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Investigating subtypes of lung 
adenocarcinoma by oxidative 
stress and immunotherapy related 
genes
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Huiping Dai 5*

Lung adenocarcinoma (LUAD) is one of the most widespread and fatal types of lung cancer. Oxidative 
stress, resulting from an imbalance in the production and accumulation of reactive oxygen species 
(ROS), is considered a promising therapeutic target for cancer treatment. Currently, immune 
checkpoint blockade (ICB) therapy is being explored as a potentially effective treatment for early-
stage LUAD. In this research, we aim to identify distinct subtypes of LUAD patients by investigating 
genes associated with oxidative stress and immunotherapy. Additionally, we aim to propose subtype-
specific therapeutic strategies. We conducted a thorough search of the Gene Expression Omnibus 
(GEO) datasets. From this search, we pinpointed datasets that contained both expression data and 
survival information. We selected genes associated with oxidative stress and immunotherapy using 
keyword searches on GeneCards. We then combined expression data of LUAD samples from both 
The Cancer Genome Atlas (TCGA) and 11 GEO datasets, forming a unified dataset. This dataset was 
subsequently divided into two subsets, Dataset_Training and Dataset_Testing, using a random 
bifurcation method, with each subset containing 50% of the data. We applied consensus clustering 
(CC) analysis to identify distinct LUAD subtypes within the Dataset_Training. Molecular variances 
associated with oxidative stress levels, the tumor microenvironment (TME), and immune checkpoint 
genes (ICGs) were then investigated among these subtypes. Employing feature selection combined 
with machine learning techniques, we constructed models that achieved the highest accuracy levels. 
We validated the identified subtypes and models from Dataset_Training using Dataset_Testing. A 
hub gene with the highest importance values in the machine learning model was identified. We then 
utilized virtual screening to discover potential compounds targeting this hub gene. In the unified 
dataset, we integrated 2,154 LUAD samples from TCGA-LUAD and 11 GEO datasets. We specifically 
selected 1,311 genes associated with immune and oxidative stress processes. The expression data 
of these genes were then employed for subtype identification through CC analysis. Within Dataset_
Training, two distinct subtypes emerged, each marked by different levels of immune and oxidative 
stress pathway values. Consequently, we named these as the OX+ and IM+ subtypes. Notably, the 
OX+ subtype showed increased oxidative stress levels, correlating with a worse prognosis than the 
IM+ subtype. Conversely, the IM+ subtype demonstrated enhanced levels of immune pathways, 
immune cells, and ICGs compared to the OX+ subtype. We reconfirmed these findings in Dataset_
Testing. Through gene selection, we identified an optimal combination of 12 genes for predicting 
LUAD subtypes: ACP1, AURKA, BIRC5, CYC1, GSTP1, HSPD1, HSPE1, MDH2, MRPL13, NDUFS1, 
SNRPD1, and SORD. Out of the four machine learning models we tested, the support vector machine 
(SVM) stood out, achieving the highest area under the curve (AUC) of 0.86 and an accuracy of 
0.78 on Dataset_Testing. We focused on HSPE1, which was designated as the hub gene due to its 
paramount importance in the SVM model, and computed the docking structures for four compounds: 
ZINC3978005 (Dihydroergotamine), ZINC52955754 (Ergotamine), ZINC150588351 (Elbasvir), and 
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ZINC242548690 (Digoxin). Our study identified two subtypes of LUAD patients based on oxidative 
stress and immunotherapy-related genes. Our findings provided subtype-specific therapeutic 
strategies.

In 2020, lung cancer accounted for the highest number of cancer deaths, with approximately 2.2 million new 
cases and 1.8 million deaths1. Lung cancer can be classified into two broad categories: small-cell lung cancer 
(SCLC, 10–15%) and non-small-cell lung cancer (NSCLC, 80–85%)2. NSCLC predominantly consists of lung 
adenocarcinoma (LUAD), which represents 60% of all cases3. Major risk factors for LUAD include cigarette smok-
ing, environmental contaminants, genetic factors, and alcohol consumption4. Unfortunately, LUAD is frequently 
diagnosed at advanced stages, resulting in a poor prognosis5. Furthermore, despite treatment with surgery and 
chemotherapy, patients diagnosed with LUAD often experience relapses and metastases6. The average 5-year 
survival rate for patients with LUAD is less than 20%7. Therefore, the identification of promising treatment targets 
and compounds for LUAD is crucial.

The correlation between oxidative stress and cancer cells is firmly established, as cancer cells exhibit signifi-
cantly higher levels of oxidative stress in comparison to normal cells8. The elevated baseline level of reactive oxy-
gen species (ROS) is a reflection of persistent oxidative stress generated by increased metabolism and abnormal 
cell development. For example, moderately elevated oxidative stress has been shown to promote tumor growth 
by encouraging cell transformation9, proliferation10, and survival11. However, the impact of oxidative stress can 
be either pro-tumor or anti-tumor, depending on the context8. Higher levels of oxidative stress can potentially 
induce the death of cancer cells. In LUAD therapy, several tyrosine kinase inhibitors (TKIs) have been utilized 
to induce cancer cell apoptosis via oxidative stress12. Owing to the biphasic impact of oxidative stress on tumo-
rigenesis, further investigations are imperative to unravel its intricate mechanisms.

The interaction between PD-L1 and PD-1 signaling is a potent mechanism for inhibiting T cell activation, 
making it a promising therapeutic target13. Immune checkpoint blockade (ICB) has emerged as a critical treat-
ment option for various diseases, including metastatic melanoma, NSCLC, and bladder cancer. Research sug-
gests that ICB treatment may also impact oxidative stress, and the modification of oxidative stress may enhance 
the efficacy of ICB treatment14. Given the substantial heterogeneity of LUAD, individuals with the same clinical 
stage of LUAD may have different prognoses when treated with ICB. Therefore, categorizing LUAD based on 
sequencing data is crucial for personalized and effective LUAD therapy.

In recent years, there has been a widespread use of gene expression analysis to identify molecular subtypes, 
as evidenced in several publications. For instance, a study used immunogenomic profiling of 29 immune sig-
natures to identify three distinct LUAD subtypes (Immunity High, Immunity Medium, and Immunity Low)15. 
Similarly, Qin et al. utilized critical immune-prognosis genes for patients with LUAD and stratified the patients 
into low-immunity and high-immunity subtypes16. In another study, researchers performed consensus cluster-
ing on differentially expressed aging-related genes in the Cancer Genome Atlas (TCGA) database. This analysis 
identified three clusters of TCGA-LUAD patients with substantial differences in prognosis, immune infiltration, 
chemotherapy, and targeted therapy17. However, more studies are needed to investigate the molecular subtypes 
of LUAD.

In this investigation, we combine 12 datasets with different sources into one single dataset and then separate 
it into the Dataset_Training and Dataset_Testing. We identified molecular subtypes of LUAD based on genes 
associated with oxidative stress and the immune system in the Dataset_Training. Furthermore, we compared the 
differences in prognosis, oxidative stress, and immune checkpoint genes between two molecular subtypes. We 
constructed four machine learning models to predict the subtype of LUAD by 12 genes which were selected by 
differentially expressed Genes (DEG) analysis and gene selection. These results, including subtypes and models 
were validated in the Dataset_Testing.

Materials and methods
Data collection, pre‑processing and dividing
TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus) are among the most frequently 
accessed databases for researchers working on various cancer types, including LUAD. In our research, we 
extracted RNA-seq data normalized by Transcripts Per Million (TPM), together with the associated clinical 
information from the TCGA-LUAD cohort, using the ’TCGAbiolinks’ R package. In our exploration of the GEO 
database, we conducted a comprehensive search using specific keywords (detailed in Supplementary Table 1). 
We then filtered the datasets based on the following criteria: (1) The datasets should contain LUAD samples. (2) 
The expression data should represent mRNA expression from bulk LUAD samples. (3) There should be more 
than 12,000 genes in the expression data. (4) Essential overall survival details, such as survival status and time, 
must be available. (5) Each dataset should comprise more than 50 samples. (6) Datasets must be free of duplicate 
samples within the GEO database. To access standardized mRNA expression data and clinical information from 
the sorted datasets, we utilized the "GEOquery" package18. It’s important to highlight that only LUAD samples 
equipped with both mRNA expression data and survival particulars were retained for subsequent analysis.

Given that the datasets we analyzed originate from diverse databases, platforms, and research groups, address-
ing the batch effect is crucial. In molecular biology, batch effects arise when non-biological variables in an 
experiment introduce variations in the generated data. If not accounted for, these effects can lead to misleading 
conclusions, especially when the factors causing the batch effects correlate with experiment outcomes. To mitigate 
these batch effects, we employed a binary transformation method. For instance, in a specific GEO dataset, if the 
CD8A gene expression ranges from 0 to 1000 with a median value of 500, our method transforms the CD8A gene 
expression of each LUAD sample into either 0 or 1—depending on whether the expression is above or below the 
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500 threshold. This method was applied to all genes and all datasets in our study. Subsequently, we integrated all 
the samples from both TCGA and GEO datasets, resulting in a unified dataset named ’Dataset_All’. Samples from 
’Dataset_All’ were randomly and equally partitioned into ’Dataset_Training’ (50%) and ’Dataset_Testing’ (50%).

Oxidative stress and immune‑related genes (OSIRGs)
To identify OSIRGs, we searched the GeneCards database using the keywords "oxidative stress" and "immuno-
therapy"19. The search results provide relevance scores that reflect the significance of genes in relation to "oxidative 
stress" and "immunotherapy". For instance, when considering "oxidative stress," these scores are determined by 
analyzing the co-occurrence of genes with "oxidative stress" within Medline documents. A higher number of 
co-occurrences, relative to what would be expected by chance, results in a higher relevance score (https://​www.​
genec​ards.​org/​Guide/​GeneC​ard). This score signifies the degree of association, with higher values indicating a 
stronger relationship of the gene to oxidative stress. It’s important to note that the absolute values of relevance 
score lack significance and only provide the relative importance, with the order holding significance. Therefore, 
it’s not advisable to set a fixed threshold (like a score of 10) for both "oxidative stress" and "immunotherapy." 
Specifically, we filtered and identified the top 1000 genes that displayed the highest relevance scores for both "oxi-
dative stress" and "immunotherapy". After combining these selected genes, we ended up with a set of 2,000 genes. 
However, after accounting for overlaps, 1757 unique genes were identified. Among these 1757 genes, 1311 genes 
have available expression data in ’Dataset_Training’ and ’Dataset_Testing. These genes, which we termed Oxida-
tive Stress and Immunotherapy Relevant Genes (OSIRGs), were the foundation for our subsequent analyses.

Acquisition of LUAD subtypes and gene set enrichment analysis (GSEA)
It’s important to note that the expression values of OSIRGs in Dataset_Training and Dataset_Testing were either 
0 or 1.To cluster the LUAD samples in the Dataset_Training and Dataset_Testing, we employed the consensus 
clustering (CC) analysis. CC is a resampling-based technique developed to evaluate the stability of clusters 
uncovered within a dataset20. Through iterative sub-sampling of the dataset and subsequent clustering of these 
subsets, CC seeks to establish whether the same samples consistently form clusters together. The CC procedure 
encompasses several steps: multiple random samplings of data subsets, application of a clustering algorithm to 
each subset, and comparative analysis of clustering outcomes across all subsets to generate a consensus or average 
result. The CancerSubtypes package was utilized for conducting the CC analysis with same parameters in the 
’Dataset_Training’ and ’Dataset_Testing’, individually and independently21. In our analytical framework, several 
critical parameters were meticulously set to ensure accuracy and reliability. Firstly, we designated the number 
of repetitions (reps) as 100, facilitating ample iterations for the analysis. The clustering algorithm was selected 
as “Partitioning Around Medoids” (PAM). PAM shares similarities with the K-means clustering approach, it 
uniquely employs medoids from the dataset as opposed to centroids22. This characteristic enhances the robustness 
of PAM, making it more resilient to noise and potential outliers. Finally, as a measure of distance, we incorporated 
the Pearson correlation coefficient, denoted as distance = "pearson", to compute the relationships within our data. 
Following the acquisition of subtypes through CC analysis, we employed the Kaplan–Meier (KM) curve method 
to evaluate survival differences across the identified subtypes.

Then, we employed the differentially expressed genes (DEG) from ’edgeR’ R package to calculate the 
log2FoldChange (FC) and adjusted p-values of genes between LUAD tumor subtypes23. This procedure was 
applied to the expression data of both ’Dataset_Training’ and ’Dataset_Testing’, where the gene expression val-
ues were either 0 or 1. Subsequently, pathway enrichment analyses were performed on the log2FC and p-values 
of genes using the ’fgsea’ R package24, in conjunction with the gene sets file (h.all.v2023.1.Hs.symbols.gmt). 
Hallmark gene sets, sourced from the MSigDB resource25, encapsulate specific, well-defined biological states or 
processes, and consistently demonstrate coherent expression patterns.

Differential analysis of oxidative stress, tumor microenvironment (TME), and immune check-
point genes among tumor subtypes
The gene set variation analysis (GSVA) algorithm offers a means to transform an mRNA expression matrix into 
another matrix of specific gene sets26. Essentially, this algorithm computes the enrichment scores of given gene 
sets for each sample. Our study used two distinct oxidative stress gene sets. The first, GOBP_Positive_Regula-
tion_Of_Response_To_Oxidative_Stress, comprises 10 genes that either activate or amplify the response to 
oxidative stress. The second, Hallmark_Reactive_Oxygen_Species_Pathway, contains 49 genes known to be 
upregulated by reactive oxygen species (ROS). To assess the differences in these oxidative stress gene sets across 
subtypes, we applied the Wilcox test for statistical significance. This analysis was consistently executed on both 
the Dataset_Training and Dataset_Testing, adhering to identical parameters.

We employed the "estimate" package to calculate the immune, stromal, and tumor scores, which are the main 
components of TME27. To estimate the absolute abundance of eight different cell types, which included fibroblasts, 
endothelial cells, and immune cells, we utilized the MCPcounter technique based on the transcriptome data28. 
This process, maintained with consistent parameters, was applied to both Dataset_Training and Dataset_Test-
ing, and the resultant differences in TME cells between subtypes were visually represented through heatmaps.

In both the Dataset_Training and Dataset_Testing datasets, we had available gene expression values for key 
immune checkpoint genes, specifically for PD1 (PDCD1) and CTLA-4 (CTLA4). We subsequently extracted the 
expression levels of these immune checkpoint genes for further analysis. To statistically evaluate the variations 
in the expression of these genes across subtypes, we employed the Wilcoxon test. Notably, unlike TME cells, the 
expression values of PD1 and CTLA-4 in both datasets had undergone binary transformation, resulting in values 
of either 0 or 1, which makes it hard to visualize the expression values by boxplot. Consequently, we made subtype 
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comparisons of PD1/CTLA-4 expressions within each distinct dataset and used the expression data before the 
binary transformation, including TCGA-LUAD and the 11 GEO datasets, individually.

Feature selection, model construction, and model validation
In the Dataset_Training, OSIRGs with a log2FC greater than 0.5 and an adjusted p-value of less than 0.05 were 
selected for model construction to predict subtypes. Subsequently, our study adopted gene selection techniques 
based on the Support Vector Machine (SVM) method using Recursive Feature Elimination (RFE) as proposed 
in a published article29. In the SVM-RFE algorithm, the ranking coefficient is constructed based on the weight 
vector derived from the SVM during its training process30. With each iteration, the algorithm discards the gene 
with the lowest ranking coefficient, thereby ensuring that genes with marginal importance or redundancy were 
filtered out. The goal was to identify optimal combinations of 3, 6, 9, 12, 15, and 18 genes through the SVM-RFE 
method. To validate the reliability of our chosen genes, we performed a fivefold cross-validation. The choice of the 
best gene combination was based on the point where the accuracy value reached stability. Here’s a brief overview 
of the SVM-RFE process: (1) The SVM-RFE algorithm ranks genes based on a weight vector obtained from the 
SVM during its training phase. (2) In each iteration, the gene with the least ranking coefficient, indicating the 
least importance, is eliminated. (3) Using SVM-RFE, we sought optimal combinations of 3, 6, 9, 12, 15, and 18 
genes. (4) To ensure the robustness of our selected genes, we applied a fivefold cross-validation. The optimal gene 
combination was determined at the point where the accuracy value plateaued or stabilized.

We utilized various methods for developing a predictive model to distinguish between OX+ and IM+ subtypes. 
These methods encompassed Decision Tree (DT), Support Vector Machine (SVM), Artificial Neural Networks 
(ANN), and Random Forest (RF), all of which were implemented using the caret package in R. The process of 
parameter tuning was conducted on the Dataset_Training by metrics like mean accuracy and mean AUC. To 
counteract the risk of overfitting, we employed 50 replicates of fivefold cross-validation to estimate Accuracy 
and AUC. For Decision Tree, we focused on the complexity parameter (cp), a parameter influencing model 
complexity and subsequently impacting model accuracy. For ANN, the "size" parameter dictated the number of 
units or nodes in the hidden layer, while the "decay" parameter acted as a regularization parameter to counter 
overfitting. In the context of RF, the "mtry" parameter held significant importance as it determined the count 
of randomly selected variables (or features) during each tree split. In the case of SVM, two pivotal parameters 
were sigma and C. The parameter "sigma" influenced the kernel’s spread or width, while "C" was a regularization 
parameter controlling the trade-off between margin maximization and classification error minimization. Through 
a grid search, we explored a range of potential parameter values to identify the combination that yielded optimal 
performance of mean AUC and accuracy on Dataset_Training. Subsequently, for external validation, we applied 
the developed models to the Dataset_Testing to discern between the OX+ and IM+ subtypes. This evaluation again 
relied on AUC and Accuracy as performance metrics. Furthermore, we quantified the importance values of genes 
integrated into the selected model, and the gene with the highest importance value was selected as the hub gene.

Survival analysis and potential compounds for hub gene
In the Dataset_Training and Dataset_Testing, we used survival R package to calculate the difference of high and 
low of expression values of genes. And the survival plots were plotted by the survminer R package. In this study, 
we employed virtual screening and molecular docking approaches to validate the association between the selected 
hub gene and compounds. To obtain the protein structure, we retrieved it from the AlphaFold database31. The 
Zinc15 database was used to retrieve the three-dimensional structures of compounds that have been approved 
by the food and drug administration (FDA)32. Then, AutoDock Vina was employed for virtual screening, pin-
pointing compounds with the lowest binding energy indicative of stable binding33. Binding energy is determined 
by evaluating the sum of interaction energies, like hydrogen bonds, and then subtracting the energy required 
to destabilize the initial structures. Within AutoDock Vina, this binding energy parameter helps determine the 
ligand with the most stable interaction with the protein. A more negative binding energy signifies a stronger and 
more favorable drug-target interaction. The top 4 small molecules with the lowest binding energy were selected, 
and their binding complex with the protein were visualized using Pymol software.

Results
Datasets searching and sorting
The methodology flow of our study is depicted in Fig. 1. Initiating with our search strategy (outlined in Sup-
plementary Table 1), we initially retrieved 269 datasets from GEO database. Upon employing our predefined 
sorting criteria, this was refined down to 11 suitable GEO datasets for subsequent analysis. Comprehensive clini-
cal details, encompassing attributes like gender, TNM stage, age, survival status, and survival time for both the 
chosen GEO datasets and TCGA-LUAD, are delineated in Table 1. To address the inherent batch effects across 
these datasets, we adopted a binary transformation technique. An in-depth explanation of this methodology 
is provided in the “Methods” Section. To counteract the inherent batch effects observed across the datasets, we 
applied a binary transformation approach. A comprehensive description of this methodology is elaborated upon 
in the “Methods” Section. We utilized Principal Component Analysis (PCA) plots for a visual representation of 
the batch effect. Prior to the binary transformation, a pronounced batch effect was evident, as shown in Fig. 2A. 
Post transformation, this effect was significantly mitigated, as depicted in Fig. 2B. The number of RNAs with 
available expression value in each dataset are different, range from 13,237 to 25,440. Subsequently, 12 datasets, 
which included the TCGA-LUAD and 11 GEO datasets, were consolidated to create ’Dataset_All’. This compre-
hensive dataset, ’Dataset_All’, encompasses a total of 2,154 LUAD samples and 9722 genes.
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Figure 1.   The flowchart of this study.

Table 1.   Clinical details of datasets.

Datasets Sample number Gender
Age (mean 
value years) T stage N stage M stage Survival status

Survival time 
(mean value 
years) Reference

GSE3141 58 Not available Not available Not available Not available Not available Alive (n = 26); 
Dead (n = 32) 2.6 34

GSE13213 117 Female (n = 57); 
Male (n = 60) 61

T1 (n = 54); T2 
(n = 50); T3 
(n = 8); T4 (n = 5)

N0 (n = 87); 
N1 (n = 8); N2 
(n = 22)

M0 (n = 117) Alive (n = 68); 
Dead (n = 49) 5.3 35

GSE14814 71 Female (n = 34); 
Male (n = 37) 59 Not available Not available Not available Alive (n = 36); 

Dead (n = 35) 4.6 36

GSE26939 115 Female (n = 50); 
Male (n = 49) 64 Not available Not available Not available Alive (n = 49); 

Dead (n = 66) 3.4 37

GSE30219 85 Female (n = 19); 
Male (n = 66) 61

T1 (n = 71); T2 
(n = 12); T3 
(n = 2)

N0 (n = 82); N1 
(n = 3) M0 (n = 85) Alive (n = 40); 

Dead (n = 45) 6.5 38

GSE31210 226
Female 
(n = 121); Male 
(n = 105)

60 Not available Not available Not available Alive (n = 191); 
Dead (n = 35) 4.7 39

GSE37745 106 Female (n = 60); 
Male (n = 46) 63 Not available Not available Not available Alive (n = 29); 

Dead (n = 77) 5.1 40

GSE41271 182 Female (n = 90); 
Male (n = 92) 64 Not available Not available Not available Alive (n = 112); 

Dead (n = 70) 3.8 41

GSE42127 133 Female (n = 65); 
Male (n = 68) 66 Not available Not available Not available Alive (n = 90); 

Dead (n = 43) 4.1 42

GSE50081 127 Female (n = 62); 
Male (n = 65) 69

T1 (n = 43); T2 
(n = 82); T3 
(n = 2)

N0 (n = 94); N1 
(n = 33) M0 (n = 127) Alive (n = 76); 

Dead (n = 51) 4.0 43

GSE68465 442
Female 
(n = 219); Male 
(n = 223)

64
T1 (n = 150); T2 
(n = 251); T3 
(n = 28)
T4 (n = 11)

N0 (n = 299); 
N1 (n = 87); N2 
(n = 53)

Not available Alive (n = 206); 
Dead (n = 236) 4.4 44

TCGA-LUAD 492
Female 
(n = 266); Male 
(n = 226)

65
T1 (n = 167); T2 
(n = 260); T3 
(n = 43)
T4 (n = 19)

N0 (n = 316); 
N1 (n = 92); N2 
(n = 70)
N3 (n = 2);

M0 (n = 325); 
M1 (n = 25)

Alive (n = 370); 
Dead (n = 122) 1.5 45
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Identification and verification of tumor subtypes
In our study, we initially sourced 1000 genes each associated with "oxidative stress" and "immunotherapy" based 
on their top relevance scores from GeneCards, totaling 2000 OSIRGs genes. From this pool, we eliminated 
duplicate genes and those not present in Dataset_All, leaving us with expression values for 1311 distinct genes. 
Then, we divided the entire Dataset_All into two equal parts. This distribution was carried out randomly, result-
ing in the ’Dataset_Training’ and ’Dataset_Testing’ subsets, with each accounting for 50% of the overall data. 
Both Dataset_Training and Dataset_Testing contained 1077 LUAD samples, each accompanied by RNA-seq 
data and related clinical details. Finally, the expression matrix for the 1311 genes was subjected to Consensus 
Clustering (CC) analysis.

In the Dataset_Training, the heatmap of the consensus matrices for k = 2 (Fig. 2C) distinctly highlighted 
two clusters. This distinction emphasizes that intra-cluster samples exhibit a robust correlation, while inter-
cluster samples have minimal correlation. Furthermore, the overall survival (OS) prognosis showed a marked 
difference in two subtypes (Fig. 2D). This dataset’s samples were bifurcated into Subtype_O and Subtype_M. 
Notably, patients classified under Subtype_M demonstrated a more favorable prognosis in contrast to those 
in Subtype_O. Using the same methodology, the CC-based cluster analysis was extended to Dataset_Testing, 
which, like its counterpart, consisted of 1077 LUAD samples with relevant expression data and survival statistics. 
This dataset’s samples were bifurcated into Subtype_H and Subtype_P (Fig. 2E). A comparative analysis of the 
overall survival (OS) curves (Fig. 2F) found that patients within Subtype_H exhibited a better prognosis relative 
to those in Subtype_P.

DEG and GSEA analysis
In the training dataset, we calculated the log2FC and the adjusted p-values of genes between Subtype_O and 
Subtype_M samples by DEG analysis. The following the GSEA results showed that Subtype_O samples are 
enriched in several pathways involved in cell proliferation, cycle, and metabolism (Table 2). These pathways 
cover a spectrum of cellular processes from energy metabolism (like glycolysis and oxidative phosphorylation) to 
cell growth (MYC and mTORC1 signaling) and genome maintenance (DNA repair and G2M checkpoint). Their 
dysregulation can significantly influence the onset and progression of various cancers. Oxidative phosphorylation 
is a crucial process for producing ATP, and its inherent electron transfer activities can also lead to ROS forma-
tion. On the other hand, immune pathways were found to be enriched in Subtype_M samples (Table 2). These 
pathways encompass critical aspects of cellular function, like immune responses, including the IL-2 STAT5 and 
Interferon Gamma pathways. Many, such as TNFA Signaling via NFKB and Inflammatory Response, play roles 

Figure 2.   Identification of LUAD subtypes through consensus clustering (CC) using OSIRGs. (A) Principal 
component analysis (PCA) of 12 datasets prior to batch effect correction. (B) PCA of the 12 datasets following 
batch effect correction. (C) Heatmap of the consensus matrices for two subtypes in the Dataset_Training. Values 
range from 0 (never grouped together) to 1 (always clustered together), denoted by a color gradient from white 
to blue. (D) Overall Survival (OS) curves for subtypes with two subtypes in Dataset_Training. (E) Heatmap 
representing consensus matrices for two subtypes in the Dataset_Testing. (F) OS curves for subtypes within the 
two subtypes in Dataset_Testing.
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in inflammation, which can influence cancer progression. Based on these results, we labeled the Subtype_O as 
OX+ (oxidative stress) subtype, and the Subtype_M as IM+ (immune) subtype.

Similarly, we calculated the log2FC values, p-values of genes, and GSEA results between Subtype_H and 
Subtype_P samples. In the pathways enriched in Subtype_P samples (Table 3), the MYC Targets pathways empha-
size the MYC oncogene’s influence on cell growth and proliferation. The pathways, E2F Targets, G2M Checkpoint, 
and mTORC1_signaling, revolve around cell cycle progression and growth signaling. Meanwhile, Oxidative 

Table 2.   Enrichment scores of significant hallmark pathways between Subtype_O and Subtype_M samples in 
the training dataset. NES normalized enrichment score.

Pathway Adjusted p-value NES

HALLMARK_MYC_TARGETS_V1 0.02 3.69

HALLMARK_E2F_TARGETS 0.02 3.65

HALLMARK_OXIDATIVE_PHOSPHORYLATION 0.02 3.32

HALLMARK_G2M_CHECKPOINT 0.02 3.31

HALLMARK_MYC_TARGETS_V2 0.01 2.89

HALLMARK_MTORC1_SIGNALING 0.03 2.61

HALLMARK_DNA_REPAIR 0.02 2.59

HALLMARK_GLYCOLYSIS 0.02 2.31

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 0.02 2.17

HALLMARK_FATTY_ACID_METABOLISM 0.02 1.82

HALLMARK_IL2_STAT5_SIGNALING  < 0.01  − 2.23

HALLMARK_COAGULATION  < 0.01  − 2.23

HALLMARK_COMPLEMENT  < 0.01  − 2.36

HALLMARK_TNFA_SIGNALING_VIA_NFKB  < 0.01  − 2.47

HALLMARK_KRAS_SIGNALING_UP  < 0.01  − 2.47

HALLMARK_IL6_JAK_STAT3_SIGNALING  < 0.01  − 2.49

HALLMARK_INTERFERON_GAMMA_RESPONSE  < 0.01  − 2.57

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION  < 0.01  − 2.58

HALLMARK_INFLAMMATORY_RESPONSE  < 0.01  − 2.65

HALLMARK_ALLOGRAFT_REJECTION  < 0.01  − 2.81

Table 3.   Enrichment scores of significant hallmark pathways between Subtype_H and Subtype_P samples in 
the testing dataset. NES normalized enrichment score.

Pathway Adjusted p-value NES

HALLMARK_MYC_TARGETS_V1 0.01 3.78

HALLMARK_E2F_TARGETS 0.01 3.69

HALLMARK_G2M_CHECKPOINT 0.01 3.33

HALLMARK_OXIDATIVE_PHOSPHORYLATION 0.01 3.24

HALLMARK_MTORC1_SIGNALING 0.01 2.84

HALLMARK_MYC_TARGETS_V2 0.01 2.69

HALLMARK_DNA_REPAIR 0.01 2.58

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 0.01 2.52

HALLMARK_GLYCOLYSIS 0.01 2.29

HALLMARK_PROTEIN_SECRETION 0.01 2.04

HALLMARK_INTERFERON_ALPHA_RESPONSE  < 0.01  − 2.26

HALLMARK_TNFA_SIGNALING_VIA_NFKB  < 0.01  − 2.33

HALLMARK_COMPLEMENT  < 0.01  − 2.33

HALLMARK_IL2_STAT5_SIGNALING  < 0.01  − 2.35

HALLMARK_KRAS_SIGNALING_UP  < 0.01  − 2.43

HALLMARK_IL6_JAK_STAT3_SIGNALING  < 0.01  − 2.44

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION  < 0.01  − 2.51

HALLMARK_INTERFERON_GAMMA_RESPONSE  < 0.01  − 2.62

HALLMARK_INFLAMMATORY_RESPONSE  < 0.01  − 2.74

HALLMARK_ALLOGRAFT_REJECTION  < 0.01  − 2.96
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Phosphorylation and Glycolysis highlight cellular energy production mechanisms. On the other hand, several 
immune pathways, including Interferon Alpha Response, TNFA Signaling via NFKB, and Interferon Gamma 
Response, were found in the pathways enriched in Subtype_H samples. Besides, Complement, Inflammatory 
Response, and Allograft Rejection reflect innate and adaptive immune responses. Based on these results, we 
labeled the Subtype_P as OX+ (oxidative stress) subtype, and the Subtype_H as IM+ (immune) subtype. The same 
results in GSEA analysis from the Dataset_Testing reconfirm the robustness of these two subtypes. It worth noting 
that IM+ subtype (Subtype_M in the Dataset_Training, Subtype_H in Dataset_Testing) have a better prognosis 
than OX+ subtype (Subtype_O in the Dataset_Training, Subtype_P in Dataset_Testing) samples.

Differences in oxidative stress, TME, and immune checkpoint genes between subtypes
We obtained gene sets related to oxidative stress from the Gene Ontology and Hallmark gene sets, and subse-
quently computed their enrichment scores using the GSVA package. Two gene sets related to oxidative stress, 
namely GOBP Positive Regulation of Response to Oxidative Stress, and Hallmark Reactive Oxygen Species Path-
way, were selected. In both Dataset_Training and Dataset_Testing, OX+ subtype showed a significant association 
with activated oxidative stress, as shown in Fig. 3A,B. The distribution patterns of immune score, stroma score, 
tumor purity, and the proportion of immune cells were calculated for different subtypes. There was a significant 
difference in the distribution of these scores across subtypes. In both Dataset_Training and Dataset_Testing, the 
distribution of stromal score, immune score, and immune were higher in IM+ subtype than in OX+ subtype, as 

p<0.001 p<0.001

0.00

0.25

0.50

0.75

1.00

GO
BP_

PO
SIT

IVE
_RE

GU
LAT

ION
_OF

_RE
SPO

NS
E_T

O_O
XID

ATI
VE_

STR
ESS

HA
LLM

AR
K_R

EAC
TIV

E_O
XYG

EN
_SP

EC
IES

_PA
THW

AY

IM+ OX+

p<0.001 p<0.001

0.00

0.25

0.50

0.75

1.00

GO
BP_

PO
SIT

IVE
_RE

GU
LAT

ION
_OF

_RE
SPO

NS
E_T

O_O
XID

ATI
VE_

STR
ESS

HA
LLM

AR
K_R

EAC
TIV

E_O
XYG

EN
_SP

EC
IES

_PA
THW

AY

IM+ OX+

Stromal Score
Immune Score
TumorPurity
T cells
CD8 T cells
Cytotoxic lymphocytes
B lineage
NK cells
Monocytic lineage
Myeloid dendritic cells
Neutrophils
Endothelial cells
Fibroblasts

IM+
OX+

Stromal Score

Immune Score

Tumor Purity

T cells

CD8 T cells

Cytotoxic lymphocytes

B lineage

NK cells

Monocytic lineage

Myeloid dendritic cells

Neutrophils

Endothelial cells

Fibroblasts

IM+
OX+

A

C

D

B

Figure 3.   Differences of oxidative stress gene sets and TME between two LUAD subtypes. (A) Values of 
oxidative stress gene sets between two LUAD subtypes in Dataset_Training. (B) Values of oxidative stress gene 
sets between two LUAD subtypes in Dataset_Testing. (C) Heatmap for illustrating the values of cells from 
TME in Dataset_Training. The blue color indicates low value, while the yellow color indicates high value. (D) 
Heatmap for illustrating the values of cells from TME in Dataset_Testing.
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shown in Fig. 3C,D. However, the distribution pattern for tumor purity was the opposite, its value was higher 
in OX+ subtype than in IM+ subtype. Among the popular immune checkpoint genes, two of them have available 
expression values in Dataset_Training and Dataset_Testing. We extracted the expression levels of two immune 
checkpoint genes, namely PD1 (PDCD1) and CTLA-4 (CTLA4). As illustrated in Supplementary Fig. 1A–D, in 
most datasets, we observed significantly higher expression levels of these genes in the IM+ subtype compared 
to the OX+ subtype. These results reconfirmed the OX+ subtype is higher with oxidative stress, and IM+ subtype 
is higher with immune.

After identifying the subtype in LUAD samples, we delved into the disparities in age, gender, and TNM stages 
between the subtypes. It’s important to mention that not all samples possess this clinical data. For instance, M 
stage information is only available for LUAD samples from GSE13213, GSE30219, GSE50081, and TCGA. Nota-
bly, IM+ subtype samples tend to be older in age (64.4 vs. 63.1, p-value < 0.01, Supplementary Fig. 2A). There’s 
also a pronounced gender variation between the subtypes: OX+ subtype predominantly consists of male patients, 
while the IM+ subtype has a higher percentage of female patients (p-value < 0.01, Supplementary Fig. 2B). Regard-
ing tumor stages, OX+ subtypes often have more advanced stages, such as T2/T3 (p-value < 0.01, Supplementary 
Fig. 2C) and N1/N2 (p-value = 0.02, Supplementary Fig. 2D), whereas IM+ subtypes predominantly have more 
localized stage tumors, like T1 and N0. For the M stage, however, there was no significant difference observed 
(p-value = 0.07, Supplementary Fig. 2E).

Feature selection, model construction, and model validation
From the OSIRGs with available expression data in Dataset_Training, we identified 126 genes that exhibited 
a log2FC > 0.5 and an adjusted p-value of 0.05. The SVM-RFE approach was used to determine combinations 
of 3, 6, 9, 12, 15, and 18 genes. After employing fivefold cross-validation to calculate their respective accuracy 
values, we observed stability in the accuracy value when using 12 genes, as depicted in Fig. 4A. The 12 selected 
genes were: ACP1, AURKA, BIRC5, CYC1, GSTP1, HSPD1, HSPE1, MDH2, MRPL13, NDUFS1, SNRPD1, and 
SORD. Subsequently, we leveraged four machine learning methods—ANN, RF, DT, and SVM—for constructing 
models based on these 12 genes. The tuning of parameters was driven by both mean accuracy and AUC values, 
determined through 50 replicates of fivefold cross-validation on the Dataset_Training. Specifically: For the ANN 
method, the optimal parameter was identified as “size = 5” and “decay = 1”, resulting in accuracy of 0.778 (Fig. 4B) 
and AUC value of 0.866 (Supplementary Fig. 3A). For the RF method, the optimal parameter was identified as 
“mtry = 3”, resulting in accuracy of 0.776 (Fig. 4C) and AUC value of 0.856 (Supplementary Fig. 3B). For the DT 
method, the optimal parameter was identified as “cp = 0.005”, resulting in accuracy of 0.749 (Fig. 4D) and AUC 
value of 0.800 (Supplementary Fig. 3C). For SVM, the most suitable parameters were “sigma = 0.01” and “C = 1”, 
achieving accuracy value of 0.782 (Fig. 4E) and AUC value of 0.865 (Supplementary Fig. 3D). After setting the 
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best parameters, the final models were constructed and then tested in the Dataset_Testing. ANN, RF, DT, and 
SVM achieved the AUC values of 0.860, 0.853, 0.768, and 0.860 (Fig. 4F). ANN, RF, DT, and SVM achieved the 
Accuracy values of 0.777, 0.780, and 0.730 and 0.780 (Fig. 4F). Among these four machine learning models, SVM 
showed the highest AUC and Accuracy values in Dataset_Testing. These external validation results showed that 
our model could accurately predict the tumor subtype of LUAD. The importance values of these 12 genes were 
also calculated: HSPE1 with 0.7377, CYC1 with 0.7131, HSPD1 with 0.7109, MRPL13 with 0.6929, AURKA 
with 0.6869, SNRPD1 with 0.6801, NDUFS1 with 0.6772, MDH2 with 0.6753, GSTP1 with 0.6735, ACP1 with 
0.6734, BIRC5 with 0.6681, and SORD with 0.6679. In our SVM model, genes are assigned importance values 
that quantify their contribution to the classification task. A higher importance value for a particular gene indi-
cates that it plays a more significant role in the accurate classification of LUAD subtypes. For example, HSPE1 
emerged as a hub gene in our analysis because it had the highest importance value, suggesting its pivotal role in 
distinguishing between the OX+ and IM+ subtypes.

The expression distribution, survival analysis and potential compounds for the hub gene
Then, we presented Log2FC values and adjusted p-values of 12 genes between the OX+ and IM+ subtypes in 
Dataset_Training and Dataset_Testing respectively (Table 4). We found that all these 12 genes were significantly 
higher in the OX+ subtype than in the IM+ subtype in both Dataset_Training and Dataset_Testing. It’s impor-
tant to emphasize that the selection of these 12 genes was based exclusively on the information derived from 
the Dataset_Training. The concordance result of DEGs in Dataset_Testing reconfirmed the robust elevated 
expression of these genes in OX+ subtype. Then we plotted the survival analysis of 12 genes in Dataset_Training 
(Fig. 5A–L) and Dataset_Testing (Supplementary Fig. 4A–L), respectively. In Dataset_Training, ACP1, AURKA, 
BIRC5, CYC1, HSPD1, HSPE1, MRPL13, SNRPD1, and SORD were significantly correlated with negative prog-
nosis. In Dataset_Testing, AURKA, BIRC5, CYC1, HSPD1, HSPE1, MDH2, MRPL13, NDUFS1, SNRPD1, and 
SORD were significantly correlated with negative prognosis. Thus, eight genes, AURKA, BIRC5, CYC1, HSPD1, 
HSPE1, MRPL13, SNRPD1, and SORD were correlated with negative prognosis in both Dataset_Training and 
Dataset_Testing.

In order to provide potential drugs for OX+ subtypes, we did virtual screening analysis. HSPE1 was selected 
for the hub gene and the appropriate target since it had the highest importance value in the SVM model. The 
protein structure of HSPE1, spanning 102 residues from Met-1 to Asp-102, was sourced from Alphafold. Using 
this structure, we virtually screened 1295 FDA-approved compounds from the Zinc15 database using Autodock 
Vina. The top 10 compounds with the most favorable binding energies are detailed in Supplementary Table 2. 
Notably, the four compounds demonstrating the lowest binding energies were ZINC3978005 (Dihydroergot-
amine), ZINC52955754 (Ergotamine), ZINC150588351 (Elbasvir), and ZINC242548690 (Digoxin), with their 
complexes with HSPE1 visualized in Fig. 6A–D. A brief interaction analysis revealed: A hydrogen bond between 
ZINC3978005 and HSPE1 at Val-41. A hydrogen bond between ZINC52955754 and HSPE1 at Gln-38. A hydro-
gen bond between ZINC150588351 and HSPE1 at Thr-45. Four hydrogen bonds between ZINC242548690 and 
HSPE1 at Arg-20, Gly-77, Asp-85, and Asp-87, respectively.

Discussion
We present a novel molecular classification technique for LUAD based on the investigation of oxidative stress 
and immune expression patterns. Oxidative stress has a mixed role in cancer cells as it can contribute to both 
the survival and death of cancer cells at different levels. Recently, ICB has shown significant improvement in the 
prognosis of LUAD. Molecular classification could be crucial for tailored and correct LUAD therapy. Therefore, 
our study aimed to discover potential subtypes among LUAD patients.

Our analysis discerned two distinct LUAD molecular subtypes. The IM+ subtype was marked by a profusion 
of immune pathways, immune cells, and immune checkpoint genes. Conversely, the OX+ subtype exhibited 
elevated oxidative stress, heightened tumor purity, and, notably, a poorer prognosis. These findings from the 

Table 4.   The DEGs results of 12 genes from Dataset_Training and Dataset_Testing.

Genes Dataset_Training log2FC Dataset_Training adjusted p-value Dataset_Testing log2FC
Dataset_Testing adjusted 
p-value

ACP1 0.788  < 0.001 0.883  < 0.001

AURKA 0.933  < 0.001 0.902  < 0.001

BIRC5 0.826  < 0.001 0.739  < 0.001

CYC1 1.023  < 0.001 0.739  < 0.001

GSTP1 0.84  < 0.001 0.631  < 0.001

HSPD1 1.054  < 0.001 1.103  < 0.001

HSPE1 1.19  < 0.001 1.024  < 0.001

MDH2 0.846  < 0.001 0.713  < 0.001

MRPL13 0.937  < 0.001 0.952  < 0.001

NDUFS1 0.862  < 0.001 0.93  < 0.001

SNRPD1 0.881  < 0.001 0.94  < 0.001

SORD 0.811  < 0.001 0.658  < 0.001
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Figure 5.   The survival analysis of 12 genes, including ACP1 (A), AURKA (B), BIRC5 (C), CYC1 (D), GSTP1 
(E), HSPD1 (F), HSPE1 (G), MDH2 (H), MRPL13 (I), NDUFS1 (J), SNRPD1 (K), and SORD (L) in the 
Dataset_Training.
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Dataset_Training were reconfirmed by Dataset_Testing. Immune therapies, specifically ICB that target CTLA-4 
(a T-cell activation suppressor), can revitalize the immune system’s prowess to decimate cancer cells, potentially 
prolonging patient survival46. While direct evidence remains elusive, the predominance of positive biomarkers 
like immune pathways and checkpoint genes in IM+ patients hints at a potential heightened responsiveness to 
ICB. Thus, we advocate for ICB-based treatments for the IM+ subtype patients. On the other hand, for the OX+ 
subtype patients, we spotlighted the protein HSPE1 – a standout in our machine learning model. Post our virtual 
screening process, we earmarked four compounds targeting HSPE1 as potential therapeutics for OX+ patients.

We constructed machine learning models leveraging four techniques: Decision Tree (DT), Support Vector 
Machine (SVM), Artificial Neural Networks (ANN), and Random Forest (RF). Among these, the SVM model 
stood out, registering the highest Accuracy and AUC values in both the Dataset_Training and Dataset_Testing. 
It’s important to underscore that both gene selection and model construction were anchored exclusively on the 
Dataset_Training. An AUC value of 0.86 in the Dataset_Testing underscores the SVM’s robust prediction capa-
bility when applied to a real-world, independent dataset. Furthermore, we have made our code and the trained 
model available on GitHub, as detailed in the Data Availability Statement. This initiative aims to foster broader 
utilization of our model in clinical settings.

A primary objective of our study was to pinpoint subtype-specific biomarkers and potential therapeutic 
agents. Through our analysis, we recognized 12 genes essential for predicting LUAD subtypes, namely: ACP1, 
AURKA, BIRC5, CYC1, GSTP1, HSPD1, HSPE1, MDH2, MRPL13, NDUFS1, SNRPD1, and SORD. Of these, 
HSPE1 stood out due to its top-tier importance in the SVM model. Consequently, our search for potential drugs 
pivoted towards targeting HSPE1. HSPE1 (heat shock protein family E member 1), also known as HSP10 (heat 
shock protein 10), encodes a protein that is part of the heat shock protein family47. It is intrinsically linked with 
HSP60, both being central to the mitochondrial chaperonin complex, assisting in mitochondrial protein folding48. 
Tumor cells are notably reliant on HSP chaperonage compared to their normal counterparts, mainly because 
oncoproteins in cancerous cells often misfold, necessitating amplified chaperonage activity for correction49. There 
are indications that HSPE1 might undertake diverse roles within tumor cells. For instance, its levels have been 
correlated with lymph node metastases50. Similarly, HSPE1 release has been associated with T-cell activation 
suppression, allowing tumors to bypass immune detection in ovarian cancers51. Our survival curve analysis also 
underscored that heightened HSPE1 levels correlate with a grim prognosis. However, the role of HSPE1 in LUAD 
is not clear and requires further exploration.

Oxidative stress and immunotherapy have become focal points in LUAD research. Recently, a prognostic 
model related to oxidative stress was provided, with the AUC of 0.660 on the 5-year survival prediction52. Another 
research proposed a nomogram with a C-index of 0.684 (95% CI, 0.656–0.712) for the recurrence-free survival 

A BZINC3978005 (Dihydroergotamine) ZINC52955754 (Ergotamine)

C DZINC150588351 (Elbasvir) ZINC242548690 (Digoxin)

Figure 6.   The structures of complex of (A) ZINC3978005 (Dihydroergotamine), (B) ZINC52955754 
(Ergotamine), (C) ZINC150588351 (Elbasvir), and (D) ZINC242548690 (Digoxin) with HSPE1.
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of LUAD, based on clinical and oxidative stress indicators53. An ICB-related study tried to find the biomarker for 
predicting ICB efficacy54. Our study claims several advantages. (1) It encompasses a broader sample size, with 
2,154 LUAD samples. (2) Machine learning models are harnessed, enhancing prediction accuracy. (3) We’ve jux-
taposed both oxidative stress and immunotherapy, revealing their inverse relationship: the OX+ subtype exhibits 
diminished immune pathways, whereas IM+ is characterized by reduced oxidative stress pathways.

In previous research, the construction of prognostic models related to oxidative stress was often based on a 
limited number of datasets52, typically just two or three. This approach may have constrained the comprehen-
siveness and reliability of the findings. Incorporating a larger number of studies could significantly enhance the 
robustness and validity of the results. In our study, we utilized 12 distinct datasets that comprised 2,154 LUAD 
samples derived from varied platforms, countries, and labs. These datasets vary in sample numbers, ranging from 
58 to 492. A significant challenge in integrating these datasets is the presence of batch effects. To address the 
batch effect, we introduced a binary transformation technique. For example, considering a specific GEO dataset 
where the expression of the CD8A gene fluctuates between 0 and 1000 and has a median of 500, we transformed 
its expression in every LUAD sample into either 0 or 1. This categorization depends on whether the expression is 
above or below the median value of 500. This approach was consistently applied across all genes and datasets. Our 
motivation behind this method stems from its straightforwardness and efficacy. This is evidenced by the PCA plot 
(Fig. 2B) which demonstrated that batch effects were effectively mitigated through this binary transformation. 
However, a potential limitation arises from the inability to apply binary transformation when only one sample 
contains expression data. In most clinical settings, this limitation is often overcome given the multiple LUAD 
patients typically present in hospitals. As a result, the initial step usually involves collecting a sufficient number 
of LUAD samples. In our study, GSE3141 has the lowest sample number with 58 LUAD samples. These samples 
allow for the effective application of binary transformation and machine learning models to their expression 
data. Thus, it is recommended to collect at least 58 LUAD samples before the application of binary transforma-
tion and machine learning models.

It is important to acknowledge the limitations of this study. First and foremost, the study solely relied on 
publicly available expression data and clinical information, and therefore, it is important to validate our findings 
with data from original research. Additionally, the biological roles, functions, and potential mechanisms of the 
identified hub genes require further investigation through experimental studies. By conducting such research, 
we can gain a deeper understanding of the biological processes underlying the observed associations, which 
may ultimately inform the development of new targeted therapies and improve clinical outcomes for patients 
with lung cancer.

Conclusions
Our study aimed to create a molecular classification for lung adenocarcinoma (LUAD) by analyzing gene expres-
sion data associated with oxidative stress and immunotherapy across multiple datasets. Through our analysis, we 
observed significant differences in the levels of oxidative stress, prognostic features, and immune cells between 
the two subtypes we identified. Moreover, we identified potential targets and compounds that could enhance 
the survival rate of LUAD patients. Our findings provide important insights to guide the treatment of LUAD, 
offering a valuable reference for clinicians and researchers alike.

Data availability
The code for data download and analysis can be found at https://​github.​com/​bioCa​ncerh​znu/​LUADox/.
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