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Phenotypic characterisation 
of regulatory T cells in patients 
with gestational diabetes mellitus
Ya‑nan Zhang 1, Qin Wu 1 & Yi‑hui Deng 2*

Gestational diabetes mellitus (GDM) is a common complication that occurs during pregnancy. 
Emerging evidence suggests that immune abnormalities play a pivotal role in the development of 
GDM. Specifically, regulatory T cells (Tregs) are considered a critical factor in controlling maternal–
fetal immune tolerance. However, the specific characteristics and alterations of Tregs during the 
pathogenesis of GDM remain poorly elucidated. Therefore, this study aimed to investigate the 
changes in Tregs among pregnant women diagnosed with GDM compared to healthy pregnant 
women. A prospective study was conducted, enrolling 23 healthy pregnant women in the third 
trimester and 21 third-trimester women diagnosed with GDM. Participants were followed up until 
the postpartum period. The proportions of various Treg, including Tregs, mTregs, and nTregs, were 
detected in the peripheral blood of pregnant women from both groups. Additionally, the expression 
levels of PD-1, HLA-G, and HLA-DR on these Tregs were examined. The results revealed no significant 
differences in the proportions of Tregs, mTregs, and nTregs between the two groups during the third 
trimester and postpartum period. However, GDM patients exhibited significantly reduced levels of 
PD-1+ Tregs (P < 0.01) and HLA-G+ Tregs (P < 0.05) in the third trimester compared to healthy pregnant 
women in the third trimester. Furthermore, GDM patients demonstrated significantly lower levels 
of PD-1+ mTregs (P < 0.01) and HLA-G+ (P < 0.05) mTregs compared to healthy pregnant women in 
the third trimester. Overall, the proportion of Tregs did not exhibit significant changes during the 
third trimester in GDM patients compared to healthy pregnant women. Nevertheless, the observed 
dysregulation of immune regulation function in Tregs and mTregs may be associated with the 
development of GDM in pregnant women.

GDM is characterized by the occurrence or recognition of abnormal glucose tolerance during pregnancy1. The 
prevalence of GDM is rising globally and has been associated with epidemiological factors such as the rising 
rates of obesity among women of reproductive age and the advancing maternal age in recent decades2,3. GDM 
has detrimental effects on pregnancy outcomes and significantly increases the risk of metabolic disorders in 
both the offspring and the maternity4. GDM, being a multifactorial disease, is affected by a complex interplay 
of genetic, epigenetic, and environmental factors5. However, the precise pathogenic factors underlying GDM 
remains uncertain.

Regulatory T cells (Tregs) expressing the X chromosome-linked transcription factor Foxp3 represent a subset 
of CD4+ T cells that play a crucial role in controlling immune tolerance to self-antigens6–8. Upon stimulation by 
specific antigens, Tregs differentiate into CD45RO+ memory Tregs (mTregs) characterized by their long-term 
survival and rapid and effective immunoregulatory capacity. Specifically, CD45RO+ mTregs exhibit superior 
immunomodulatory and local immune migration capacities compared to CD45RA+ naive Tregs (nTregs) and 
exert a predominant immunosuppressive effect within the overall Tregs population9,10.

Emerging research suggests a potential association between GDM and maternal immune dysregulation11,12. 
The activation of immune cells in pregnant women, whether in the circulating peripheral blood or at the maternal 
infant interface, is considered an immune response directed towards the semi-allogeneic fetus13. Simultaneously, 
establishing maternal immune tolerance towards the fetus takes on critical significance in a successful preg-
nancy. When abnormalities arise in the number and immunoregulatory ability of mTregs, the delicate balance 
of immune responses in pregnant women will be disrupted, potentially leading to excessive maternal rejection 
of the fetus and the onset of GDM11,12,14,15.
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However, the precise alterations involving mTregs in the context of GDM remain elusive, particularly regard-
ing the expression of surface markers. This study aimed to investigate the composition of mTreg subgroups 
within the peripheral blood of both healthy pregnant women and GDM patients. Furthermore, we examined the 
presence of PD-1, HLA-G, and HLA-DR expression on the surfaces of Treg subsets. The overarching objective 
of this study was to uncover potential pathological immune mechanisms underlying GDM.

Materials and methods
Study population
In the present prospective study, a total of 23 healthy pregnant women and 21 women diagnosed with GDM were 
included, and their clinical data in the third trimester and postpartum period were investigated. The participants 
were recruited from the obstetrics department of the First Affiliated Hospital of Hunan University of Chinese 
Medicine between October 2022 and February 2023. All participants were within the age range of 25 and 35 and 
had no previous history of pregnancy, significant medical or surgical diseases, infections or metabolic disorders, 
autoimmune diseases, or chromosomal abnormalities. The healthy and GDM pregnant women had singleton 
pregnancies with no history of pregnancy loss or infertility. The diagnosis of GDM in patients was based on the 
following criteria: fasting blood glucose ≥ 5.1 mmol/l (92 mg/dl), 1-h blood glucose ≥ 10.0 mmol/l (180 mg/dl), 
or 2-h blood glucose ≥ 8.5 mmol/l (153 mg/dl) at 24 and 28 pregnancy weeks16. Other obstetric complications 
were not present in the GDM patients.

Flow cytometry analysis
Blood samples were taken at room temperature in heparin anticoagulant tubes, then processed and analysed 
within 2 h. Tregs, mTregs and nTregs were analyzed with the following monoclonal antibodies (mAbs) from 
BioLegend (San Diego, California, USA): a blank control, a single standard control, PE anti-human CD25, APC 
anti-human HLA-G, PE/Cyanine7 anti-human CD279 (PD-1), Brilliant Violet 421™ anti-human HLA-DR, APC/
Fire™ 750 anti-human CD45RO.

The operation was carried out in strict accordance with the manufacturer’s instructions (BioLegend, San 
Diego, California, USA), cells were treated with the corresponding mAbs for 15 min at room temperature in the 
dark for surface staining. Before being analyzed by a FACS Canto II flow cytometer (BD Biosciences, USA), cells 
were twice washed and suspended in PBS. In the aggregate, 100,000 events were recorded. The Tregs population 
were gated by CD3+, CD4+, CD25+, and CD127low/−. mTregs and nTregs were analyzed by adding CD45RO+ and 
CD45RA+ respectively to Tregs analysis. The PD-1, HLA-G, or HLA-DR expressing on Tregs subsets were gated 
afterward. Fluorescence minus one control were used to define negative and positive groups. The obtained data 
were exported to FlowJo v10.8.1 software for analysis.

Statistical analysis
Data analysis was performed by using GraphPad Prism version 8.0.0. Categorical data are expressed as numerical 
values and percentages, and the chi-square (χ2) test was employed to examine their distribution. Numerical data 
are reported as mean ± standard error (SEM). The normality of the data distribution was assessed to determine 
if the data followed a normal distribution, and the probability of a random variable based on the dataset being 
normally distributed was calculated17. Differences between two groups were analyzed by utilizing Student’s 
t-test, while group comparisons were conducted through one-way analysis of variance. Statistical significance 
was set at P < 0.05.

Ethics statement
This study was approved by the Ethics Committee of the First Affiliated Hospital of Hunan University of Chinese 
Medicine and was conducted in accordance with the Declaration of Helsinki. All participants were fully informed 
and signed an informed consent before participating in the study. The datasets analysed in the current study 
are not publicly available due to the protection of patients’ privacy and interests. However, they can be obtained 
upon reasonable request by contacting the corresponding authors.

Results
Clinical characteristics
A total of 44 participants were included in this prospective study, comprising 23 healthy pregnant women and 
21 women diagnosed with GDM. The study focused on analyzing their clinical data from the third trimester to 
the postpartum period. Table 1 provides an overview of the participants’ clinical characteristics (e.g., age, BMI, 
gestation week of the participants).

The proportions of Tregs, mTregs and nTregs
Figure 1 and Supplementary Table 1 illustrates the proportions of Tregs and mTregs in both pregnant women 
with GDM during the third trimester and healthy pregnant women during the same period. The results revealed 
no significant difference between the proportion of Tregs in the pregnant women with GDM during the third 
trimester (5.89% ± 0.22%) and healthy pregnant women in the third trimester (6.14% ± 0.26%, P = NS). Similarly, 
there was no significant difference in the proportion of mTregs between the pregnant women with GDM during 
the third trimester (55.70% ± 2.07%) and healthy pregnant women in the third trimester (56.70% ± 2.60%, P = NS).

Furthermore, the proportions of Tregs and mTregs were compared between GDM postpartum women and 
healthy postpartum women. The findings indicated no significant difference between the proportion of Tregs 
between the GDM postpartum women (5.13% ± 0.40%) and healthy postpartum women (5.67% ± 0.34%, P = NS). 
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Likewise, there was no pronounced difference in the proportion of mTregs between the GDM postpartum women 
(58.50% ± 3.38%) and healthy postpartum women (60.80% ± 2.23%, P = NS).

Overall, no significant differences were observed in the proportions of Tregs, mTregs, nTregs between healthy 
women and GDM patients during the postpartum compared to the third trimester of pregnancy.

Expression level of PD‑1, HLA‑G, HLA‑DR on Tregs in healthy pregnancy and GDM
As depicted in Fig. 2 and Supplementary Table 2, the expression of PD-1 on Tregs in pregnant women with 
GDM during the third trimester (9.58% ± 2.47%) was significantly lower than that in healthy pregnant women 
in the third trimester (16.31% ± 2.53%, P < 0.01). The expression of HLA-G on Tregs in pregnant women with 
GDM during the third trimester (10.01% ± 1.57%) was lower than that in healthy pregnant women in the third 
trimester (16.86% ± 1.80%, P < 0.05). There was no significant difference in the expression level of HLA-DR on 
Tregs between the pregnant women with GDM during the third trimester (23.69% ± 1.49%) and healthy pregnant 
women in the third trimester (28.55% ± 1.30%, P = NS).

There was no significant difference in the expression level of PD-1, HLA-G, HLA-DR on Tregs between GDM 
patients and healthy women in postpartum. Moreover, there was no significant difference in the expression level 
of PD-1, HLA-G, HLA-DR on Tregs between the postpartum and third-trimester, whether in healthy women 
and GDM patients.

Expression level of PD‑1, HLA‑G, HLA‑DR on mTregs in healthy pregnancy and GDM
As depicted in Fig. 3 and Supplementary Table 2, the expression of PD-1 on Tregs in pregnant women with 
GDM during the third trimester (14.45% ± 3.34%) was significantly lower than that in healthy pregnant women 
in the third trimester (26.24% ± 3.91%, P < 0.01). The expression of HLA-G on Tregs in pregnant women with 
GDM during the third trimester (17.27% ± 2.60%) was lower than that in healthy pregnant women in the third 
trimester (29.85% ± 3.19%, P < 0.05). There was no significant difference in the expression level of HLA-DR on 
Tregs between the pregnant women with GDM during the third trimester (39.83% ± 1.94%) and healthy pregnant 
women in the third trimester (44.98% ± 1.78%, P = NS).

There was no significant difference in the expression level of PD-1, HLA-G, HLA-DR on mTregs between 
GDM patients and healthy women in postpartum. Moreover, there was no significant difference in the expression 
level of PD-1, HLA-G, HLA-DR on mTregs between the postpartum and third-trimester, whether in healthy 
women and GDM patients.

Table 1.   Clinical characteristics of normal pregnant women and GDM patients.

Age (years) BMI (kg/m2) Gestation weeks Postpartum days
Fasting glucose 
(mmol/L) 1 h OGTT (mmol/L)

2 h OGTT 
(mmol/L)

Healthy
3rd trimester 29.41 ± 0.73 29.77 ± 0.55 37.14 ± 0.44 – 4.42 ± 0.1 8.74 ± 0.12 7.76 ± 0.07

GDM
3rd trimester 29.06 ± 0.81 31.62 ± 0.42 37.38 ± 0.39 – 4.97 ± 0.05 9.69 ± 0.1 8.62 ± 0.09

Healthy postpartum – 25.39 ± 0.38 – 46.11 ± 1.63 4.33 ± 0.09 – –

GDM postpartum – 27.82 ± 0.38 – 43.82 ± 1.27 4.91 ± 0.06 – –

Figure 1.   Gating strategy for Treg subsets determined by flow cytometry.
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Expression level of PD‑1, HLA‑G, HLA‑DR on nTregs in healthy pregnancy and GDM
As depicted in Fig. 4 and Supplementary Table 2, there was no significant difference in the expression level of 
PD-1, HLA-G, HLA-DR on nTregs between the postpartum and third-trimester, whether in healthy women 
and GDM patients.

There was no significant difference in the expression level of PD-1 and HLA-G on nTregs between the healthy 
third-trimester women and GDM third-trimester women. The expression of HLA- DR on nTregs in GDM 
third-trimester women (3.19% ± 0.56%) was significantly lower than that in healthy third-trimester women 
(7.32% ± 0.70%, P < 0.01).

There was no significant difference in the expression level of PD-1, HLA-G, HLA-DR on nTregs between 
GDM postpartum women and healthy postpartum women.

Figure 2.   The expression of PD-1, HLA-G, and HLA-DR on Tregs. Healthy third-trimester women: (A1), (B1), 
(C1). GDM third-trimester women: (A2), (B2), (C2). Healthy postpartum women: (A3), (B3), (C3). GDM 
postpartum women: (A4), (B4), (C4).
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Discussion
Recent research indicated that maintaining a relative immune balance between immune activation and suppres-
sion is crucial for a healthy pregnancy18,19. A developing fetus is considered an allograft within in the immuno-
competent maternal host20.

Prior to conception, the maternal immune system encounters antigens from the paternal sperm. During 
embryo implantation, paternal antigens present on placental trophoblasts directly interact with immune cells 
at the maternal–fetal interface. This interaction can trigger an inflammatory response that has the potential to 
disrupt the success of pregnancy.

The establishment of maternal immune tolerance is pivotal for a successful pregnancy, and this process 
is primarily mediated by CD4+ Tregs21. Tregs have an important effect in improving fetal growth and sur-
vival by suppressing the maternal immune system from recognizing the semi-allogeneic carrying paternal 
antigens7,21. CD25high FOXP3+ Tregs become dominant in decidual tissues during pregnancy and contribute to 

Figure 3.   The expression of PD-1, HLA-G, and HLA-DR on mTregs. Healthy third-trimester women: (A1), 
(B1), (C1). GDM third-trimester women: (A2), (B2), (C2). Healthy postpartum women: (A3), (B3), (C3). GDM 
postpartum women: (A4), (B4), (C4).
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the establishment of maternal immune tolerance to invading fetal extravillous trophoblasts22. Abnormalities in 
number and function of Tregs may be associated with various pregnancy complications, including GDM23–27.

Upon stimulation by specific antigens, CD45RA+ nTregs differentiate into CD45RO+ mTregs, which exhibit 
long-term survival and rapid and effective immunoregulatory capacity. The recruitment of a substantial num-
ber of mTregs to the maternal–fetal interface tissues are advantageous in suppressing acute allograft immune 
response to the fetus9.

GDM is a prevalent medical complication during pregnancy and is associated with various adverse maternal 
and fetal pregnancy complications28–30. Recent research has suggested that GDM is a disease marked by chronic 
systemic inflammation and an elevated humoral immune response31,32. Tregs take an important role in sup-
pressing excessive inflammation of the immune system33,34. It has been reported that the high-proliferative but 
dysfunctional mTregs in the peripheral blood result in diabetes in NOD mice35. Furthermore, type 1 diabetic 
patients may be associated with defective inhibitory function of mTregs caused by low expression of CD3936. The 
development and function of both naive and memory Treg populations are modified in GDM patients, including 
a lower expression of suppressive Treg subsets such as CD4+CD127low+/−CD25+ Tregs and CD45RA− Tregs14.

Figure 4.   The expression of PD-1, HLA-G, and HLA-DR on nTregs. Healthy third-trimester women: (A1), 
(B1), (C1). GDM third-trimester women: (A2), (B2), (C2). Healthy postpartum women: (A3), (B3), (C3). GDM 
postpartum women: (A4), (B4), (C4).
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In this study, no significant differences were found in the percentage of Tregs between GDM patients and 
healthy pregnant women, whether in the third-trimester or postpartum. The above-mentioned finding aligns 
with previous research results, indicating that GDM patients may not experience significant changes in the 
proportion of Tregs, but abnormalities in the composition and function of Tregs14. Furthermore, there is no sig-
nificant difference in the proportion of mTregs and nTregs in the peripheral blood of GDM patients in the third 
trimester compared to healthy pregnant women in the third trimester in this study. There is also no statistically 
significant change in the proportion of mTreg and nTreg in the peripheral blood of GDM postpartum women 
versus healthy postpartum women. This may be due to the fact that the establishment of immune memory of 
Tregs is affected by metabolic factors besides the conventional immune process. As a matter of fact, proliferation 
is dependent on glycolysis, and memory is dependent on fatty acid oxidation, as suggested by previous studies37. 
However, whether the increasing in memory Tregs is associated with metabolism should be explored further. 
Besides, Subsequent studies with larger sample sizes are needed because such results may also be limited by the 
small number of participants.

Immune checkpoints serve as a group of suppression pathways expressed as ligand receptors on the surface 
of a wide variety of immune cells. The expression of immune checkpoints (e.g., CTLA-4, PD-1, TIM-3, and 
LAG-3) allows immune cells not only to maintain self-tolerance, but also to regulate the intensity of the immune 
response38,39. The characteristic expression of immune checkpoint molecules on the surface of Tregs or mTregs 
may imply a modification of their proliferation ability and functionality40. The most recent data indicates that 
they have a strong relationship with pregnancy outcomes through a variety of inhibitory mechanisms40,41.

The PD-1/PD-L1 pathway is an important immune regulatory pathway that can entirely suppress the immune 
reaction through the reduction of T cell proliferation, the increase of T cell anergy and fatigue, the reduction 
of cytokine production and the activation of Tregs42. Tregs expressing a high level of PD-1 have the ability to 
suppress Teff function and proliferation in an IL-10 dependent way43. It is also possible to use the PI3K/Akt/
mTOR pathway to accomplish the role of the PD-1/PD-L1 pathway in suppressing T cell activation44,45. The 
dynamic equilibrium of mTregs can be suppressed by PD-1, and anti-PD-1 therapy can play an important role 
in interfering with the accumulation of mTregs.

In this study, we observed a significant decrease in the expression of PD-1 on Tregs and mTregs in pregnant 
women with GDM during the third trimester compared to healthy third-trimester pregnancies. There was no 
significant difference in the proportion PD-1+nTregs between healthy third-trimester pregnancies and GDM in 
the third trimester. This indicates that Tregs and mTregs as essential factors of maternal–fetal immune toler-
ance, the low-level expression of PD-1+ Tregs and mTregs in the peripheral blood of GDM patients may result 
in immune imbalance and is associated with the pathogenesis of GDM. Previous studies have found that the 
proportion of PD-1+ Tregs in the peripheral blood of healthy pregnant women in the third trimester was higher 
than that of GDM patients, suggesting that the expression of PD-1 on T cell subsets can serve as a vital marker 
for the occurrence and recovery of GDM46–48. Nevertheless, there was no significant difference in the expression 
level of PD-1 on Tregs, mTregs, nTregs between GDM postpartum women and healthy postpartum women in 
this study. Whether in GDM patients or healthy pregnant women, the proportion of postpartum PD-1+ Tregs and 
PD-1+ mTregs was not significantly lower than in third-trimester, indicating that Tregs can still play an immune 
regulatory role for a period of time after delivery, rather than apoptosis quickly49. Further investigation using 
prospective studies with larger sample sizes is needed to gain a better understanding of the changes in Tregs 
between the third trimester and the postpartum period.

The non-classical major histocompatibility complex (MHC) class I molecule HLA-G is regarded with playing 
a significant role in this unique immune suppression system during pregnancy50. HLA-G expression is depend-
ent on Enhancer L, a cis-regulatory element located 12 kb upstream of the HLA-G locus51. HLA-G could not 
only suppress CD4+ T cell proliferation, decrease CD4+ T cell immune responsiveness, but also facilitate T cell 
differentiation into Treg52,53. Additionally, Tregs expressing HLA-G could secrete substantial inhibitory chemi-
cals (such as soluble HLA-G and IL-10) or use cell–cell non-contact machinery to inhibit T-cell reactions54,55.

CD4+ T cells exhibited an increased differentiation tendency of Tregs after being stimulated by HLA-G+ 
EVT56. These Tregs remained after childbirth and were seen in the following pregnancy. Studies have reported 
that women having higher sHLA-G levels in their peripheral blood had a greater possibility of having a success-
ful IVF therapy57,58. Pregnancy complications (e.g., miscarriage, preterm delivery, preeclampsia, and recurrent 
pregnancy loss(RPL)) have been reported to be associated with naturally occurring HLA-G polymorphisms 
that may trigger lower HLA-G levels51,59,60. In a previous study, the level of HLA-G in placental extravillous 
trophoblasts was lower in patients with GDM than in normal controls61. In the present study, the proportion 
of HLA-G+ Tregs and mTregs in third-trimester women diagnosed with GDM were lower than that in healthy 
third-trimester pregnancies. The results above demonstrate that the reduced expression of HLA-G on Tregs and 
mTregs’ surface could hinder the inhibition of harmful maternal alloresponsiveness. Moreover, an overactive 
immune system may disrupt the mother’s natural physiological balance, potentially leading to GDM. However, 
no significant differences were reported in the expression level of HLA-G on Tregs, mTregs, nTregs between GDM 
postpartum women and healthy postpartum women. Larger samples and more in-depth analyses are required 
for elucidating the reasons for the above results.

HLA-DR has been considered an activation marker expressed by CD4+ T lymphocytes when stimulated by 
related antigens62. Furthermore, Foxp3-expressing HLA-DR+ Tregs have a quicker and more powerful immu-
nosuppressive effect on T lymphocytes63. Existing research has indicated a noteworthy reduction in the propor-
tion of naive CD45RA+ Tregs in individuals suffering from dietary-adjusted GDM as well as those grappling 
with insulin-dependent GDM14. HLA-DR+ mTregs were significantly decreased in patients with diet-dependent 
GDM, while significantly increased in patients with insulin-dependent GDM14. In this study, the proportion of 
HLA-DR+ Tregs and HLA-DR+ mTregs in pregnant women with GDM during the third trimester was slightly 
lower than that in healthy pregnant women in the third trimester. The proportion of HLA- DR+ nTregs in 
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third-trimester women with was significantly lower than that in healthy pregnant women in the third trimester. 
Besides, the proportion of HLA-DR+ Tregs, HLA-DR+ mTregs, HLA-DR+ nTregs in GDM postpartum women 
was slightly lower than that in healthy postpartum women. This suggests that the inhibitory capacity of Tregs is 
partially impaired in patients with GDM compared to healthy pregnancies. As an activation marker of T lym-
phocytes, whether the expression of HLA-DR in Tregs subgroups is associated with the pathogenesis of GDM 
needs to be further investigated.

However, this study has several limitations. Firstly, the sample size was small, with only 44 participants, 
thus requiring subsequent enlargement to improve the results’ reliability. Secondly, it solely focused on Tregs in 
peripheral blood without exploring their characteristics at the maternal–fetal interface. Finally, this study solely 
focused on the Tregs population. A more comprehensive analysis of other immune cells could have provided 
more significant conclusions.

Conclusion
In conclusion, there is no significant difference in the proportion and composition of Tregs between healthy 
pregnant women and GDM patients. However, during the third-trimester, the expression of functionally related 
factors such as PD-1 and HLA-G on Tregs and mTregs in GDM patients is lower compared to healthy pregnant 
women in the third trimester. This indicates that the dysfunction of Tregs and mTregs may be associated with the 
pathogenesis of GDM. However, this study had a limited number of participants, and further in-depth explora-
tion require prospective research with a larger sample size.

Data availability
The data that support the findings of this study are available on request from the corresponding author Y.D. 
upon reasonable request.
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