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Head, acetabular liner 
composition, and rate of revision 
and wear in total hip arthroplasty: 
a Bayesian network meta‑analysis
Ricarda Merfort 1, Nicola Maffulli 2,3,4, Ulf Krister Hofmann 1, Frank Hildebrand 1, 
Francesco Simeone 5, Jörg Eschweiler 1,6 & Filippo Migliorini  1,5,6*

Total hip arthroplasty (THA) is a common procedure for patients suffering from hip pain e.g. from 
osteoarthritis, osteonecrosis, or hip fractures. The satisfaction of patients undergoing THA is 
influenced by the choice of implant type and material, with one key factor being the selection of the 
appropriate material combination for the bearing surface. In this Bayesian network meta-analysis, 
we investigated the impact of material combinations for the bearing surface on the longevity of hip 
implants. The wear penetration rate per year and the total wear penetration in the liner resulting 
from different material combinations, as well as the survival rate at last follow-up, were examined. 
We analyzed a total of 663,038 THAs, with 55% of patients being women. Mean patient age was 
59.0 ± 8.1 years and mean BMI 27.6 ± 2.6 kg/m2. The combination of an aluminium oxide (Al2O3) head 
and an Al2O3 liner demonstrated the lowest wear penetration at last follow-up and the lowest rate 
of wear penetration per year. Additionally, the combination of a crosslinked polyethylene (XLPE) 
liner and a zircon oxide (ZrO2) head demonstrated the lowest rate of revision at last follow-up. These 
findings underscore the importance of careful material selection for hip implant bearing surfaces to 
optimize their longevity and patient satisfaction after THA.

Total hip arthroplasty (THA) is a well-established and successful procedure to treat patients with osteoarthritis 
or injuries of the hip or other forms of joint degeneration. With 233,537 cases, THA was one of the ten most 
commonly performed surgeries in Germany in 20211. With life expectancy on the rise, the likelihood of a reop-
eration and even multiple reoperations after THA increases. In around 42% of THAs, the estimated survival 
time of the implant is lower than 25 years, and revision surgery is required2. Although hip implants vary in 
design, conventional hip implants consist of a stem that is fixed to the femur, an acetabular component fixed 
to the pelvis, a femoral head which is connected with the stem, and an insert for the acetabular component. 
The interaction between the femoral head and the insert is referred to as the bearing surface: this is where the 
joint actually moves and as such where friction and wear take place. In addition to other factors such as patient 
expectation, BMI, age, sex, comorbidities, length of hospital stay, and the type of surgical approach, the choice 
of the prosthesis design plays a crucial role for patient satisfaction3–6. Low wear rates and high survival rates are 
important factors for selecting prosthetic design and material.

The most common bearing surfaces utilized in THA include metal-on-polyethylene (MoP), metal-on-metal 
(MoM), ceramic-on-ceramic (CoC), and ceramic-on-polyethylene (CoP)7. The most commonly used metals 
are cobalt-chromium alloys (CoCr), stainless steel or oxidized zirconium (OxZr). Ceramic materials, such as 
aluminium oxide (Al2O3), zircon oxide (ZrO2) and alumina toughed zirconia (AMC/ZTA), are used for head and 
liner. Polyethylene liners can be made of conventional ultrahigh-molecular-weight polyethylene (UHMWPE), or 
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by further crosslinking of UHMWPE to crosslinked polyethylene (XLPE), moderately cross-linked polyethylene 
(MXLPE), highly cross-linked polyethylene (HXLPE) and Vitamin E-infused HXLPE (HXLPE-VEPE).

Wear between the bearing surfaces is a complex phenomenon involving material characteristics, lubrication 
and friction8. Different wear phenomena, such as abrasion, adhesion, and tribocorrosion, can occur between 
the bearing surfaces and lead to material loss and debris production8. The production of wear particles can lead 
to pseudotumor formation and aseptic loosening, with bone loss as a consequence of biological reaction from 
abrasive particles9, 10. Apart from wear between the bearing surfaces, wear in hip implants can occur at modular 
junctions such as the taper and neck11–13 or between the acetabular component and liner14 from micromotion.

Wear in the bearing surface of the patient’s hip implant can be estimated on radiolographic images in different 
ways. One way is to determine the one-dimensional linear femoral head penetration. This can be accomplished 
measuring the centre difference of femoral head and liner, manually or -mostly used- by computer-assisted 
techniques15. Another method is to consider volumetric wear as the material loss in all three dimensions. During 
their lifetime, the wear rate of implants varies. Higher wear rates are observed in the running-in phase during 
the first one million (walking-)cycles, usually during the first 12 months from THA. Later, the wear coefficient 
decreases in the steady state phase8.

Relevant factors for implant survival are the surgeon, the patient, his/her activity, and the choice of implant. 
A number of meta-analyses have investigated wear and revision rates of different bearing surface materials, yet 
mostly focussing on one material or the comparison of two different material combinations16–22.

To support the choice of the material for the bearing surface of a hip replacement, we performed a Bayesian 
network meta-analysis where we looked into different material combinations of head and liner with respect to 
revision interval, total wear penetration and wear penetration per year. The following material combinations 
were studied: Al2O3–Al2O3, AMC/ZTA–AMC/ZTA, CoCr–AMC/ZTA, CoCr–CoCr, CPE/UHMPE–ZrO2, CPE/
UHMPE–CoCr, CPE/UHMPE–Al2O3, CPE/UHMPE–OxZr, HXLPE–CoCr, HXLPE–Al2O3, HXLPE–ZrO2, 
HXLPE–AMC/ZTA, HXLPE–Stainless-Steel, HXLPE–VEPE–CoCr, HXLPE-VEPE–AMC/ZTA, MXLPE–CoCr, 
MXLPE–AMC/ZTA, XLPE–CoCr, XLPE–Al2O3, XLPE–OxZr, XLPE-VEPE–CoCr.

Methods
Eligibility criteria
All clinical investigations which compared two or more material combinations for head and inlay in THA were 
accessed. Only studies published in peer-reviewed journals were considered. According to the authors´ language 
capabilities, articles in English and German were eligible. Only studies with level I to IV of evidence, according 
to Oxford Centre of Evidence-Based Medicine1, were considered. Reviews, opinions, letters, and editorials were 
not considered. Animal studies, in vitro, biomechanics, computational, and cadaveric studies were not eligible. 
Missing quantitative data under the outcomes of interests warranted the exclusion of the study.

Search strategy
This study was conducted according to the PRISMA extension statement for reporting of systematic reviews 
incorporating network meta-analyses of health care interventions: checklist and explanations23. The PICOT 
algorithm was preliminary pointed out:

•	 P (Problem): End stage hip OA;
•	 I (Intervention): THA;
•	 C (Comparison): Different material combinations of head and inlay;
•	 O (Outcomes): Rate of revision surgery, total wear penetration, wear penetration per year
•	 T (Timing): Minimum 12 months follow-up.

In September 2023, the following databases were accessed: PubMed, Scopus, Embase, Google Scholar, 
Cochrane. A time constraint was set from January 2000 to September 2023. The following matrix of keywords 
were used in each database to accomplish the search using the Boolean operator AND/OR: THA AND (hip OR 
arthroplasty OR replacement OR prosthesis) AND (metal OR ceramic OR alumina OR zirconia OR polyethylene 
OR steel) AND (wear OR revision). No additional filters were used in the databases search.

Selection and data collection
Two authors (F.M. and R.M.) independently performed the database search. All the resulting titles were screened 
by hand and, if suitable, the abstract was accessed. The full-text of the abstracts which matched the topic of inter-
est were accessed. If the full-text was not accessible or available, the article was not considered for inclusion. 
A cross reference of the bibliography of the full-text articles was also performed for inclusion. Disagreements 
were debated and mutually solved by the authors. In case of further disagreements, a third senior author (J.E.) 
took the final decision.

Data items
Two authors (R. M. and F. M.) independently performed data extraction. The following data at baseline were 
extracted: author, year of publication and journal, length of the follow-up, number of patients with related mean 
age and BMI (Kg/m2). The following data were collected at last follow-up: inlay wear penetration (mm), inlay 
wear penetration per year (mm/year), rate of revision.
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Assessment of the risk of bias and quality of the recommendations
Two reviewers (U.K.H. and F.M.) evaluated the risk of bias of the extracted studies independently. The included 
studies were evaluated using the risk of bias of the software Review Manager 5.3 (The Nordic Cochrane Col-
laboration, Copenhagen)24. The following endpoints were evaluated: selection, detection, performance, attrition, 
reporting, and other bias.

Synthesis methods
The statistical analyses were performed by one author (F.M.) following the recommendations of the Cochrane 
Handbook for Systematic Reviews of Interventions25. For descriptive statistics, mean and standard deviation 
were used. For baseline comparability, the IBM SPSS software was used. Comparability was assessed through the 
Analysis of Variance (ANOVA), with P > 0.1 considered satisfactory. The network analyses were made through 
the STATA/MP software (Stata Corporation, College Station, Texas, USA). Only studies which stated clearly 
the nature of the material of the component (head and/ or liner) were included in the analyses. An overview of 
the material combinations of head and liner included in the present Bayesian network meta-analysis is shown 
in Table 1.

The analyses were performed through the Stata routine for Bayesian hierarchical random-effects model 
analysis. Continuous variables were analysed through the inverse variance method, with the standardized mean 
difference (SMD) effect measure. Binary data were analysed through the Mantel–Haenszel method, with the 
Log Odd Ratio (LOR) effect measure. Edge, interval, and funnel plots were performed and analysed. The overall 
transitivity, consistency, and heterogeneity, as well as the size of the treatment effect of interest within-study 
variance, were evaluated. The overall inconsistency was evaluated through the equation for global linearity via 
the Wald test. In PWald values > 0.05, the null hypothesis could not be rejected, and the consistency assumption 
could be accepted at the overall level of each treatment. Confidence and percentile intervals (CI a d PrI, respec-
tively) were each set at 95%.

Ethical approval
This study complies with ethical standards.

Results
Study selection
The initial databases search resulted in 22,423 articles. Of these, 5567 duplicates were excluded. After screening 
titles and abstracts 16,443 articles were excluded because they did not match the following eligibility criteria: 
not comparing two or more bearing material combinations, not mentioning rate of revision surgery or wear 
related values, no matching study design, not focusing on THA. Of the remaining 413 articles, another 274 were 
excluded because they did not report quantitative data for wear penetration, or rate of revision surgery, or the 
follow up time was shorter than 12 months. Finally, 139 studies were included in this review. The results of the 
literature search are shown in Fig. 1.

Table 1.   Material combinations of head and liner included in the present Bayesian network meta-analysis.

Liner Head

Al2O3 Al2O3

AMC/ZTA AMC/ZTA

CoCr AMC/ZTA

CoCr CoCr

CPE/UHMWPE ZrO2

CPE/UHMWPE CoCr

CPE/UHMWPE Al2O3

CPE/UHMWPE Stainless-Steel

CPE/UHMWPE OxZr

HXLPE CoCr

HXLPE Al2O3

HXLPE ZrO2

HXLPE AMC/ZTA

HXLPE Stainless-Steel

HXLPE-VEPE CoCr

HXLPE-VEPE AMC/ZTA

MXLPE CoCr

MXLPE AMC/ZTA

XLPE CoCr

XLPE Al2O3

XLPE OxZr
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Risk of bias assessment
The Cochrane risk of bias tool was performed to investigate the risk of bias of the included studies. Given the 
number of retrospective studies included in the present investigation, the risk of selection bias was moderate. 
Few authors performed assessor blinding, leading to a moderate risk of detection bias. The risk of attrition and 
reporting biases was moderate, as was the risk of other bias. Concluding, the risk of bias graph evidenced a 
moderate quality of the methodological assessment (Fig. 2).

Study characteristics
Data from 663,038 THAs were collected. 55% of patients were women. The mean patient age was 59.0 ± 8.1 years, 
the mean BMI was 27.6 ± 2.6 kg/m2. The mean length of follow-up was 87.9 ± 46.3 months. At baseline, no statisti-
cally significant difference was found in mean age, BMI, and mean length of follow-up (P > 0.5). The generalities 
and demographic and further basic data of the included studies are shown in Table 2.

Synthesis of results
The combination of Al2O3 head and Al2O3 liner demonstrated the lowest wear penetration at last follow-up 
(Fig. 3) and the lowest rate of wear penetration per year (Fig. 4).

Figure 1.   PRISMA flow chart of the literature search.
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The combination of HXLPE head and ZrO2 demonstrated the lower rate of revision at last follow-up (Fig. 5). 
The equation of global linearity found no statistically significant inconsistency in all comparisons.

Discussion
The choice of the best hip implant design and material of the bearing surface is crucial for patient satisfaction 
and longevity of the prosthesis. Different factors must be taken into account when choosing the best material 
combination for each patient. An important factor for the choice of the bearing surface biomaterial is wear, which 
remains a major problem in the long run leading to potentially aseptic loosening, pseudotumor formation, and 
pain. This network meta-analysis was conducted to compare the currently used material combinations for hip 
implant bearing surface regarding wear penetration, yearly penetration rate and revision surgeries.

In this Bayesian network meta-analysis, the combination of Al2O3 head and Al2O3 liner demonstrated the 
lowest wear penetration at last follow-up as well as the lowest rate of wear penetration per year. On the other 
hand, the combination of a HXLPE liner and ZrO2 head demonstrated the lowest rate of revision at last follow-
up. Mean age, mean BMI, and mean length of the follow-up had no significant influence on wear behaviour and 
revision rate.

In general, bearing surfaces in hip implants can be distinguished in hard on soft bearings (with a polymeric 
material used for the liner and the hard femoral head) and in hard on hard (MoM or CoC) bearings. Given the 
hardness difference of the articulating partners, hard on hard bearings show lesser and smaller wear particles 
than hard on soft bearings7, 26, 27.

Wear modes in a tribological system depend on its structure, kinematic interactions, and the combination 
of wear phenomena. Wear modes are dynamic, and can change over time. Wear modes can be distinguished 
in normal wear (mode 1), wear occurring due to bearing surfaces articulating against non-bearing surfaces 
(mode 2), three-body wear (mode 3), and two non-bearing surfaces wearing against each other (mode 4). In the 
presence of hard wear particles, particularly, polyethylene wear increases. Harder materials result in a reduced 
contribution of third-body wear to overall wear28, 29.

CoC bearings have been used in THA for a long time given their biocompatibility, high wear resistance and 
chemical durability7. Additionally, CoC bearing combinations have the advantage to produce smaller and inert 
debris compared to other bearing types, leading to harmless wear to the human body. For this reason, they are 
generally considered a good choice for young patients30. The first generations of alumina ceramics had a high risk 
of fracture, which was later reduced by improving their manufacturing process31. Despite further improvements, 
ceramics as bearing surfaces still have weaknesses such as bearing noise and reduced toughness, which led to the 
development of advanced material combinations, such as AMC/ZTA, for use as bearing materials. Biomechanical 
studies have shown that AMZ/ZTA ceramics exhibit lower wear rates under extreme conditions compared to 
Al2O3

32, 33. Nonetheless, our network meta-analysis found that Al2O3 ceramics had the lowest wear penetration 
rate per year and the least amount of wear at last follow up. This could possibly be explained by the fact that 
the latest material such as AMZ/ZTA is newer on the market and the average study duration is thus potentially 
shorter. We only included studies with a minimum duration of 12 months in our analysis; nevertheless, shorter 
study durations may overestimate debris and wear given the influence of running-in effects17.

Despite its good wear resistance, the Al2O3–Al2O3 combination did not exhibit the lowest revision rate in this 
meta-analysis. One major disadvantage of an Al2O3 combination are the disturbing noises which are associated 
with vibrations of the femoral implant system34, 35. Compared to MoP or MoM bearings, fracture of ceramic heads 
and liner still remains a major disadvantage for CoC bearings34. A study based on the Norwegian Arthroplasty 
Register found a 3.6 times higher occurrence of ceramic fracture in COC bearings compared to COP bearings. 
Furthermore, there was an elevated risk of fractures observed in Alumina ceramics compared to AMC heads36. 
Revision for ceramic fracture is of particular concern, as it can lead to catastrophic failures and severe compli-
cations because of third body wear caused by ceramic fragments37, 38. Additionally, the use of CoC bearings is 
expensive and requires an exquisite surgical insertion technique to avoid chipping off from contact surfaces39.

Figure 2.   Cochrane risk of bias tool.
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Author Year Design Head Liner Patients (n) Mean Age Mean BMI Women (%) Follow-up (months)

Beauchamp et al.64 2021 Retrospective CoCr CoCr 13 58.1 28.6 0.14 60.4

Alumina matrix 
composite/Zirconia 
toughened alumina

Alumina matrix 
composite/Zirconia 
toughened alumina

17 50.5 28.5 0.12 52.8

Vendittoli et al.65 2021 Prospective Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

71 252.0

Stainless-Steel Polyethylene 69 252.0

Busch et al.66 2020 RCT​ Alumina oxide 
ceramic (Al2O3)

Polyethylene 
(HXLPE) 43 62.3 28.5 0.56 60.0

Alumina oxide 
ceramic (Al2O3)

Polyethylene 
(HXLPE-VEPE) 51 62.3 28.5 0.54 60:0

Frisch et al.67 2020 Prospective CoCr CoCr 49 57.5 33.6 0.51 91.2

Ceramic/Metal Ceramic/Polyeth-
ylene 26 58.7 33.7 0.54 120.3

Kim et al.68 2020 Prospective Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

133 53.0 28.0 0.37 205.2

Alumina oxide 
ceramic (Al2O3)

Polyethylene 
(HXLPE) 133 53.0 28.0 0.37 205.2

Kjærgaard et al.59 2020 RCT​ CoCr Polyethylene 
(HXLPE-VEPE) 24 65.0 28.0 0.21

CoCr Polyethylene 
(HXLPE-VEPE) 29 63.0 29.0 0.31

CoCr Polyethylene (XLPE) 30 64.0 28.0 0.36

CoCr Polyethylene (XLPE) 33 61.0 27.0 0.42

Massier et al.69 2020 Prospective Alumina oxide 
ceramic (Al2O3)

Polyethylene 
(HXLPE-VEPE) 102 66.0 0.75 72.0

Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 97 65.0 0.66 72.0

Ong et al. 70 2020 Retrospective Ceramic Polyethylene 3620 58.0 22.6 0.61 37.2

Metal Polyethylene 9480 0.61 54.0

Alumina matrix 
composite/Zirconia 
toughened alumina

Polyethylene 
(HXLPE) 163 0.91 70.8

Thoen et al.71 2020 RCT​ CoCr Polyethylene 
(HXLPE-VEPE) 37 58.0 28.5 0.46

CoCr Polyethylene 
(MXLPE) 31 61.0 26.6 0.48

Thompson et al.72 2020 Prospective non-Metal non-Metal 91 42.5 109.2

CoCr CoCr 30 53.0 109.2

van der Veen et al.73 2020 Retrospective CoCr CoCr 23 78.8 0.74 158.4

CoCr Polyethylene (CPE/
UHMWPE) 33 78.7 0.79 162.0

Bryan et al.74 2019 Retrospective CoCr Polyethylene 
(HXLPE) 216 42.6 29.6

CoCr Polyethylene (CPE/
UHMWPE) 57 40.1 26.3

Feng et al.75 2019 Prospective
Alumina matrix 
composite/Zirconia 
toughened alumina

Polyethylene 
(HXLPE) 77 59.0 23.2 0.43 86.4

Alumina matrix 
composite/Zirconia 
toughened alumina

Alumina matrix 
composite/Zirconia 
toughened alumina

93 51.0 25.20 0.43 82.80

Galea et al.76 2019 Prospective
Alumina matrix 
composite/Zirconia 
toughened alumina

Polyethylene 
(HXLPE-VEPE) 39 66.1 27.2 0.56

Alumina matrix 
composite/Zirconia 
toughened alumina

Polyethylene 
(MXLPE) 34 62.6 28.3 0.59

Sköldenberg et al.77 2019 Prospective CoCr Polyethylene 
(HXLPE-VEPE) 21 67.0 27.0 0.48

CoCr Polyethylene (CPE/
UHMWPE) 21 67.0 27.0 0.52

Atrey et al. 78 2018 Prospective Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

28 41.5 26.7 0.50 180.0

Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 29 42.8 28.2 0.55 180.0

Continued
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Author Year Design Head Liner Patients (n) Mean Age Mean BMI Women (%) Follow-up (months)

Galea et al.79 2018 Prospective
Alumina matrix 
composite/Zirconia 
toughened alumina

Polyethylene 
(HXLPE-VEPE) 60.0

Alumina matrix 
composite/ Zirconia 
toughened alumina

Polyethylene 
(MXLPE) 60.0

CoCr Polyethylene 
(MXLPE) 60.0

Galea et al.79 2018 Prospective CoCr Polyethylene 
(HXLPE-VEPE) 59.0 28.1 0.62 60.0

Alumina matrix 
composite/Zirconia 
toughened alumina

Polyethylene 
(HXLPE) 72.0

Higuchi et al.80 2018 Retrospective CoCr Polyethylene 
(HXLPE) 77 64.7 23.1 0.88 79.2

Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

105 55.9 23.0 0.81 80.4

Hopper et al.81 2018 Prospective CoCr Polyethylene (XLPE) 116 62.5 28.6 0.56 188.4

CoCr Polyethylene (CPE/
UHMWPE) 114 62.0 27.9 0.50 176.4

Martin et al.82 2018 Prospective
Alumina matrix 
composite/Zirconia 
toughened alumina

Alumina matrix 
composite/Zirconia 
toughened alumina

42 60.0 26.4 0.14 94.0

CoCr CoCr 40 54.0 30.6 0.55 74.0

Morrison et al.83 2018 Prospective yttria-stabilized 
zirconia YSZ

Polyethylene (CPE/
UHMWPE) 20 81.7 26.2 0.70 139.0

CoCr Polyethylene (CPE/
UHMWPE) 18 80.6 32.6 0.72 140.0

Peters et al.84 2018 Retrospective Metal Polyethylene (CPE/
UHMWPE) 37,351 108.0

Metal Polyethylene 
(HXLPE) 32,867 108.0

Ceramic Polyethylene (CPE/
UHMWPE) 40,109 108.0

Ceramic Polyethylene 
(HXLPE) 70,175 108.0

Ceramic Ceramic 17,625 108.0

Oxidized zirconium 
(OxZr)

Polyethylene (UHM-
WPE and HXLPE) 11,785 108.0

Sharplin et al.85 2018 Retrospective Ceramic Ceramic 11,235 0.48 56.5

Ceramic Metal 474 0.37 56.5

Composite Ceramic Polyethylene (CPE/
UHMWPE) 6833 0.50 63.2

Composite Ceramic Polyethylene 
(HXLPE) 14,382 0.48 62.9

Metal Metal 5989 0.36 54.1

Metal Polyethylene (CPE/
UHMWPE) 35,647 0.59 72.1

Metal Polyethylene 
(HXLPE) 31,579 M: 68.6 W: 70.7 0.54 96.1

Teeter et al.86 2018 Retrospective Ceramic Polyethylene 
(HXLPE) 20 57.1 30.4 0.80 61.2

CoCr Polyethylene 
(HXLPE) 20 57.2 31.0 0.80 67.2

Oxidized zirconium 
(OxZr)

Polyethylene 
(HXLPE) 18 59.9 31.0 0.44 62.4

CoCr Polyethylene 
(HXLPE) 18 60.1 35.2 0.44 64.8

Atrey et al.87 2017 RCT​ CoCr Polyethylene 
(HXLPE) 29 120.0

CoCr Polyethylene (CPE/
UHMWPE) 34 120.0

Ceramic Ceramic 29 120.0

Borgwardt et al.88 2017 RCT​ Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 76 66.4 0.54 120.0

CoCr CoCr 72 68.2 0.58 120.0

Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 75 69.8 0.65 120.0

Continued
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Author Year Design Head Liner Patients (n) Mean Age Mean BMI Women (%) Follow-up (months)

Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

76 69.1 0.75 120.0

Broomfield et al.89 2017 Prospective CoCr Polyethylene (CPE/
UHMWPE) 27 68.0 0.45 146.4

CoCr Polyethylene 
(HXLPE) 27 67.0 0.53 146.4

Dahlstrand et al.90 2017 RCT​ CoCr CoCr 41 65.0 27.0 0.51 192.0

CoCr Polyethylene (CPE/
UHMWPE) 44 67.0 27.0 0.54 192.0

Devane et al.91 2017 RCT​ CoCr Polyethylene (CPE/
UHMWPE) 59 61.0 0.47 132.0

CoCr Polyethylene 
(HXLPE) 57 61.0 0.37 132.0

Gillam et al.92 2017 Retrospective Metal (Large—Head) Metal 231 M: 77.8 W: 80.2 0.46

Metal (Small—Head) Metal 121 M: 77.3 W: 79.4 0.38

Metal Polyethylene 3546 M: 82.3 W: 82.2 0.58

Metal (Articular Sur-
face Replacement) Metal 121 M: 81.6 W: 80.6 0.48

Kawata, et al.50 2017 Prospective Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 26 60.0

Zirconia (ZrO2)
Polyethylene 
(HXLPE) 25 61.5

Zirconia (ZrO2)
Polyethylene 
(HXLPE) 23 62.6

Stainless-Steel Polyethylene 
(HXLPE) 20 60.8

Nebergall et al.93 2017 Prospective Ceramic Polyethylene 
(HXLPE-VEPE) 32 67.0 27.0 0.50

Ceramic Polyethylene 
(MXLPE) 35 65.0 27.0 0.54

Scemama et al.94 2017 Prospective CoCr Polyethylene (CPE/
UHMWPE) 50 66.0 26.0 0.48

CoCr Polyethylene 
(HXLPE-VEPE) 50 67.0 25.0 0.56

Schouten et al.95 2017 Prospective
Alumina matrix 
composite/Zirconia 
toughened alumina

CoCr 36 62.0 30.0 0.50 60.0

CoCr CoCr 31 64.0 30.0 0.32 60.0

Takada et al.58 2017 Retrospective Ceramic Polyethylene 
(HXLPE) 54 60.1 22.5 0.89 63.6

Ceramic Polyethylene 
(HXLPE) 55 65.5 23.2 0.84 63.6

Teeter et al.96 2017 RCT​ CoCr Polyethylene (CPE/
UHMWPE) 8 67.5 28.4 156.0

CoCr Polyethylene 
(HXLPE) 8 67.5 28.4 156.0

Tsukamoto et al.97 2017 Retrospective CoCr Polyethylene 
(HXLPE) 41 56.3 0.93 150.0

CoCr Polyethylene (CPE/
UHMWPE) 38 57.9 0.89 156.0

Engh et al.98 2016 RCT​
Alumina matrix 
composite/Zirconia 
toughened alumina

Alumina matrix 
composite/Zirconia 
toughened alumina

194 59.0 30.0 0.43 50.0

CoCr—high carbid CoCr 196 60.0 30.0 0.46 50:0

Hamai et al.60 2016 Retrospective Zirconia (ZrO2) Polyethylene (XLPE) 36 61.1 0.86 121.2

Zirconia (ZrO2) Polyethylene (XLPE) 36 60.7 0.86 121.2

Hanna et al.99 2016 Retrospective CoCr Polyethylene (CPE/
UHMWPE) 89 56.8 30.7 0.51 158.4

CoCr Polyethylene 
(HXLPE) 88 55.6 30.0 0.90 157.2

Higuchi et al.100 2016 Retrospective Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

67 54.0 23.9 0.78 132.0

CoCr Polyethylene 
(HXLPE) 81 54.2 22.5 0.83 135.6

Petis et al.101 2016 Retrospective CoCr Polyethylene 
(HXLPE) 311 54.9 31.0 0.50 98.4
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Author Year Design Head Liner Patients (n) Mean Age Mean BMI Women (%) Follow-up (months)

Oxidized zirconium 
(OxZr)

Polyethylene 
(HXLPE) 311 54.8 30.9 0.50 93.6

Sato et al.102 2016 Retrospective Ceramic Polyethylene (CPE/
UHMWPE) 110 60.3 20.4 0.85 228.0

Ceramic Polyethylene (CPE/
UHMWPE) 73 59.8 22.0 0.85 241.2

Sillesen et al.103 2016 Retrospective CoCr Polyethylene 
(HXLPE-VEPE) 520 60.8 28.3 0.50

CoCr Polyethylene 
(MXLPE) 457 62.3 28.5 0.50

Garvin et al.104 2015 Prospective CoCr Polyethylene 
(HXLPE) 19 42.0 30.0 108.00

Ceramic Polyethylene 
(HXLPE) 34 42.0 30.0 108.00

Garvin et al.104 2015 Prospective Oxidized zirconium 
(OxZr)

Polyethylene 
(HXLPE) 43 42.0 30.0 0.53 108.00

not mentioned Polyethylene (CPE/
UHMWPE) 19 67.0 120.00

Glyn-Jones et al.105 2015 Prospective not mentioned Polyethylene 
(HXLPE) 20 68.0 0.45 120.00

Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

80

Jassim, et al.106 2015 Prospective CoCr Polyethylene 
(HXLPE) 123 61.0 0.66 60.00

Oxidized zirconium 
(OxZr)

Polyethylene 
(HXLPE) 121 63.0 0.56 60.00

Oxidized zirconium 
(OxZr)

Polyethylene (CPE/
UHMWPE) 124 63.0 0.56 60.00

Jonsson et al.107 2015 Prospective CoCr Polyethylene (CPE/
UHMWPE) 30 69.0 27.0 0.67

Oxidized zirconium 
(OxZr)

Polyethylene (CPE/
UHMWPE) 30 69.0 26.0 0.77

CoCr Polyethylene 
(HXLPE) 30 70.0 27.0 0.67

Oxidized zirconium 
(OxZr)

Polyethylene 
(HXLPE) 30 70.0 27.0 0.73

Karidakis et al.108 2015 Retrospective Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 45

Alumina oxide 
ceramic (Al2O3)

Polyethylene (XLPE) 46

Oxidized zirconium 
(OxZr) (28 mm 
head)

Polyethylene (XLPE) 48

Oxidized zirconium 
(OxZr) (32 mm 
head)

Polyethylene (XLPE) 49

Keeney et al.109 2015 Retrospective CoCr Polyethylene (CPE/
UHMWPE) 84 40.4 28.8 0.43

CoCr Polyethylene 
(HXLPE) 89 40.3 27.7 0.58

Langlois et al.110 2015 Prospective CoCr Polyethylene 
(HXLPE) 50 66.4 24.4 0.55

CoCr Polyethylene (CPE/
UHMWPE) 50 66.4 24.4 0.55

Pang et al.111 2015 Retrieval CoCr Polyethylene 
(HXLPE) 13 61.0 32.0 0.62

CoCr Polyethylene (CPE/
UHMWPE) 13 66.0 32.0 0.62

Shareghi et al.112 2015 Prospective CoCr Polyethylene (XLPE-
VEPE) 38 58.0 25.0 0.42

CoCr Polyethylene (XLPE) 32 58.0 27.0 0.53

Varnum et al.113 2015 Registry Ceramic Ceramic 1773 59.0 0.47 60.0

Metal Polyethylene 9323 65.0 0.51 46.8

Epinette et al.114 2014 Retrospective Alumina oxide 
ceramic (Al2O3)

Polyethylene 
(HXLPE) 228 68.7 28.1 0.66 125.9

Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

447 68.0 27.4 0.68 134.9

Furnes et al.115 2014 Registry Metal Metal 14,373 0.52
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Author Year Design Head Liner Patients (n) Mean Age Mean BMI Women (%) Follow-up (months)

Metal Polyethylene 
(HXLPE) 10,699 0.42

Lübbeke et al.116 2014 Prospective CoCr CoCr 883 63.1 27.4 92.0

Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 2458 72.0 27.0 124.0

Morison et al.117 2014 RCT​ CoCr Polyethylene (CPE/
UHMWPE) 21 50.6 30.3 0.48 81.6

CoCr Polyethylene 
(HXLPE) 23 53.7 27.9 0.48 81.6

Oxidized zirconium 
(OxZr)

Polyethylene (CPE/
UHMWPE) 21 52.4 27.1 0.36 81.6

Oxidized zirconium 
(OxZr)

Polyethylene 
(HXLPE) 22 51.2 29.3 0.55 81.6

Parsons et al.118 2014 Retrospective CoCr Polyethylene (CPE/
UHMWPE) 27 64.7 0.26 90.6

Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 36 57.8 0.56 118.8

CoCr CoCr 18 59.0 0.44 100.8

Topolovec et al.119 2014 Retrieval CoCr—low carbid CoCr—low carbid 26 68.0 0.92

Stainless-steel Polyethylene (CPE/
UHMWPE) 12 74.0 0.67

Stainless-steel Polyethylene 587 69.4 0.76

Dahl et al.120 2013 Retrospective CoCr Polyethylene (CPE/
UHMWPE) 23 60.0 0.74 120.0

Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 20 64.0 0.55 120.0

Desmarchelier 
et al.121 2013 RCT​ Metal Metal 125 63.7 25.4 0.68 100.5

Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3) 125 59.6 25.8 0.45 109.8

Fukui et al.122 2013 Retrospective Zirconia (ZrO2)
Polyethylene 
(HXLPE) 36 56.7 23.1 0.94 124.8

Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 20 53.0 22.7 0.80 127.2

García-Rey et al.123 2013 Prospective CoCr Polyethylene 
(HXLPE) 42 67.4 0.57

Stainless-Steel Polyethylene (CPE/
UHMWPE) 41 61.1 0.54

Hasegawa et al.124 2013 Prospective Yttria stabilized 
zirconia

Polyethylene 
(HXLPE) 23 64 24.1 0.91 84.0

Alumina stabilized 
zirconia

Polyethylene 
(HXLPE) 68 57 23.2 0.91 84.0

Huang et al.125 2013 Registry Metal Metal 1118 62.0 0.52 38.4

Metal Polyethylene 
(HXLPE) 1286 68.0 0.56 51.6

Kim et al.126 2013 Prospective Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

100 45.3 0.50 148.8

Alumina oxide 
ceramic (Al2O3)

Polyethylene 
(HXLPE) 100 45.3 0.50 148.8

Nakashima et al.127 2013 Retrospective Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 62 62.0 23.9 0.70 156.6

Zirconia (ZrO2)
Polyethylene 
(HXLPE) 69 61.8 24.3 0.82 137.8

Vendittoli et al.128 2013 RCT​ Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3) 69 56.8 27.3 0.45 147.6

Metal Polyethylene (CPE/
UHMWPE) 71 54.9 28.2 0.58 147.6

Wang et al.129 2013 Retrospective Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 22 51.5 0.50 120.0

CoCr Polyethylene (CPE/
UHMWPE) 22 51.5 0.50 120.0

Bozic et al.130 2012 Registry Metal Metal 49,646 0.58

Metal Polyethylene 93,929 0.64

Ceramic Ceramic 5252 0.59

Cai et al.131 2012 RCT​
Alumina matrix 
composite/Zirconia 
toughened alumina

Alumina matrix 
composite/Zirconia 
toughened alumina

51 42.1 24.6 0.51 39.7
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Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 62 42.0 24.8 0.56 40.3

D’Antonio et al.132 2012 Prospective Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

144 54.2 27.9 1.00 123.6

CoCr Polyethylene (CPE/
UHMWPE) 72 54.2 27.9 1.00 123.6

Engh et al.133 2012 RCT​ CoCr Polyethylene 
(HXLPE) 116 62.5 28.6 0.56

CoCr Polyethylene (CPE/
UHMWPE) 114 62.0 27.9 0.50

Hanna et al.134 2012 Prospective CoCr—high carbid Polyethylene (CPE/
UHMWPE) 22 72.0 28.7 0.77

CoCr—high carbid CoCr—high carbid 27 68.0 28.1 0.78

Johanson et al.135 2012 Prospective CoCr Polyethylene (CPE/
UHMWPE) 27 56.0 0.44

CoCr Polyethylene 
(HXLPE) 25 55.0 0.52

Kadar et al.49 2012 Registry CoCr Polyethylene (CPE/ 
UHMWPE) 5232 73.0 0.73 74.4

CoCr Polyethylene (CPE/
UHMWPE) 3195 73.0 0.74 94.8

Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 448 74.0 0.70 75.6

Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 275 64.0 0.65 121.2

Nikolaou et al.136 2012 RCT​ CoCr Polyethylene (CPE/
UHMWPE) 36 52.6 28.7 0.50 60.0

CoCr Polyethylene 
(HXLPE) 32 55.1 32.6 0.56 60.0

Ceramic Ceramic 34 52.0 28.2 0.50 60.0

Porat et al.137 2012 Retrospective Ceramic Ceramic 1757 50.0 35.0 0.40

Metal Metal 1589 58.0 31.4 0.48

Sato et al.52 2012 Retrospective Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 40 59.6 0.63 145.2

Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 24 59.6 0.56 145.2

Zirconia (ZrO2)
Polyethylene 
(HXLPE) 275 61.8 0.85 73.2

Alumina oxide 
ceramic (Al2O3)

Polyethylene 
(HXLPE) 72 61.8 0.85 73.2

CoCr Polyethylene 
(HXLPE) 20 61.8 0.85 73.2

Schouten et al.138 2012 RCT​
Alumina matrix 
composite/ Zirconia 
toughened alumina

CoCr 41 61.5 29.0 0.45

CoCr CoCr 36 63.8 29.0 0.36

Amanatullah et al.139 2011 Prospective Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

196 50.4 29.6 0.36

Alumina oxide 
ceramic (Al2O3)

Polyethylene 
(HXLPE) 161 54.7 28.0 0.43

Mall et al.140 2011 Retrospective CoCr Polyethylene (CPE/
UHMWPE) 50 43.2 72.2

CoCr Polyethylene 
(HXLPE) 48 46.5 99.5

Malviya et al.141 2011 RCT​ CoCr CoCr 50 63.9 28.6 0.62

CoCr Polyethylene (CPE/
UHMWPE) 50 64.9 29.4 0.54

Molli et al.142 2011 Retrospective CoCr CoCr 1589 57.4 31.4 0.47 47.5

CoCr Polyethylene 
(HXLPE/MXLPE) 779 70.3 29.1 0.66 42.9

Orradre Burusco 
et al.143 2011 Prospective Alumina oxide 

ceramic (Al2O3)
Polyethylene 
(HXLPE) 50 65.4 25.5 0.36 64.8

Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 57 67.6 25.6 0.40 69.6

Thomas et al.144 2011 Prosective CoCr Polyethylene 
(HXLPE) 22 68.0 0.55 84.0
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CoCr Polyethylene (CPE/
UHMWPE) 22 67.0 0.50 84.0

Bascarevic et al.145 2010 RCT​ Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

82 53.9 26.7 0.79 51.0

CoCr Polyethylene 
(HXLPE) 75 55.6 27.8 0.68 50.0

Hamilton et al.146 2010 RCT​
Alumina matrix 
composite/Zirconia 
toughened alumina

Alumina matrix 
composite/Zirconia 
toughened alumina

177 56.4 0.49 31.1

Alumina matrix 
composite/Zirconia 
toughened alumina

Polyethylene 
(HXLPE) 87 57.3 0.46 31.5

Huddleston et al.147 2010 Prospective CoCr Polyethylene (CPE/
UHMWPE) 45 57.0 27.1 0.26 128.4

CoCr Polyethylene (CPE/
UHMWPE) 43 60.0 25.4 0.43 120.0

Lewis et al.148 2010 RCT​ Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 23 42.8 28.2 120.0

Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3) 23 41.5 26.7 120.0

Lombardi et al.149 2010 RCT​
Alumina matrix 
composite/Zirconia 
toughened alumina

Alumina matrix 
composite/Zirconia 
toughened alumina

64 57.0 0.45 73.0

Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 45 60.0 0.47 72.0

Nakahara et al.53 2010 Prospective Zirconia (ZrO2)
Polyethylene 
(HXLPE) 47 57.5 23.5 0.81 80.4

CoCr Polyethylene 
(HXLPE) 47 56.9 23.5 0.87 79.2

Beksaç et al.150 2009 Retrospective CoCr Polyethylene 
(HXLPE) 41 50.0 28.0 0.43 63.6

CoCr Polyethylene (CPE/
UHMWPE) 41 53.0 30.0 0.43 63.6

Calvert et al.151 2009 RCT​ CoCr Polyethylene 
(HXLPE) 60 62.5 0.45

CoCr Polyethylene (CPE/
UHMWPE) 59 61.0 0.59

Geerdink et al.152 2009 RCT​ CoCr Polyethylene (CPE/
UHMWPE) 26 64.0 28.0 0.43 96.0

CoCr Polyethylene 
(HXLPE) 22 64.0 28.0 0.35 96.0

Hernigou et al.153 2009 Retrospective Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

28 55.0 240.0

Alumina oxide 
ceramic (Al2O3)

Polyethylene 28 55.0 240.0

Ise et al.154 2009 RCT​ Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 26 60.0 0.96 48.5

Zirconia (ZrO2)
Polyethylene 
(HXLPE) 25 61.6 0.94 45.6

Zirconia (ZrO2)
Polyethylene 
(HXLPE) 23 62.7 1.00 44.8

Stainless steel Polyethylene 
(HXLPE) 20 60.9 0.94 48.8

Kawate et al.155 2009 RCT​ Zirconia (ZrO2)
Polyethylene 
(HXLPE)

CoCr Polyethylene 
(HXLPE)

Kim et al.156 2009 Retrospective Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

100 45.3 23.0 0.34 67.2

Alumina oxide 
ceramic (Al2O3)

Polyethylene 
(HXLPE) 100 45.3 23.0 0.34 67.2

Rajadhyaksha et al.157 2009 Retrospective CoCr Polyethylene 
(HXLPE) 27 60.3 27.6 0.32 71.0

CoCr Polyethylene (CPE/
UHMWPE) 27 62.0 28.1 0.44 75.0

Sexton et al.158 2009 Retrospective Ceramic Ceramic 20,627 68.1 0.55

Ceramic Polyethylene 14,001 68.1 0.55

Metal Metal 12,208 68.1 0.55

Metal Polyethylene 62,437 68.1 0.55
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Stilling et al.159 2009 Retrospective Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 36 53.5 0.15 58.0

CoCr Polyethylene (CPE/
UHMWPE) 33 51.5 0.42 58.0

Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 54 44.2 0.11 85.2

CoCr Polyethylene (CPE/
UHMWPE) 54 44.2 0.11 85.2

Capello et al.160 2008 RCT​ Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

93 53.2 27.6 0.34 96.0

Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

92 55.1 28.3 0.33 100.8

CoCr Polyethylene (CPE/
UHMWPE) 93 53.7 28.1 0.40 103.2

Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

174 51.8 28.2 0.31 78.0

García-Rey et al.161 2008 RCT​ Stainless steel Polyethylene (CPE/
UHMWPE) 45 60.6 66.3

CoCr Polyethylene 
(HXLPE) 45 62.5 66.3

Miyanishi et al.162 2008 Retrospective Zirconia (ZrO2)
Polyethylene 
(HXLPE) 95 67.0 24.7 0.83 27.6

Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 20 61.0 24.8 0.79 50.4

Digas et al.163 2007 Prospective CoCr (cemented) Polyethylene 
(HXLPE) 28 55.0 1.00

CoCr (cemented) Polyethylene (CPE/
UHMWPE) 27 55.0 1.00

CoCr (hybrid) Polyethylene 
(HXLPE) 23 48.0 0.66

CoCr (hybrid) Polyethylene (CPE/ 
UHMWPE) 23 48.0 0.66

Kawanabe et al.164 2007 Prospective Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 46 58.1 0.88 80.4

Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 50 58.3 0.94 64.8

Kim et al.165 2007 Prospective Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

50 51.0 0.24 57.6

Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 50 51.0 0.24 57.6

Röhrl et al.166 2007 Retrospective CoCr Polyethylene (CPE/
UHMWPE) 20 70.0 0.40 60.0

CoCr Polyethylene 
(HXLPE) 10 58.0 0.40 72.0

Triclot et al.167 2007 RCT​ CoCr Polyethylene 
(HXLPE) 33 67.9 26.5 0.48 59.5

CoCr Polyethylene (XLPE) 34 70.1 26.4 0.41 59.8

Vendittoli et al.168 2007 RCT​ CoCr Polyethylene (CPE/
UHMWPE) 69 56.8 0.45 79.0

Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

71 54.9 0.58 79.0

Bragdon et al.169 2006 Prospective CoCr Polyethylene 
(HXLPE) 41 60.3 45.0

CoCr Polyethylene 
(HXLPE) 12 60.3 45.0

CoCr Polyethylene (CPE/
UHMWPE) 70 60.3 45.0

Engh et al.170 2006 Prospective CoCr Polyethylene 
(HXLPE) 116 62.5 28.6 0.56 68.4

CoCr Polyethylene (CPE/
UHMWPE) 114 62.0 27.9 0.50 68.4

Geerdink et al.171 2006 Prospective CoCr Polyethylene (CPE/
UHMWPE) 54 63.0 27.0 56.4

CoCr Polyethylene 
(HXLPE) 45 64.0 28.0 56.4

Kraay et al.172 2006 RCT​ CoCr Polyethylene (CPE/
UHMWPE) 30 68.9 0.65 51.7

Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 27 69.5 0.74 51.2
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Oonishi et al.173 2006 Prospective Alumina oxide 
ceramic (Al2O3)

Polyethylene 
(HXLPE) 70 61.0 28.0

Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 73 61.0 28.0

Seyler et al.174 2006 Retrospective Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

79 45.2 27.8 0.23 50.4

Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

79 46.5 29.8 0.22 58.8

CoCr Polyethylene (CPE/
UHMWPE) 26 44.0 28.0 0.24 61.2

CoCr Polyethylene (CPE/ 
UHMWPE) 26 44.8 30.2 0.24 49.2

D’Antonio et al.175 2005 Retrospective CoCr Polyethylene 
(HXLPE) 56 57.4 26.9 0.49 58.8

CoCr Polyethylene (CPE/
UHMWPE) 53 52.9 27.5 0.42 63.6

Dorr et al.176 2005 Prospective CoCr Polyethylene 
(HXLPE) 37 60.2 0.54 60.0

CoCr Polyethylene (CPE/
UHMWPE) 37 65.1 0.54 60.0

Krushell et al.177 2005 Retrospective CoCr Polyethylene 
(HXLPE) 40 68.7 27.9 0.53 47.7

CoCr Polyethylene (CPE/ 
UHMWPE) 40 69.5 28.2 0.53 49.5

Liang et al.178 2005 Retrospective Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 45 58.0 0.89 74.4

Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 51 58.0 0.92 62.4

Manning et al.179 2005 Prospective CoCr Polyethylene (CPE/
UHMWPE) 111 57.0 25.6 0.44

CoCr Polyethylene 
(HXLPE) 70 60.9 25.9 0.50 44.0

Röhrl et al.180 2005 Prospective CoCr Polyethylene (CPE/
UHMWPE) 20 70.0 0.40 24.0

Zirconia (ZrO2)
Polyethylene (CPE/
UHMWPE) 20 67.0 0.75 24.0

CoCr Polyethylene 
(HXLPE) 10 58.0 0.40 36.0

Sonny Bal et al.181 2005 Prospective Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

250 54.9 0.45 24.0

Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 250 60.9 0.53 24.0

Digas et al.182 2004 RCT​ CoCr Polyethylene 
(HXLPE) 27 48.0 0.63

CoCr Polyethylene (CPE/
UHMWPE) 27 48.0 0.63

CoCr Polyethylene 
(HXLPE) 23 55.0 0.57

CoCr Polyethylene (CPE/
UHMWPE) 26 57.0 0.46

Dorr et al.183 2004 Prospective CoCr (cemented) CoCr 153 69.0 60.0

Zirconia (ZrO2) 
(cemented)

Polyethylene (CPE/
UHMWPE) 148 67.0 60.0

CoCr (uncemented) CoCr 158 51.0 60.0

Zirconia (ZrO2) ( 
uncemented)

Polyethylene (CPE/
UHMWPE) 156 52.0 60.0

Jacobs et al.184 2004 Prospective CoCr CoCr 97 53.3 0.52 46.8

CoCr Polyethylene 
(MXLPE) 74 55.7 0.33 42.0

Hopper et al.185 2003 Retrospective CoCr Polyethylene 
(HXLPE) 78 58.7 37.2

CoCr Polyethylene (CPE/
UHMWPE) 50 60.3 36.0

CoCr Polyethylene 
(HXLPE) 48 60.3 34.8

CoCr Polyethylene (CPE/
UHMWPE) 50 61.0 33.6

Continued
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Author Year Design Head Liner Patients (n) Mean Age Mean BMI Women (%) Follow-up (months)

Martell et al.186 2003 RCT​ CoCr Polyethylene 
(HXLPE) 24 60.0 30.6 27.6

CoCr Polyethylene (CPE/
UHMWPE) 22 55.0 27.6 27.6

Pabinger et al.187 2003 RCT​ CoCr CoCr 31 0.39 24.0

Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 28 0.43 24.0

Taeger et al.188 2003 Prospective
Titanium. diamond-
like-carbid (DLC) 
coated

Polyethylene (CPE/
UHMWPE) 101 59.6 0.50 110.4

Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 101 57.0 0.63 110.4

D’Antonio et al.189 2002 Prospective Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3) 172 53.0 0.34 35.1

Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3) 177 53.0 0.36 35.2

CoCr Polyethylene (CPE/
UHMWPE) 165 53.0 0.40 33.6

Kim et al.190 2001 Prospective CoCr (22 mm) Polyethylene (CPE/
UHMWPE) 35 39.9 0.17

CoCr (28 mm) Polyethylene (CPE/
UHMWPE) 35 39.9 0.17

Zirconia (ZrO2) 
(22 mm)

Polyethylene (CPE/
UHMWPE) 35 39.9 0.17

Zirconia (ZrO2) 
(28 mm)

Polyethylene (CPE/
UHMWPE) 35 39.9 0.17

Lombardi et al.191 2001 Prospective CoCr Polyethylene (CPE/
UHMWPE) 72 48.9 28.7 0.24 39.5

CoCr CoCr 78 49.3 29.1 0.26 38.8

Pitto et al.192 2000 Prospective Alumina oxide 
ceramic (Al2O3)

Polyethylene (CPE/
UHMWPE) 25 62.0 0.67 60.0

Alumina oxide 
ceramic (Al2O3)

Alumina oxide 
ceramic (Al2O3)

25 60.0 0.60 60.0

Table 2.   Generalities and patient baseline data of the included studies. RCT​ randomised controlled trial; CoCr 
Cobalt-Chrome.

Figure 3.   From left to the right: edge, funnel and interval plots of the comparison: overall wear penetration.

Figure 4.   From left to the right: edge, funnel and interval plots of the comparison: wear penetration per year.
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In this study, the combination of HXLPE liner and ZrO2 head demonstrated the lowest rate of revision at last 
follow-up. National registries are an important tool to compare revision rates of different material combinations. 
In the Australian Orthopaedic Association National Joint Replacement Registry (AOA) in 2022 Ceramised 
Metal head on XLPE liner exibit the lowest 10-year revision rate followed by ceramic head on XLPE liner, 
which, however, has the lowest 20-year revision rate with 6.8%. 20 year data for ceramised metal head on XLPE 
liner are not available yet40. The National Joint Registry (NJR) of England and Wales in 2022 reports ceramic on 
polyethylene to have the lowest 15 year revision rates for all fixation types41. The German Arthroplasty Registry 
(EPRD) registered the lowest 6-year-revision rate for CoC bearings for elective THA. Nevertheless, ceramic on 
HXLPE bearings were, with 49.2%, the most frequently used bearing type in Germany in 202142. Regarding NJR 
data in England and Wales, MOP is still the most commonly used bearing with decreasing tendency, while the 
use of CoP bearings increases41. Crosslinked polyethylene is listed as the most commonly used polyethylene 
type, with 97.2% in 2021 in Australia40. In general, low revision rates for CoP and CoHXLPE are mentioned 
across all the registries.

The German registry classifies polyethylene into different degrees of crosslinking such as UHMWPE, MXLPE, 
and HXLPE, whereas the NJR only considers polyethylene as a single category. Similarly, the materials of the 
heads are divided only into broad categories of metal and ceramic or partly ceramised metals by the NJR. As a 
result, it is not possible to conduct a detailed analysis of the material properties in registry studies. Additionally, 
in registries, implant combinations are selected for patients based on individual characteristics, making com-
parisons between implant combinations highly susceptible to bias. Systematic reviews and meta-analyses have 
been conducted to overcome these limitations. A few exceptions aside20, most review studies only offer analyses 
of two or three material combinations19, 43.

We performed a comprehensive Bayesian network meta-analysis investigating more than 600,000 THA with 
23 different material combinations. As mentioned, in registry studies, CoP bearings exhibit low revision rates. 
Biomechanical studies found improved wear behaviour for HXLPE compared to PE, which should also entail a 
longer lifetime15, 44. Zirconia as material for hip implants head has promising properties. In 2001, however, the 
largest manufacturer of zirconia femoral heads recalled their products for problems with thermal processing 
associated with some batches producing higher fracture rates, leading to a loss of confidence in zirconia as a 
reliable orthopaedic biomaterial45, 46. ZrO2 hip implant heads are also mentioned to be prone to aging47. Never-
theless, ZrO2 is widely used in dental applications48. A registry study in 2012 stated that ZrO2 heads are inferior 
to metal heads regarding revision rate at 12 years49. Of note, most studies evaluating ZrO2 on HXLPE bearing 
surfaces included in this network meta-analysis were performed in Japan50–53. Demographic characteristics could 
thus influence the results of this study. Nevertheless, the positive results for ZrO2 heads observed in the present 
network meta-analyses may prompt surgeons to rethink their attitude towards this material. However, only few 
studies investigated the survival rate of zirconia in the last few years.

The present study has several limitations that should be considered when interpreting the results. First, the 
influence of the head diameter, the fixation technique of stem and cup as well as the orientation of the cup and 
liner were not analysed. A high inclination angle can cause an increase in liner wear54. The head diameter of the 
prosthesis is an important factor that can affect the performance of the prosthesis, especially regarding the risk of 
dislocation55, 56. A larger head diameter can lead to increased volumetric wear in polyethylene cups, while linear 
wear remains consistent57–59. From our analyses, we cannot tell whether certain materials were preferably used 
in specific sizes. Future studies should consider the influence of head diameter in their analyses. Second, other 
types of head designs such as dual mobility bearings or hip resurfacing were not explicitly described. Although 
we subdivided polyethylene into different categories based on the descriptions used in the studies (CPE/UHM-
WPE, XLPE, HXLPE, MXLPE, HXLPE-VEPE), there could be differences arising from different manufacturing 
techniques such as annealing and remelting of the polyethylene or amount of crosslinking60. Currently, different 
treatments, including irradiation and melting, irradiation and annealing, sequential irradiation with annealing, 
irradiation followed by mechanical deformation, and irradiation and stabilization with vitamin E are available61. 
Irradiating UHMWPE results in cross-linking between the molecular chains, which improves the mechanical 
and tribological properties of this cross-linked PE62. The offset of that is that crosslinking affects the mechanical 
properties of UHMWPE, usually resulting in a decrease in toughness, stiffness, and hardness of the polymer63. 
Despite that effect, cross-linked UHMWPE is presently the standard of care.

Figure 5.   From left to the right: edge, funnel and interval plots of the comparison: rate of revision at last 
follow-up.
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In addition to randomized controlled studies, prospective and retrospective studies were included in this 
meta-analysis to provide additional data, leading to a moderate risk of bias. Prospective and retrospective studies 
have a higher risk of bias than randomized controlled trials because they may not use random allocation to bal-
ance potential confounding variables between treatment groups. In addition, the quality of the included studies 
varied, with some studies having a high risk of bias or unclear methodological quality. Nevertheless, a patient 
and case specific implant choice has to consider patient factors such as age, activity level, and weight, surgical 
technique, and cost in addition to wear rate and revision rate. Additionally, further design criteria are mandatory 
to be taken into account, including the fixation technique of the cup and stem within the bone.

Conclusion
The combination of an Al2O3 head and an Al2O3 liner showed the lowest wear penetration at last follow-up, as 
well as the lowest rate of wear penetration per year. On the other hand, the combination of ZrO2 head ad HXLPE 
liner exhibited the lowest rate of revision at last follow-up.

Data availability
The datasets generated during and/or analysed during the current study are available throughout the manuscript.
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