Homogeneous” (p = 0.0009) and “Cystic (Simple)” (p = 0.001) 
BMs (significance determined after Bonferroni correction). The size and scale of the y-axes for (a,b) are 
equivalent to allow for simpler comparison.
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unstable between observers. The expert consensus provided a technique to combat the interobserver variability, 
producing strong risk stratification, but applying such a technique to clinical practice could be impractical or 
labour intensive. Using multiple observers would also require further validation of the number, experience, and 
clinical speciality of the observers necessary for clinical implementation. Currently no standardized protocol for 
scoring the qualitative appearance of BMs exist, and so developing such a protocol or incorporating hypoxia-
specific imaging  techniques37 could possibly reduce interobserver variability, but these methods would need to 
be developed and validated.

Our radiomic Expert 1 and consensus appearance experiments’ results showed that replicating observer-based 
appearance labelling with radiomics-based ML was not feasible. This resulted in the poorest BM risk stratification 
due to ML model inaccuracy, which also highlighted the RPA’s model sensitivity to this inaccuracy. Our inter-
observer variability results showed that BM appearance across labels can be highly similar, and so ML models 
also appear to struggle to recognize patterns that are specifically indicative of each appearance label. The results 
from replicating Expert 1 again showed the difficulty in distinguishing “heterogeneous” and “necrotic” BMs, with 
these labels reporting the lowest ML model accuracy. Using the expert consensus appearance labels did result in 
more accurate replication by ML models, likely due to more consistent appearance labelling compared to a single 
observer, but the remaining inaccuracy still severely compromised the risk stratification. Having an objective 

Table 3.  Feature importance ranks, scores, and ALE correlation comparison between the radiomic 
progression experiment and radiomic consensus appearance experiments. “ALE ρ” refers to the Pearson 
correlation coefficient value between a given feature’s ALE plots for the radiomic progression experiment 
and a radiomic consensus appearance experiment. All ALE ρ values were significant at p < 0.05, except for 
the three values indicated (*). Bolded “Rank” and “Score” values are for emphasis only to show values within 
the same range as the radiomic progression experiment’s values (≥ 13 and ≥ 0.75 for importance rank and 
score, respectively). Gray-Level Co-occurrence Matrix (GLCM), Gray-Level Run Length Matrix (GLRLM), 
Gray-Level Dependence Matrix (GLDM), Gray-Level Size Zone Matrix (GLSZM), Neighbouring Gray Tone 
Difference Matrix (NGTDM).

Radiomic progression experiment

Radiomic consensus appearance experiments

Homogeneous Heterogeneous Cystic (Simple) Cystic (Complex) Necrotic

Feature 
type

Feature 
name Rank Score Rank Score ALE ρ Rank Score ALE ρ Rank Score ALE ρ Rank Score ALE ρ Rank Score ALE ρ

GLRLM
Gray-level 
non-uni-
formity

1 1.00 46 0.33 + 0.29 48 0.21 + 0.77 11 0.68 − 0.55 39 0.39 + 0.92 33 0.44 + 0.74

NGTDM Contrast 2 0.95 24 0.51 − 0.09* 16 0.46 + 0.31 30 0.50 + 0.28 30 0.52 − 0.24 26 0.51 + 0.78

GLCM
Inverse 
difference 
normal-
ized

3 0.93 40 0.39 − 0.49 14 0.50 + 0.82 14 0.61 − 0.88 50 0.31 + 0.82 6 0.72 + 0.96

GLSZM Zone 
entropy 4 0.93 25 0.50 − 0.42 24 0.40 + 0.25 19 0.57 + 0.43 17 0.61 + 0.99 4 0.74 + 0.93

GLCM Inverse 
variance 5 0.92 7 0.67 + 0.98 12 0.52 − 0.42 24 0.53 + 0.95 15 0.63 + 0.79 25 0.51 + 0.95

GLSZM Zone per-
centage 6 0.88 44 0.36 − 0.74 57 0.18 + 0.41 77 0.07 − 0.21 66 0.14 − 0.76 32 0.46 + 0.80

GLDM
Depend-
ence 
entropy

7 0.86 10 0.63 − 0.64 21 0.41 − 0.87 32 0.49 + 0.83 3 0.80 + 0.85 7 0.70 + 0.98

Shape & 
Size

Surface 
volume 
ratio

8 0.83 4 0.86 − 0.39 31 0.36 + 0.32 5 0.85 − 0.64 18 0.60 + 0.72 12 0.59 − 0.29

GLRLM

Gray-level 
non-
uniformity 
normal-
ized

9 0.82 8 0.65 − 0.14* 8 0.56 + 0.87 23 0.53 + 0.72 13 0.64 − 0.43 5 0.73 + 0.73

First Order Kurtosis 10 0.81 13 0.60 − 0.67 13 0.51 + 0.89 34 0.49 + 0.81 12 0.64 + 0.93 1 1.00 + 0.83

GLCM Correla-
tion 11 0.81 56 0.23 − 0.53 63 0.14 − 0.99 42 0.38 + 0.84 64 0.14 + 0.90 8 0.70 + 0.94

First Order 10th Per-
centile 12 0.81 17 0.59 + 0.49 1 1.00 + 0.34 10 0.77 − 0.27 5 0.74 − 0.04* 2 0.87 − 0.31

GLCM

Infor-
mational 
measure of 
correla-
tion 2

13 0.78 14 0.59 + 0.83 2 0.79 − 0.89 26 0.52 − 0.31 11 0.67 + 0.73 3 0.81 + 0.92

Median values: 7 0.86 17 0.59 − 0.39 16 0.46 + 0.32 24 0.53 + 0.28 17 0.61 + 0.79 7 0.70 + 0.83

Interquartile range 
values: 6.5 0.12 31.5 0.25 0.90 24.3 0.21 1.31 19.3 0.14 1.18 30.0 0.28 1.00 21.5 0.25 0.20
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radiomics model that produces highly interpretable qualitative appearance labels would be ideal for clinical 
use, but our results demonstrate that such a system is not currently feasible using the techniques we employed.

Using radiomics-based ML models to directly predict BM progression presents an alternative approach to 
outcome prediction that our results show is superior for post-SRS progression risk stratification compared to 
observer-based techniques. While Gutsche et al.16 and Kawahara et al.18 showed similar superiority of ML models 
to the three-way qualitative appearance labelling scheme, our study provides the first comparison of ML models 
to a more comprehensive five-way appearance labelling scheme and comparison to a more clinically applicable 
qualitative appearance predictive model built on multi-variate data. These results are also the first to compare 
radiomics-based ML and qualitative appearance models using risk stratification KM analysis, instead of the 
AUC and MCR error metrics typically reported in ML studies. Risk stratification analysis not only allows direct 
comparison to non-ML studies, but is also highly clinically interpretable.

As we used ML models using only radiomic features to both produce qualitative appearance labels and the 
probability of post-SRS progression, by comparing the two approaches in the same RPA model (Fig. 1b vs. 
c), the effect of constraining the ML models to use the five qualitative appearance labels could be seen. Our 
results clearly show that allowing the ML model to find the optimal radiomic signature to predict progression 
independently of the five qualitative appearance labels led to the greatest stratification of risk. This effect was 
so pronounced that the ML model’s risk group 2 was at higher risk for progression post-SRS compared to risk 
group 3, whereas the original RPA model indicated this would not occur when basing decisions only on the 
qualitative appearance labels.

Figure 5.  ALE plots comparing the effect of individual features on model predicted probabilities between the 
radiomic progression experiment and radiomic consensus appearance experiments. A single plot shows how as 
a feature’s value changes (x-axis) what the corresponding change in a model’s predicted positive label confidence 
is (y-axis), where a positive y-axis value indicates a shift in the model’s output towards predicting the positive 
label. Each row of ALE plots is for a single feature (as shown in the x-axes labels), with each plot comparing 
the feature’s effect on predicted probability of progression (same thin line across each plot in the same row), to 
the feature’s effect on labelling BMs with one of the appearance labels (thick lines). Each column of ALE plots 
therefore shows the effect for multiple features for one appearance label compared to predicting progression. The 
five features chosen to be displayed are all those that were highly important (importance score ≥ 0.75) for both 
the radiomic progression experiment and at least one radiomic appearance label experiment (see Table 3). ALE 
plots for the remaining highly important features not shown here can be found in supplementary Fig. S5. Each 
ALE plot consists of ALE values for 25 intervals chosen using 25 quantiles of a feature’s values across the entire 
dataset. For each ALE plot comparison, the Pearson correlation coefficient between the two curves is taken to 
produce the “ALE ρ” values in Table 3.
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The results from the radiomic and clinical progression experiment present the most desirable risk stratifica-
tion for clinical use (Figs. 1d, 2f). The low-risk groups (1 and 2) indicate a population of BMs that would not 
benefit from SRS treatment modification. Risk groups 3 and 4 represent BMs that may benefit from SRS dose 
escalation (if feasible with respect to possible adjacent organs-at-risk), with group 3 specific to patients with a 
favourable prognosis, as group 3’s risk of progression was less that half that of group 4 at 12 months. This study’s 
results therefore motivate the use of ML techniques moving forward in research and clinical translation, as ML 
techniques have been shown to provide benefits in accuracy and consistency for outcome prediction compared 
to traditional qualitative appearance techniques.

The enhanced risk stratification of ML models directly predicting post-SRS progression is encouraging, but 
they do require interpretation to provide insight into their operation. Our results comparing the radiomic pro-
gression experiment’s predicted probability of progression across qualitative appearance labels offers some of 
these insights (Fig. 4). It appears from this analysis that our ML models trained across bootstrapped iterations, 
while free to find any radiomic signature predictive of progression, discovered an optimal radiomic signature 
related to the qualitative appearance labels. The ML models independently discovered that “necrotic” BMs 
were at the highest risk of post-SRS progression and “homogeneous” BMs were at the lowest risk, which agrees 
with previous studies’ hypotheses that implicated hypoxic conditions within the BM in causing reduced SRS 
 effectiveness11,12. The ML models also found radiomic differences in the “heterogeneous” BMs that successfully 
separated the BMs that progressed post-SRS and those that did not. This indicates that there are additional 
radiomic differences within the “heterogeneous” BMs that are useful for predicting response, but are not readily 
visually distinguished. Given the similarity of the predicted probability of progression distributions between 
the “necrotic” BMs and the “heterogeneous” BMs found to progress, we speculate that there could be a BM 
population labelled as “heterogeneous” that are hypoxic enough to negatively impact SRS outcomes, but do not 
yet qualitatively appear necrotic in T1w-CE MRI.

To provide further interpretation of the ML models, we also analyzed if the radiomic progression experiment’s 
radiomic signature was correlated with those of the radiomic consensus appearance experiments. Our results 
(Table 3, Fig. 5) indicated that the progression radiomics signature was most closely correlated with the “necrotic” 
radiomics signature, both in terms of feature importance scores and correlation between ALE plots. This shows 
that the radiomics progression experiment not only independently found necrotic BMs to be at highest risk 
for progression, but also used a similar radiomic signature to do so. The other qualitative appearance radiomic 
signatures have a lower similarity with the progression radiomic signature in terms of feature importance, but 
their ALE correlation values generally match the results from Fig. 4 (e.g. “homogeneous” BMs had the lowest 
predicted probability of progression and the “homogeneous” radiomic signature was also the most anti-correlated 
with the progression radiomic signature). Furthermore, the “heterogeneous” radiomic signature had the largest 
interquartile range of ALE correlation values, showing that this radiomic signature was both highly correlated 
and anti-correlated with the progression radiomic signature. This matches our previous finding of two distinct 
subpopulations of “heterogeneous” BMs, which could then lead to a “heterogeneous” radiomic signature with 
mixed correlation with the progression radiomic signature.

These model interpretation results promisingly indicate a possible connection between the post-SRS progres-
sion radiomic signature and necrosis, but the ultimate strength of this connection is limited by a few factors. 
First, the labelling of BMs as “necrotic” (or any other appearance label), while performed by expert consensus, 
is unlikely to be exactly reflective of the true underlying biology. Second, the radiomic consensus appearance 
experiments did not produce perfectly accurate models, and third, the radiomic progression experiment also 
had model inaccuracy. Lastly, the ALE correlation values only demonstrate correlations between progression 
and qualitative appearance for individual radiomic features, and so interpreting the correlation values across all 
features can be difficult. Therefore, while our results are informative, they are not conclusive.

Previous ML studies interpreting their models’ operation have mostly found texture-based radiomic features 
to be predictive of SRS response (as opposed to shape/size or first-order statistical features), but further inter-
pretation of these features is  difficult15–25,28. Some studies have considered radiomic features from different MRI 
sequences and ROIs (tumour core, peri-tumoural regions, or surrounding edema), and so some interpretation 
of these results is  possible16,17,19–21,25,28. Studies using convolutional neural networks can similarly analyze which 
data the network was focusing its “attention” when making  predictions26,27. Across these studies, however, there 
is disagreement on the relative value of both different MRI sequences and ROIs. Gutsche et al. found all 10 of 
their important radiomic features had significantly different values when grouped between “homogeneous”, 
“heterogeneous”, and “ring-enhancing”  BMs16. While this analysis technique provides insight into the individual 
radiomic features used by a ML model, ML models incorporate complex and non-linear relationships between 
these features. Therefore, the analysis we provide of interpreting the model as a whole through analysis of the 
model predicted probabilities and ALE plots is critical to provide a more comprehensive model interpretation. 
This model interpretation and connection to underlying biological processes not only provides a more intuitive 
understanding of ML model operation, but could also be used to assess new ML techniques or test biological 
theories developed for SRS outcome prediction.

Our study’s results need to be considered in the context of our methodology’s limitations. First, our study was 
retrospective, and so our study sample inherently reflects only the population of BM patients treated at the AUMC 
during the time of data collection. As our patient sample was treated between 2003 and 2011, our results need to 
be confirmed on patients treated more recently due to advancements in imaging technology, SRS techniques, and 
systemic therapies. Second, due to our small dataset size, we used a bootstrapped resampling ML experimental 
design and could not perform external validation. While our methods took care to prevent leakage of the testing 
dataset into the model training process, an external validation dataset is required to confirm our results. Lastly, 
our studied endpoint was both non-standard and radiographically defined. As our dataset was acquired before 
the introduction of the standardized RANO-BM  protocol31, it relies on non-standard BM measurements. While 
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our measurements were more comprehensive than those mandated by RANO-BM31, they are unfortunately 
not directly comparable to other studies. Furthermore, our radiographically-defined endpoint is susceptible to 
pseudo-progression, which cannot be fully controlled for in a retrospective study. Therefore, prospective studies 
with well-defined protocols for controlling for pseudo-progression are required.

While confirmation of our T1w-CE MRI interpretability results is critical, it is also important to extend our 
analysis techniques to studies using other MRI sequences and ROIs, especially given their reported predictive 
value. Such studies would require the development and validation of qualitative appearance labels specific to 
each MRI sequence and ROI to ensure interpretability is grounded in clinically and biologically relevant explana-
tions. Our ML model interpretation results motivate defining the ground truth biological status of a BM using 
pathological data. Pathological data would provide a more reliable source of comparison for radiomic signatures, 
versus the qualitative MRI analysis used in in this study. A joint BM MRI radiomic and pathology study is ulti-
mately required to provide definitive explanations of MRI radiomics-based ML models. Such a study is highly 
feasible given that T1w-CE MRI is routinely collected before most BM surgical resections, and a retrospective 
study may even be possible if banked or digitized tissue samples are available.

In conclusion, we have compared observer-based qualitative appearance models to machine learning models 
using quantitative MRI radiomic features for predicting brain metastasis response to stereotactic radiosurgery. 
We showed that the interobserver variability of appearance labelling is high and negatively impacts predictive 
model performance. Trying to replicate appearance labelling with machine learning models was shown to be 
possible, but did not lead to high outcome prediction accuracy, which therefore led to investigating using machine 
learning models that directly predict outcomes. These models that directly predicted outcomes were found to 
outperform observer-based models, motivating the use of machine learning models in future clinical translation. 
We also provided interpretation of our radiomics models, showing that their operation was related to qualita-
tive appearance labels, with “necrotic” metastases and a subset of “heterogeneous” metastases predicted to have 
the highest probability of progression post-treatment. Our results therefore provide a necessary step in model 
interpretation that is required for the eventual clinical translation of these models that will allow for optimized 
treatment outcomes for brain metastasis patients.

Data availability
The progression labels, qualitative appearance labels, and model prediction probabilities from each reported 
experiment needed to replicate this study’s analysis are available for use at the following URL: https:// github. 
com/ baines- imagi ng- resea rch- labor atory/ radio mics- for- srs- model- inter preta bility- data- share.

Code availability
All the computer code used for this study’s machine learning experiments, analysis and figure generation are 
available online at: https:// github. com/ baines- imagi ng- resea rch- labor atory/ radio mics- for- srs- model- inter preta 
bility- code.
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