
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21735  | https://doi.org/10.1038/s41598-023-47650-3

www.nature.com/scientificreports

Model‑based deep learning 
framework for accelerated optical 
projection tomography
Marcos Obando 1, Andrea Bassi 2, Nicolas Ducros 3,4, Germán Mato 1,7 & Teresa M. Correia 5,6,7*

In this work, we propose a model‑based deep learning reconstruction algorithm for optical projection 
tomography (ToMoDL), to greatly reduce acquisition and reconstruction times. The proposed method 
iterates over a data consistency step and an image domain artefact removal step achieved by a 
convolutional neural network. A preprocessing stage is also included to avoid potential misalignments 
between the sample center of rotation and the detector. The algorithm is trained using a database 
of wild‑type zebrafish (Danio rerio) at different stages of development to minimise the mean square 
error for a fixed number of iterations. Using a cross‑validation scheme, we compare the results to 
other reconstruction methods, such as filtered backprojection, compressed sensing and a direct deep 
learning method where the pseudo‑inverse solution is corrected by a U‑Net. The proposed method 
performs equally well or better than the alternatives. For a highly reduced number of projections, only 
the U‑Net method provides images comparable to those obtained with ToMoDL. However, ToMoDL 
has a much better performance if the amount of data available for training is limited, given that the 
number of network trainable parameters is smaller.

Optical projection tomography (OPT) is often described as the optical analogue of X-ray computed  tomography1. 
OPT enables the generation of detailed three-dimensional (3D) images with high (μm) resolution of the optical 
attenuation (anatomy) and/or fluorescence intensity distribution within transparent (or translucent) samples. 
OPT works in transmission or fluorescence mode and involves capturing wide-field images of the sample from 
different angles using a scientific camera, and thereby creating a series of projection images. For transmission 
data, the sample is illuminated along the optical axis, while for fluorescence OPT, reasonably uniform illumina-
tion across the sample is required, regardless of the illumination direction (fluorescence is often detected at a 
90° angle relative to the excitation light). The sequential acquisition of each row of pixels of the camera forms a 
series of sinograms, which consist of 1D images as a function of the rotation angle. Conventionally, the filtered 
back projection (FBP) method is used to reconstruct 3D images from hundreds of 2D projection images acquired 
at different angles around the sample.

OPT is used for imaging samples ranging from mm to cm in size, either optically cleared or naturally trans-
parent, including live organisms. However, for in vivo imaging, particularly for longitudinal studies, it is essen-
tial to reduce the number of acquired projections, and thus reduce the light exposure, to minimise the risk of 
phototoxicity, a concern for live organisms, and photobleaching of fluorescent  proteins2,3. This reduction in the 
number of projections enables accelerated (faster) acquisitions, minimising the period of time the organisms 
are under anaesthesia, as well as the likelihood of movement during the experiment. Unfortunately, according 
to the classic Shannon-Nyquist sampling theorem, the number of projections required to accurately reconstruct 
images using FBP should be directly proportional to the number of elements present in the projection images. 
Therefore, reconstructions from samplings below Shannon-Nyquist conditions (undersampled data) lead to 
severe streaking artefacts. Nevertheless, different image reconstruction algorithms have been proposed to tackle 
image degradation that results from sampling below the Shannon-Nyquist conditions. Given that an image can 
be compressed in some transform domain, its recovery from a smaller number of measurements is guaranteed 
under compressed sensing  theory4. Compressed sensing has been successfully applied to  OPT2 and Magnetic 
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Resonance Imaging (MRI)5 to reconstruct high-quality images from undersampled data and thus, accelerate 
scans. Nevertheless, performance is hindered by the assumptions of compressibility and the slow iterative opti-
misation reconstruction algorithms.

Over the last decade, deep learning (DL) has demonstrated a paramount performance in image reconstruction 
problems, providing a useful technique for accelerating image reconstruction from undersampled data in a wide 
variety of  systems6. In particular for OPT, Davis et al.7 have recently proposed a modified U-Net architecture to 
estimate streak-free 3D images from FBP reconstructions obtained from undersampled data.

Here, we propose ToMoDL, an unrolled model-based architecture that aims at enhancing both OPT recon-
struction and performance time, while providing a framework whose convergence theory has been recently 
 developed8. Our proposed method is based on MoDL, a model-based system for arbitrary linear inverse problems 
that was introduced by Aggarwal et al.9. On its basis, an optimisation problem accounting for the forward model 
in a data consistency term and a convolutional neural network (CNN) as a regularisation prior is solved. Hence, 
this framework comprises the earliest efforts to combine imaging physics with learned sparsifying  transforms10. 
ToMoDL is based on an unrolled architecture, which can be understood in the context of iterative algorithms. 
For example, in compressed sensing, algorithms alternate between optimisation of a data consistency term and 
a regularisation term, over multiple iterations, until it converges to an optimal solution. Similarly, an unrolled 
network combines (model-based) iterative reconstruction with deep learning, and hence, alternates between 
a data consistency layer and a deep learning-based regularisation block, to learn the iterative reconstruction 
process directly from the data. More specifically, ToMoDL uses a CNN-based regulariser with shared weights 
across iterations, and since, in addition, the forward model is explicitly accounted for, the number of network 
parameters to be learned is significantly reduced compared to direct inversion approaches, thereby providing 
better performance in training data constrained settings.

As OPT imaging methodologies often rely on custom-engineered setups, the proposed framework introduces 
different preprocessing alternatives to overcome artefacts produced by potential misalignments between the 
sample center of rotation and the detector. Using transmission projection images of juvenile zefrafish embryos, 
we demonstrate the ability of this framework to generate high-quality streak-free 3D images from undersampled 
data, thus enabling to reduce acquisitions while preserving image quality and structure.

Methods
Linear inverse problems
The acquisition process generates a set of projection images of the object of interest. Each of these images cor-
responds to a specific angle and can be represented as a set of integrals along straight (parallel) lines, determined 
by the geometry of the system. The relation that goes from the underlying distribution (object) to the angular 
projections is called the Radon transform, which is a linear operator. The problem of reconstructing images from 
its angular projections (sinogram) consists in the determination of the pseudo-inverse Radon transform. For 
the case of reconstructing an image or slice x over a plane from the 2D sinogram whose value is equal to the line 
integral of x over that  line11. Radon’s theory provides an analytical framework for solving this inversion problem, 
commonly known as the filtered backprojection (FBP).

Let x be an image over which a forward operator A acts upon. The idea behind compressed sensing is to 
recover a discrete approximation x ∈ R

N of the original image from a vector of undersampled measurements 
b , where A (x) = b ∈ R

M.
In linear inverse problems, the forward operator A can be written as a matrix A ∈ R

M×N and, in the case of 
A being a rectangular matrix, the recovery of x from b is ill-posed. In the case of the tomographic acquisition, 
we consider the sampling matrix S , which selects rows of the sinogram, obtaining A = SR , where R is the matrix 
representation of the Radon forward operator.

The reconstruction problem can be written in a regularised least-squares form:

where � is the regularisation parameter and R : RN → R≥0 is a sparsity-promoting regularisation function. 
While typical choices for regularisation are based on total  variation12 and  wavelets13, the usage of a CNN estimator 
of aliasing in the image reconstruction has been proposed as a novel way to regularise linear inverse problems. 
In comparison to a computationally expensive usage of neural networks as a learnable mapping between the 
acquisition b and the desired image x14, the physics model in combination with a CNN as a regulariser reduces 
dramatically the network receptive field size needed whilst providing good quality results. We reformulate (1) 
as an unrolled network with a CNN regularisation scheme as:

where Dθ (x) is the denoised version of x , i.e., after artefact and noise removal, with θ being the trainable param-
eters of the neural network. The first term is the data consistency term, which enforces consistency between the 
measured data and model prediction. Using the unrolled formulation presented  in9, Eq. (2) can be approximated 
by K iterations of a two-step alternating algorithm:

(1)xrec = argmin
x

||Ax − b||22 + �R (x),

(2)xrec = argmin
x

||Ax − b||22 + �||x −Dθ (x)||
2
2,

(3)xk = (AT
A+ �I)−1(AT

b+ �zk−1),

(4)zk = Dθ (xk).
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In order to determine the weights θ of the CNN, the simplest training strategy consists in minimising a mean 
square error (MSE) cost function CMSE , which can be calculated over the pairs of target t(i) and output images 
x
(i)
K

 , with i = 1, ..., P , being P the number of examples presented to the network in the training phase:

Compared reconstruction methods
The performance of the proposed method was compared qualitatively and quantitatively against three different 
reconstruction methods, as described below and in Table 1.

FBP is a widely used method for tomographic reconstruction. The method involves filtering the data in the 
frequency domain and then backprojecting the filtered data onto the 3D volume. The filter used in FBP is typi-
cally a ramp filter, which amplifies high-frequency components of the data. FBP is computationally efficient and 
works well for simple geometries, such as parallel-beam tomography.

TwIST (Two-step Iterative Shrinkage and Thresholding) is an iterative method for tomographic recon-
struction, which involves iteratively solving a convex optimszation problem such as (1) using the shrinkage 
and thresholding  technique15 for a 2D slice. In this work, we chose to minimise the total variation norm as our 
regularising function. TwIST can handle a wide range of geometries and produces high-quality reconstructions. 
However, it is computationally expensive and requires careful tuning of  parameters2.

U-Net is a deep learning architecture for tomographic reconstruction that uses a U-shaped network with skip 
 connections16. The proposed network by Davis et al.7 processes undersampled FBP reconstructions and outputs 
streak-free 2D images. The skip connections help preserve fine details in the reconstruction and the network 
can handle complex geometries and noisy data. While reconstruction times for this approach are short, making 
it suitable for real-time imaging, training a U-Net requires a large amount of data.

Our proposed method ToMoDL, shown in Fig. 1, is a deep learning-based method for tomographic recon-
struction that uses a CNN with a residual learning architecture. This residual architecture helps mitigate the 
vanishing gradient problem and allows for faster training. ToMoDL can produces high-quality reconstructions 
with low computational cost and a reduced inference times. Let us note that ToMoDL has a longer reconstruc-
tion time than the U-Net method even if the neural network involved is much smaller. This is due to the fact 
that ToMoDL includes also the data consistency stage of the algorithm that is implemented via the conjugate 
gradients sub-blocks.

Implementation details
As described in the previous section, each iteration in the unrolled model-based approach can be separated in 
two stages: a data consistency step DC , ensuring consistency between the acquired data and the measurements 
generated with the forward model, and a trainable denoising block Dθ . Source code for the presented work can 
be found on GitHub at https:// github. com/ marco so96/ ToMoDL and Zenodo at https:// doi. org/ 10. 5281/ zenodo. 
10056 893.

While MoDL theory for regularised reconstruction has been recently developed and implemented within 
the field of MRI  imaging9,17, its potential for tomographic reconstruction is essentially constrained by the com-
putational burden that the Radon transform poses when applied iteratively. To overcome this limitation, our 
proposed method, ToMoDL, incorporates  TorchRadon18, a fast differentiable routine for computed tomography 
reconstruction developed as a PyTorch extension. As backpropagation through the DC block consists in a costly 
linear operator inversion, an efficient conjugate gradient-based numerical implementation was used to replace 
the analytical calculation.

The CNN architecture for the denoising block Dθ , displayed in Fig. 1c consists of a residual  network19 shared 
across K iterations, where NL layers with 3× 3 convolutional kernels are stacked (noise learner Nθ = x −Dθ (x) ). 
The first layer is skip-connected to the final one, in order to remove the learned noise from the original image. 
Each 64-filter layer comprises a convolutional operation followed by a non-linear activation function ReLU 
(rectified linear unit)20 in all but the last layer, in order to avoid truncating the negative noise patterns learned.

Batch normalisation was also included for faster and more stable training of the  CNN21. Due to our memory 
constraints, we used a limited number of samples per batch (5–10), which did not seem to affect the performance 
of the network.

We used K = 8 iterations after we verified that this number is large enough to achieve convergence.

(5)CMSE =

P∑

i=0

||t(i) − x
(i)
K ||2.

Table 1.  Reconstruction methods under study.

Reconstruction type Regularisation Hyperparameters Reconstruction time (per slice)
Trainable parameters (detector size ∼
100 pixels)

FBP Analytic – – ∼100 ms (CPU) ∼ 1 ms (GPU) –

TwIST Iterative Total Variation (TV) � = 0.012 ∼ 10 s (CPU) ∼ 30 ms (GPU) –

U-Net Supervised learning – – ∼ 10 ms (GPU) ∼ 10 M

ToMoDL Model-based learning Convolutional neural network K = 8 NL = 8 Learnable �9 ∼100 ms (GPU) ∼200.000

https://github.com/marcoso96/ToMoDL
https://doi.org/10.5281/zenodo.10056893
https://doi.org/10.5281/zenodo.10056893
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Training methodology
Here, the training procedure for ToMoDL is described. Input images are obtained by taking equispaced angular 
projections, as shown in Fig. 2a. The initial angle is chosen randomly for each slice. The undersampled image used 
as input for the network is obtained using the unfiltered backprojection method (Fig. 2b), while fully sampled 
sinograms (denoted as b⋆ ) are reconstructed via the FBP algorithm and fed as reference images for the training 
phase. As in MoDL, the penalty parameter is considered as a trainable one.

Figure 1.  ToMoDL algorithm for optical projection tomography reconstruction. (a) To reproduce an 
accelerated environment, we apply the unfiltered backprojection to a subset of angular-equispaced projections. 
ToMoDL is trained by comparing the undersampled reconstructions against the analytical solution (FBP) 
obtained from the fully sampled sinogram, b⋆ . (b) End-to-end ToMoDL is formed by a residual CNN acting as 
regulariser, and a conjugate gradient numerical solution of the linear operator. (c) Residual network: NL stacked 
layers for noise estimation and addition operation for removal. The weights block is shared across K iterations.

Lower
tail

Upper
tail

BodyHead

AlignedAligned

Misaligned

60°0° 120°
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b)

Figure 2.  Optical projection tomography setup. (a) Projection samples obtained from different angular 
positions of the detector, where each box colour relates to an angular position of the detector. (b) Accelerating 
OPT consists primarily in using only a fraction (left) of the whole sinogram needed for an streak-free FBP 
reconstruction. The possible tilt during the acquisition process can be corrected by maximising the variance of 
the reconstructed image for different positions of the center of rotation.
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We trained U-Net and ToMoDL networks using a 4-fold cross validation (CV) procedure, where four net-
works are trained using 9 volumes on each fold (consisting of 880 slices each), leaving the remaining 3 volumes 
aside for testing. CV allows validating the effect of overfitting on large non-parametric models. Over the 9 
volumes, a 80/20 split has been applied for the training and validation sets, respectively. For the FBP and TwIST 
reconstructions, we proceeded testing over the set of volumes available.

Zebrafish OPT imaging
Projection data of wild-type zebrafish (Danio rerio) at different stages of development ranging from 1 to 5 days 
post fertilisation were obtained as described  in3 using 4x objective projections. Using a rotatory cylinder, trans-
mitted projections images were acquired with an angle step of 0.5 degrees. The acquired projections had 700×
700 pixels with a resolution of 1.3 μm per pixel. These projections were resampled and normalised so that the 
FBP projections would have a resolution of 100× 100 pixels in order to reduce the computational complexity 
of the training phase.

For the reconstruction task, we chose 12 volumes from different specimen sections. Tomographic artefacts 
due to rotation axis misalignment, such as ’double-wall’22, were corrected by maximising the variance of the 
reconstructed images from sinograms modified via rigid registration to different locations of the centre of rota-
tion (Fig. 2b). Zero-padding masks were used in order to undersample the sinogram while retaining its size for 
a consistent usage of its size throughout the network iterative methodology.

FBP was used to reconstruct images from (pre-processed) fully sampled datasets, to obtain ideal “reference” 
images. Then, undersampled datasets corresponding to acceleration factors of R = {4, 8, 12, 16, 20, 24, 28} were 
generated from the fully sampled test datasets and reconstructed using FBP, TwIST, U-NET and ToMoDL. The 
term acceleration factor indicates that R-times less data was used. It is defined as the ratio of the amount of data 
required for a fully sampled acquisition to the amount of data collected in an accelerated acquisition. The struc-
tural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) were used to quantitatively assess the quality 
of the image reconstructed using FBP, TwIST, U-NET and ToMoDL in comparison with the reference images.

Results
Impact of acceleration factor
Considering the fully sampled FBP reconstruction as the reference image, the analytical (FBP) and iterative 
(TwIST) solutions present accurate results in terms of peak signal-to-noise ratio (PSNR) and structural similar-
ity index metric (SSIM) for acceleration factors below 10x. In particular for TwIST with TV regularisation, its 
edge preservation property relates to the high PSNR of its reconstruction. For acceleration factors higher than 
10x, streak artefacts induced by undersampled reconstruction arise on FBP reconstructions and total variation 
regularisation loosely constrains this artefacts.

We can observe on Fig. 3 that, while the PSNR for the U-Net and the proposed ToMoDL display similar mean 
performance, with ToMoDL outperforming all methods for acceleration factors of 20x or higher, the spread of 
the quantitative metric might indicate that we are dealing with a less robust algorithm. However, it was observed 
that poor performing reconstructions are found in volumes whose sections barely show any structure, such as 
the ones from the lower tail (see Supplementary Material, Fig. S1).

Under these settings, both trainable methodologies present a consistently high structural similarity with 
the reference image. In order to assess the impact of learning from a scarce number of training samples, we 
performed an exploratory study to evaluate the performance of the trainable methods with a variable number 
of samples. In the next section we derive suggestive evidence that the U-Net could be overfitting the training 
dataset, despite our efforts to cross-validate with different volumes.

Number of training samples impact
Figure 4 shows the SSIM and PSNR metrics for the trainable models evaluated on the test volumes of each fold 
as a function of the number of samples used in the training process, for the specific case of 20x acceleration. It 
can be seen that ToMoDL achieves high SSIM and PSNR average values of about 0.8 and 33 dB, respectively, 
even when only 10% of the samples are used for training. The results show a clear preservation of the SSIM while 
training on a small number of samples, reaching values . Recalling the number of trainable parameters in U-Net 
( ≈ 107 ) in comparison to ToMoDL ( ≈ 2× 105 ), its performance still improves as the number of training samples 
increases, indicating a poor generalisation capacity which could eventually lead to overfit the presented examples. 
In contrast, ToMoDL reconstruction metrics peak when a 20% of the total available training data is presented.

Therefore, we observe that iteratively boosting the denoiser network with the underlying reconstruction 
model not only allows for lower-complexity on its construction, but also for reliable reconstructions with far 
fewer training examples than in classical denoising strategies. While downsides could be pointed out at the 
requirement of a fast Radon operator in terms of memory usage, we argue that large non-parametric approaches 
such as U-Net imposes barely any model constraint with the same computational burden.

Qualitative comparison
Fig. 5 displays different metodologies for reconstructing OPT images with a 20x acceleration factor. The zoomed 
area (indicated by the box) shows that the U-Net and ToMoDL yield the cleanest results in terms of streaking arte-
facts, exhibiting a visual quality that is comparable to the fully-sampled FBP reconstruction. The TwIST recon-
struction presents a smoothed version of the 20x FBP image, with a higher edge preservation than the U-Net 
method (see Supplementary Material, Fig. S2, for reconstruction obtained with different acceleration factors).

For the reconstructions obtained with 20x undersampled data, we can see in Fig. 6 that the 3D volume 
obtained with ToMoDL has an image quality comparable to that obtained with FBP from fully-sampled data. The 
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latter reconstruction method uses 720 projections whereas a 20x acceleration factor implies that only 36 projec-
tions were used in the reconstruction. Artefacts in the reconstruction can be found for high spatial frequency 
details such as the dorsal region and the organs in the central region. On the other hand, let us note that the 
ToMoDL reconstruction does not display the vertical streaks that appear in the reference image. These streaks 
correspond to fluctuations of the mean signal for different slices of the image. As discussed in more detail in the 
Supplementary Material (Fig. S3), this effect is generated by the registration algorithm. As FBP processes each 
slice independently, these fluctuations are preserved in the reconstruction. In contrast, our method is able to 
learn approximately the correct probability distribution of intensities and effectively perform an interpolation 
that smooths the streaks. This results in a reconstruction that looks visually better than the the reference image. 
The software Slicer3D was used to generate the 3D cuts for the different reconstructed volumes.

Discussion
In this work, we proposed ToMoDL, a model-based deep learning reconstruction method, to greatly accelerate 
OPT acquisitions and reconstructions. Using the MoDL framework as our st arting point, the introduction of 
a fast Radon operator enabled the reconstruction of high-quality images with two orders of magnitude fewer 
learnable parameters than in DL methods for OPT. Furthermore, we observed that our ToMoDL implementa-
tion can rely on a small dataset ( ∼ 75 samples) to reconstruct images with a competitive performance. To our 
knowledge, this is the first time that an unrolled network has been applied to OPT, more specifically for recon-
structing 3D images from undersampled OPT data in real-time. In the future, we plan to extend ToMoDL to 
other tomographic imaging modalities, such as Positron Emission Tomography (PET) and X-ray Computed 
Tomography (CT).

In contrast with MRI reconstruction, whose solution is based on the Fourier transform, the geometrical OPT 
reconstruction model uses the Radon transform that is not a unitary operator. Because of the lack of conserva-
tion of the norm, we found several shortcomings while training the unrolled neural network with conjugate 
gradient sub-blocks, such as exploding or vanishing gradients. Our proposed solution consists in an internal 
normalisation after each numerical inversion of the analytical problem. Future work should aim at extending 
this framework to non-unitary operators, developing theory in order to avoid common problems arising in the 
intersection of inverse problems and deep learning.

Figure 3.  PSNR and SSIM reconstruction quality metrics. The U-Net and ToMoDL approaches both 
outperform FBP and TwIST for acceleration factors higher than 10x and exhibit similar reconstruction quality 
metrics. The difference in the PSNR spread is attributed to datasets with small or none structure present.
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Conclusion
ToMoDL, a new model-based framework for tomographic reconstruction was presented, developing its applica-
tion for optical projection tomography. The presented framework shows competitive results in terms of PSNR and 
SSIM, when compared to the U-Net and TwIST methods, two state-of-the-art methods for OPT reconstruction 
from undersampled data.

Figure 4.  Impact of training samples. In terms of structural similarity (SSIM) and peak signal-to-noise ratio 
(PSNR), ToMoDL shows a strong generalisation capability for high acceleration factors (20x on display), even 
for a 1% of the total available training data ( ∼ 75 samples).

Figure 5.  Comparison between OPT reconstruction methods. Images were obtained from a 20x undersampled 
dataset, AT

b and FBP correspond to the standard unfiltered and filtered backprojection methods, respectively. 
PSNR and SSIM values are shown for the different image reconstruction methods. FBP 1x was used as the 
reference image (without projection subsampling). An zoomed-in section of the reconstructed structure is 
displayed in the second row.
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Built on fast differentiable Radon operators, this inverse problem approach enables real-time reconstruction 
and future work will be researching its extension with different subject-related  priors17. Moreover, the capability 
of learning with a small training dataset (less than 100 samples) presents a extensible paradigm for transferring its 
usage from one specimen to another. Lastly, the proposed method could also be extended to other tomographic 
imaging modalities, such as x-ray.

Data availability
Sample cover data and code are available at https:// github. com/ marco so96/ ToMoDL and Zenodo at https:// doi. 
org/ 10. 5281/ zenodo. 10056 893.
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