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Identification and immune 
landscape analysis of fatty acid 
metabolism genes related subtypes 
of gastric cancer
Rong Huang 1,3, Tai‑Liang Lu 2,3 & Rui Zhou 1*

Fatty acid metabolism (FAM) is associated with prognosis and immune microenvironment remodeling 
in many tumors. It is currently unknown how FAM affects the immunological microenvironment and 
prognosis of Gastric cancer (GC). Therefore, the current work aims to categorize GC samples based 
on the expression status of genes involved in FAM and to identify populations that might benefit 
from immunotherapy. In total, 50 FAM genes associated with overall survival (OS) were determined 
through univariate Cox proportional hazard regression analysis by mining the public TCGA and GEO 
databases. The GSE84437 and TCGA-STAD cohort samples were divided into two clusters using the 
"NMF" R package. According to the survival curve, patients in Cluster-1 showed considerably longer 
OS than those in Cluster-2. Patients in Cluster-1 exhibited earlier T stages, more intestinal GCs, and 
were older. MSI molecular subtypes were mainly distributed in Cluster-1, while GS molecular subtypes 
were distributed primarily in Cluster-2. There were 227 upregulated and 22 down-regulated genes 
(logFC > 1 or logFC < − 1, FDR < 0.05) in Cluster-2 compared with Cluster-1. One hub module (edges = 64, 
nodes = 12) was identified with a module score of 11.636 through Cytoscape plug-in MCODE. KEGG 
and GO analysis showed that the hub genes were associated with the cell cycle and cell division. 
Different immune cell infiltrates profile, and immune pathway enrichment existed between the 
subtypes. In conclusion, the current findings showed that practically all immunological checkpoint and 
immunoregulatory genes were elevated in patients with Cluster-2 GC, indicating that FAM subtypes 
may be crucial in GC immunotherapy. 

Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract. Globally, GC ranks fifth 
in incidence and fourth in mortality, according to Global Cancer Statistics 20201. In 2020, 770,000 deaths (65% 
men) were reported worldwide due to GC. GC is among the top primary causes of cancer deaths in 42 countries 
and the leading cause in 13 countries. Eastern Asia was home to 56.6% of all deaths worldwide, 48.6% of which 
were in China alone. Male mortality rates varied by area, from under 5 per 100,000 in New Zealand/Australia, 
Northern Europe, and Northern America to over 20 per 100,000 in Eastern Asia. Tajikistan (15.4) and Mongolia 
(36.5 per 100,000) had the highest male and female mortality rates, respectively1. The strategy for treating GC is 
a comprehensive treatment based on surgery. Although with the popularization of gastroscopy, the proportion 
of early GC increases year by year2, and with the promotion of precise medical concepts and the development of 
surgical technology and instruments, the prognosis of GC patients has been improved3, the overall prognosis is 
still not ideal. Classification of GC into molecular subtypes and metabolic subtypes suitable for precision therapy 
may further improve the prognosis of GC4.

A carbon, hydrogen, and oxygen compound forms fatty acids (FA). It is the primary constituent of glycolipid, 
phospholipid, and neutral fat. It is also the main substance for cell energy supply. Fatty acid metabolism (FAM) 
includes catabolism and anabolism. Under oxygen, FA can oxidize and break down, producing energy known 
as fatty acid oxidation (FAO). Acetyl-CoA, a byproduct of glycolysis, the tricarboxylic acid cycle, and amino 
acid breakdown is used in fatty acid synthesis (FAS) to create 16-carbon intermediates and transform them 
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into different fatty acids. The importance of FAM in cancer progression, survival, and metastasis has received 
increasing attention in recent years5–7.

According to studies, lipid metabolism assists in helping cancer cells proliferate rapidly, survive, migrate, 
invade, and metastasize. Additionally, increased lipid production or uptake aids in the growth of cancer cells 
and accelerates the development of tumors8. Lipid metabolism changes are important metabolic phenotypes of 
cancer cells9. Therefore, blocking lipid supply in cancer cells has significant implications for cell bioenergetics, 
membrane biosynthesis, and intracellular signaling processes10. Studies have shown that the gene set related to 
FAM can distinguish the clinicopathological features of glioma, and there is a potential association between FAM 
and the immunophenotype of glioma11. However, studies on the characteristics and prognosis of GC subtypes 
based on genes related to FAM are still limited12.

The emergence of immunotherapy has brought a glimmer of hope to treating patients with advanced GC, 
but there are also some difficulties, such as unsatisfactory screening population13. Specific populations with GC 
benefit from PD-1 antibodies. Currently, patients with high microsatellite instability (MSI-H) and Epstein-Barr 
Virus (EBV) positive have unique characteristics, and the efficacy and benefits of immunotherapy are relatively 
clear14. However, MSI-H and EBV-positive patients account for only about 7% to 8% of the total population with 
advanced GC, and there is no clear and effective screening method for most of the rest of the population15,16.

Many studies have shown that FAM affects the main immune cells in tumor microenvironment17,18. Therefore, 
we hypothesized that classifying GC samples based on the expression status of FAM genes might further screen 
out the population that may benefit from immunotherapy.

This study used the GSE84437 data set to screen out prognostic fatty acid metabolization-related gene sets. 
We also used this gene set to perform non-negative matrix factorization (NMF) consensus clustering in GC 
patients to identify fatty acid metabolization-related subtypes. TCGA-STAD data sets were used to verify the 
conservatism of subtypes. Then, we compared the differences in prognosis and immune microenvironment 
characteristics among different subtypes, analyzed the clinicopathological features associated with subtypes, 
and evaluated the FAM subtypes as independent prognostic factors of GC. We also examined the relationship 
between FAM subtypes19, the expression of immunological checkpoint and immune regulatory genes, and the 
molecular properties of FAM subtypes.

Results
Identification of FAM genes associated with prognosis in GC
The publicly available microarray dataset GSE84437, composed of 433 GC samples, was downloaded from GEO 
along with the complete clinicopathological and follow-up data. 309 out of 332 FAM genes had expression data 
in this dataset. 50 FAM genes related to OS were picked out by univariate Cox proportional hazard regression 
(Supplementary Table S2).

Identification of FAM‑related subtypes in GC and analysis of the prognosis value of the 
subtypes
Based on 50 survival-related FAM gene expressions, we divided the 433 GC samples into two subtypes through 
NMF consensus clustering. For any desired rank k, the NMF algorithm groups the samples into k clusters. To 
find out the robust rank k, we performed the NMF with rank k from 2 to 10 (Fig. 1A, Supplementary Fig. S1). 
According to the cophenetic coefficient and silhouette score, the stable and strong k was 2 (Fig. 1B). Cluster-1 
included 261 GC samples, and Cluster-2 comprised 172 GC samples. The heatmap showed that Cluster-1 and 
Cluster-2 exhibited distinct gene expression profiles (Fig. 1C). PCA analysis was used to confirm the distribution 
patterns of the clusters (Fig. 1D).

To explore the clinical significance of classification, we performed the survival analysis, and the result showed 
that the GC patients of Cluster-1 have a better prognosis than that of Cluster-2 (p = 5e−05) (Fig. 1E). The Univari-
ate Cox regression analysis and multivariate Cox regression analysis showed that the FAM-related subtypes were 
independent prognostic factors (Fig. 1F, G). We used the TCGA STAD cohort as a validation cohort to verify 
the stability and robustness of our clustering. The findings demonstrated that the TCGA STAD cohort was also 
robustly categorized into two clusters (Supplementary Fig. S2, S3) and that the PCA analysis divided these two 
clusters (Supplementary Fig. S4). Additionally, the findings revealed that GC patients in Cluster-1 had a better 
prognosis than those in Cluster-2 (p = 0.00522) (Supplementary Fig. S5, S6, and S7).

Clinicopathological features of FAM‑related subtypes
Since the TCGA-STAD cohort has relatively complete clinicopathological data, we used the data of this cohort 
to explore the differences in clinicopathological characteristics among GC FAM subtypes. As shown in Table 1 
and Fig. 2A, compared with Cluster-2, Cluster-1 patients were older, and the proportion of intestinal-type GC 
and T1/T2 stage GC were higher. However, the two groups had no significant differences in gender, pathological 
stage, presence or absence of lymph node metastasis, and distant metastasis. At the same time, considering that 
gastric-esophageal junction carcinoma has unique characteristics, we further analyzed whether there are dif-
ferences in the distribution of gastric-esophageal junction carcinoma and GC between Cluster-1 and Cluster-2. 
The results showed no statistically significant difference between the two groups in gastroesophageal junction 
carcinoma and GC distribution.

TCGA database divided GC patients into four molecular subtypes, namely chromosomal instability (CIN), 
EBV, genomically stable (GS), and MSI, each with unique clinical characteristics. We also explored the relation-
ship between FAM-related subtypes and TCGA GC molecular subtypes. The results showed little difference in the 
distribution of CIN and EBV between the two groups, but MSI was mainly distributed in Cluster-1 GC patients. 
In contrast, GS was distributed primarily among Cluster-2 GC patients (Table 2, Fig. 2B).
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Differential expression gene (DEG) analysis, PPI, and Functional enrichment analysis of 
FAM‑related subtypes
DEG analysis, PPI analysis, and GO and KEGG functional enrichment analysis were performed to explore the 
characteristic molecular characteristics between subtypes. Differential expression analysis showed 227 upregu-
lated genes and 22 down-regulated genes (logFC > 1 or logFC < −1, FDR < 0.05) in the Cluster-2 subtype com-
pared with the Cluster-1 subtype (Fig. 3A, B and Supplementary Table S3). String database was used to analyze 
the PPI of differentially expressed genes, and Cytoscape plug-in MCODE was used to predict the hub module. 
The threshold value was set as MCODE score ≥ 4 and node ≥ 6. One hub module (edges = 64, nodes = 12) was 
identified with a module score of 11.636. The nodes included AURKB, TPX2, BUB1, UBE2C, CDCA3, CCNA2, 
AURKA, CCNB2, TOP2A, MAD2L1, CENPA, and CDC20 (Fig. 3C). GO and KEGG functional enrichment 
analysis were performed on the hub module genes (Fig. 3D).

Figure 1.   Identification of FAM-related subtypes in GC and analysis of the prognosis value of the subtypes. 
(A) The consensus map of NMF clustering results in the GSE84437 dataset with rank k = 2. (B) Heatmap of 
prognostic FAM gene expression. (C) The trend of the cophenetic, dispersion, evar, residuals, rss, silhouette, and 
sparseness coefficients at different ranks k. (D) The principal component analysis results for GSE84437 cohort 
samples. (E) Kaplan–Meier survival curves of overall survival in Cluster-1 and Cluster-2 GC patients. (F) Forest 
plot of GSE84437 cohort univariable Cox regression analysis. (G) Forest plot of GSE84437 cohort multivariable 
Cox regression analysis.
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The results show that the most significant enrichment analysis of biological processes is a nuclear division 
(GO:0000280), organelle fission (GO:0048285), and mitotic nuclear division (GO:0140014) (Table 3). The most 
significant results of cell component enrichment analysis were: Condensed nuclear idea, Centromeric region 
(GO:0000780), Condensed idea (GO:0000793), Condensed idea, Centromeric Region (GO:0000779) (Table 3). 
The most significant results of molecular function enrichment analysis are Histone kinase activity (GO:0035173), 

Table 1.   Clinicopathological features of FAM-related subtypes of the TCGA-STAD cohort.

Cluster-1 (n = 193) Cluster-2 (n = 156) χ2 P

Age

 ≤ 65 76 77 30.298  ≤ 0.001

 > 65 117 29

Gender

 Male 125 99 0.064 0.8

 Female 68 57

Lurane_type

 Intestinal 102 53 9.24 0.002

 Diffuse 31 39

Grade

 G1 5 3 15.827  < 0.001

 G2 87 39

 G3 101 114

PStage

 Stage I + II 99 65 3.211 0.073

 Stage III + IV 94 91

T

 T1 + T2 61 29 7.638 0.006

 T3 + T4 132 127

N

 N0 65 44 1.203 0.273

 N+  128 112

M

 M0 182 144 0.557 0.456

 M1 11 12

Anatomic_subdivision

 EGJ 23 16 0.3 0.584

 Stomach 163 137

Figure 2.   Clinicopathological features of FAM-related subtypes. (A) Heatmap of clinical features of FAM 
subtypes. (B) Composition of TCGA molecular subtypes in FAM subtypes.
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protein C-terminus binding (GO:0008022), histone kinase activity (GO:0035173), Protein C-terminus binding 
(GO:0008022) Protein serine/threonine/tyrosine kinase activity (GO: 0004712) (Table 3). The most significant 
KEGG enrichment analysis was Progesterone mediated oocyte maturation (HSA04914), Cell cycle (HSA04110), 
and oocyte meiosis (HSA04114) (Table 3).

Characteristic differences of immune microenvironments between FAM‑related subtypes
Cibersoft and MPCcounter were used to evaluate the immune cell infiltration between different subtypes. Tumor 
purity, immune, and stromal scores differences between subtypes were assessed using an ESTIMATE algorithm; 
GSVA was used to determine the enrichment of immune-related pathways between subtypes. The results showed 
that the stroma score, immune score, and estimation score of Cluster-2 were significantly higher than those of 
Cluster-1 (Fig. 4A). CIBERSORT results showed that the infiltration of natural B cells, CD8+ T cells, M2-type 

Table 2.   The relationship between FAM-related subtypes and TCGA GC molecular subtypes.

TCGA_subtype Cluster-1 (n = 94) Cluster-2 (n = 78) χ2 P

CIN 49 34 37.742  < 0.001

EBV 11 8

GS 5 31

MSI 29 5

Figure 3.   Differential expression gene(DEG) analysis, PPI, and Functional enrichment analysis of FAM-related 
subtypes. (A) Heatmap of differentially expressed genes of FAM subtypes. (B) Volcano map of differentially 
expressed genes of FAM subtypes. (C) Cytoscape plug-in MCODE identified one hub module (edges = 64, 
nodes = 12) with a module score 11.636. (D) GO and KEGG functional enrichment analysis of the hub module 
genes.
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Table 3.   GO and KEGG functional enrichment analysis of the hub module genes.

Ontology ID Description Gene ratio Bg ratio p-value p.adjust q-value Gene ID Count

BP GO:0000280 Nuclear division 8/12 407/18,670 2.19e−11 8.63e−09 3.20e−09 BUB1/CDC20/MAD2L1/AURKA/
TOP2A/AURKB/UBE2C/TPX2 8

BP GO:0048285 Organelle fission 8/12 449/18,670 4.79e−11 9.37e−09 3.47e−09 BUB1/CDC20/MAD2L1/AURKA/
TOP2A/AURKB/UBE2C/TPX2 8

BP GO:0140014 Mitotic nuclear division 7/12 264/18,670 7.79e−11 9.37e−09 3.47e−09 BUB1/CDC20/MAD2L1/AURKA/
AURKB/UBE2C/TPX2 7

CC GO:0000780 Condensed nuclear chromosome, 
Centromeric region 4/12 26/19,717 1.17e−09 4.78e−08 7.19e−09 BUB1/CENPA/AURKA/AURKB 4

CC GO:0000793 Condensed chromosome 6/12 223/19,717 1.71e−09 4.78e−08 7.19e−09 BUB1/CENPA/MAD2L1/AURKA/
TOP2A/AURKB 6

CC GO:0000779 Condensed chromosome, centro-
meric region 5/12 118/19,717 5.40e−09 1.01e−07 1.52e−08 BUB1/CENPA/MAD2L1/AURKA/

AURKB 5

MF GO:0035173 Histone kinase activity 2/12 17/17,697 5.70e−05 0.002 8.40e-04 AURKA/AURKB 2

MF GO:0008022 Protein C-terminus binding 3/12 187/17,697 2.38e−04 0.004 0.002 CDC20/MAD2L1/TOP2A 3

MF GO:0004712 Protein serine/threonine/tyrosine 
kinase activity 2/12 43/17,697 3.75e−04 0.004 0.002 AURKA/AURKB 2

KEGG hsa04914 Progesterone-mediated oocyte 
maturation 5/8 100/8076 1.43e−08 2.43e−07 1.51e−07 BUB1/CCNA2/MAD2L1/AURKA/

CCNB2 5

KEGG hsa04110 Cell cycle 5/8 124/8076 4.25e−08 2.94e−07 1.82e−07 BUB1/CCNA2/CDC20/MAD2L1/
CCNB2 5

KEGG hsa04114 Oocyte meiosis 5/8 129/8076 5.19e−08 2.94e−07 1.82e−07 BUB1/CDC20/MAD2L1/AURKA/
CCNB2 5

Figure 4.   Characteristic differences of immune microenvironments between FAM-related subtypes. (A) Tumor 
purity, immune and stromal scores of FAM subtypes were assessed using an ESTIMATE algorithm. (B) Analysis 
of immune cell infiltration of FAM subtypes using the CIBERSORT algorithm. (C) Analysis of immune cell 
infiltration of FAM subtypes using the MPCcounter algorithm. (D) Enrichment analysis of immune-related 
pathways in FAM subtypes by GSVA algorithm.
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macrophages, and mast cells in Cluster-2 group were higher than that in Cluster-1 group. In contrast, the infiltra-
tion of M0 macrophages, M1 macrophages, and resting dendritic cells in the Cluster-1 group was higher than 
in the Cluser2 group (Fig. 4B).

The results indicated that the Cluster-1 group had a stronger inflammatory response. In comparison, the 
Cluster-2 group had stronger specific and non-specific immune responses. In the MCPcouunter method, neutro-
phils in the Cluster-1 group were significantly increased (p < 0.001), indicating a stronger inflammatory response 
(Fig. 4C). However, T cells, B cells, Monocytic lineage, Myeloid dendritic cells, endothelial cells, and fibroblasts 
were significantly increased in Cluster-2 group, indicating stronger immune response and more stromal cell 
infiltration (Fig. 4C). GSVA analysis showed that there were significant differences in the enrichment of immune 
pathways among GC FAM-related subtypes. More immune pathways were activated in Cluster-2 (Fig. 4D).

Correlation between FAM subtypes and expression of immune checkpoint genes and immu‑
nomodulatory genes
To explore whether FAM subtypes of GC are associated with predicting immune checkpoint inhibitor therapy in 
GC, we analyzed the correlation between the expression of immune checkpoint genes and immunomodulatory 
genes among different subtypes. Results showed that almost all immune checkpoint genes were upregulated in 
Cluster-2 GC patients. The differences between CD276, CD40, CD80, CTLA4, and PDCD1 were statistically 
significant (Fig. 5B). Cluster analysis of immunoregulatory genes, including Chemokine, Immunoinhibitor, 
Immunostimulator, MHC, and Receptor showed that the expression of immunoregulatory genes was significantly 
upregulated in Cluster-2 compared with Cluster-1 (Fig. 5A).

Discussion
The therapeutic effect of GC has been enhanced to some extent with the introduction of minimally invasive 
techniques, concepts, related instruments, and immunotherapy drugs. Nevertheless, the overall therapeutic out-
come remains unsatisfactory. Specific GC populations, such as M SI–H and EBV-positive individuals, can benefit 
from PD-1 antibodies. Nonetheless, this cohort represents approximately 7% to 8% of the entire population with 
advanced GC, and there is no clear and effective screening tool for most of the remaining population. Tumor 
microenvironment (TME) refers to the microenvironment around tumor cells, mainly composed of stromal 
cells, immune cells, blood vessels, and various signaling molecules. It is usually in a state of immune tolerance20.

Immune cells in TME can undergo metabolic reprogramming under the regulation of tumor cells and other 
signaling molecules, as well as nutrients, to obtain special metabolic characteristics and affect their survival and 
effector function, thus reducing the efficacy of various immunotherapies such as ICBand tumor vaccine21–23. FAM 
is a key metabolic pathway that regulates immune response, providing energy for immune cells and substrates 

Figure 5.   Correlation between FAM subtypes and expression of immune checkpoint genes and 
immunomodulatory genes. (A) The heatmap of the immunoregulatory genes. (B) Expression of immune 
checkpoint genes between two clusters.
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and precursors for synthesizing cell components and signal molecules7,24. Consequently, employing prognostic 
FAM-related genes, we conducted comparable clustering categorization of GC samples using bioinformatics 
analysis. Two clusters of GC samples were identified, and it was discovered that each cluster had distinct immu-
nological states, clinicopathological characteristics, and substantial predictive differences. This may, to a certain 
extent, predict the effectiveness of immunotherapy for GC.

More and more studies have shown that abnormal FAM is involved in the occurrence and development 
of various cancers, including lung cancer25, prostate cancer26, colorectal cancer27, bladder cancer28, etc. FAM-
related genes signature is associated with the prognosis of various cancers29–31. We first downloaded gene sets 
related to FAM from the MSigDB database and Genecards database. GSE84437 data set was used to screen out 
prognostic FAM-related gene sets, including 50 FAM-related genes. GC patients can be divided into 2 groups by 
the non-negative matrix consensus clustering algorithm and consensus clustering matrix surface. The survival 
curve showed that Cluster-1 patients had significantly longer overall survival than Cluster-2 patients. Using 
this gene collection, PCA dimension reduction analysis may efficiently differentiate between the two subtypes 
of GC patients. Univariate and multivariate Cox regression analyses revealed that FAM-related subtypes were 
independent predictive variables for patients with GC. We used TCGA-STAD cohort data for validation to test 
the gene clustering results’ stability. The results showed that the TCGA-STAD cohort was still clustered into two 
groups by non-negative matrix consensus, and the survival curve showed that Cluster-1 patients had significantly 
longer overall survival than Cluster-2 patients. Changes in energy metabolism in cancer cells compared with 
normal cells are a new hallmark of most cancers32. The results of our study show that variations in FAM may be 
correlated with the prognosis of GC patients, although the particular mechanism needs to be investigated further.

Furthermore, we explored the clinicopathological features of the two subtypes. Cluster-1 patients were older, 
with more intestinal GC and earlier T stages. However, there were no significant differences between the two 
groups in gender, pathological stage, presence or absence of lymph node metastasis, distant metastasis, and 
anatomical tumor site. In addition, the distribution of the four types of GC molecular subtypes19 reported by 
TCGA was also different between the two groups. MSI molecular subtypes were mainly distributed in Cluster-1 
GC patients, while GS molecular subtypes were primarily distributed in Cluster-2 GC patients. These findings 
demonstrate that the expression status of genes involved in FAM is regulated by patient age, tumor T stage, and 
tumor Lauren type and is connected with microsatellite instability. Developing the schedule for combination 
treatments and identifying new cancer therapy targets may benefit from a better understanding the metabolic 
requirements during the cell cycle.

To explore the internal mechanism of the differences between the two clusters, we analyzed the gene dif-
ferential expression between the two clusters. The threshold of LogFoldchange and adjusted P values were set 
to 1 and 0.05, and 276 differential genes were obtained, most of which were highly expressed in Cluster-2. 
Cytoscape software MCODE plug-in was used to screen out the hub modules (threshold set MCODE score ≥ 4, 
node ≥ 6). The hub module contains 12 genes, which are AURKA, AURKB, CCNA2, CCNB2, CDC20, CDCA3, 
TOP2A, MAD2L1, CENPA, TPX2, BUB1 and UBE2C. These genes have been reported to promote proliferation 
and metastasis in multiple tumors33–39. Hub genes’ functional enrichment study also indicated that these genes 
were associated with the cell cycle and mitosis. This outcome is also in agreement with the poor prognosis for 
Cluster-2 patients.

Fatty acids are energy storage and signaling molecules that control defensive mechanisms and developmen-
tal processes. They also supply crucial building blocks for the development of membranes40. Previous research 
suggested cell cycle arrest might occur if fatty acid synthesis (FAS) was inhibited. The acetyl-CoA carboxylase 
(cut6) and fatty acid synthetase (lsd1) mutants have reduced intracellular fatty acid levels, affecting the nucleus 
and cell division41.

Cibersoft and MPCcounter were used to evaluate the immune cell infiltration between different subtypes to 
explore the effect of FAM on the immune function of GC. Tumor purity, immune, and stromal scores differences 
between subtypes were assessed using an ESTIMATE algorithm; GSVA was used to evaluate the enrichment 
of immune-related pathways between subtypes. Our study showed that the tumor immune microenvironment 
significantly differed between the two subtypes. The infiltration degree of specific and non-specific immune 
response cells in Cluster-2 was increased considerably, and the immune pathway was greatly enriched, indicating 
stronger specific and non-specific immune responses in Cluster-2.

Such results demonstrate that FAM-related genomes may be associated with tumor immune microenviron-
ment. FAM has also been found to influence the function of several immune cells in the tumor microenviron-
ment, including T cells and macrophages. In addition, we explored the expression of immune checkpoint (IC) 
related genes and immune regulation between the two subtypes. In Cluster-2, we found relatively high expres-
sion of IC-related genes and immunoregulatory genes. FAM-related genes are associated with biomarkers of 
the immune checkpoint, which may play an important role in GC immunotherapy. Previous studies have also 
shown that since PD-1 inhibitor does not affect the metabolic phenotype of tumor-infiltrating lymphocytes42, the 
combination of metabolic reprogramming drugs and PD-1 inhibitor can achieve additive effects. The membrane 
receptor CD36 targeting fatty acid uptake can inhibit fatty acid uptake by Treg cells, down-regulate fatty acid 
oxidation of Treg cells, and reduce the number and function of Treg cells 43,44 . Targeted CD36 has been shown to 
act synergistically with PD-1 inhibitors in mouse models45. According to Cui et al., aberrant FAM impacted GC 
growth. Chemotherapy drug resistance and recurrence were linked to the abnormal expression of FAM-related 
genes46. Sterol O-acyltransferase (SOAT)1 was highly expressed in GC tissues and negatively correlated with GC 
prognosis via regulation of SREBP-1 and SREBP-2 expression. SREBP-1 and SREBP-2 increased the expression 
of vascular endothelial growth factor C (VEGF-C), which promoted lymphangiogenesis47.

Additionally, FAM is crucial for the malignant proliferation of tumors through invasion and metastasis. 
For instance, stimulation of the TGFβ signaling pathway in lung cancer cells decreases fatty acid production 
by inhibiting ChREBP, and knockdown of FASN decreases E-cadherin expression, which increases lung cancer 
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cell invasion and metastasis48. Since only a few investigations have determined the role of FAM in GC, possible 
novel FAM pathways in GC require further exploration.

Conclusions
In conclusion, this study classified GC samples into two clusters by NMF consensus clustering using the FAM 
genes associated with prognosis, and there were significant prognostic differences between those two clusters. 
FAM-related subtypes are independent prognostic risk factors in GC patients. FAM-related subtypes have poten-
tial correlations with the immune microenvironment of GC. They are significantly correlated with biomarkers of 
immune checkpoints, which may play an important role in GC immunotherapy. In the next step, we will conduct 
cell biology experiments and clinical verification of our findings.

Methods and materials
Data sets and FAM genes
From Gene Expression Omnibus (GEO) database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE84​
437) to download GSE84437 datasets, which was a microarray data of mRNA expression in GC, and corre-
sponding clinicopathological and prognostic information, as a training dataset. From The Cancer Genome Atlas 
(TCGA) data portal (https://​gdcpo​rtal.​nci.​nih.​gov/) to download the RNA sequencing data and correspond-
ing clinicopathological and prognostic information of TCGA-STAD cohort as a validation dataset. From the 
Molecular Signature Database v.7.4 (MSigDB; https://​www.​gsea-​msigdb.​org/​gsea/​msigdb), three FAM gene sets 
(REACTOME_FATTY_ACID_METABOLISM, KEGG_FATTY_ACID_METABOLISM, HALLMARK_FATTY_
ACID_METABOLISM) were downloaded. The keyword "fatty acid metabolism" was searched in the Genecards 
database, and genes with a score greater than 50 were regarded as Genecards FAM gene sets. A total of 332 genes 
related to FAM were obtained after removing duplicate genes (Supplementary Table S1).

Identification of prognostic FAM genes
Survival R package and Cox univariate regression analysis were used to analyze the training set, and the predictive 
FAM genes were screened out. A false discovery rate (FDR) < 0.05 was set as the cutoff criterion.

Identification and predictive analysis of FAM gene subtypes in GC
The "NMF" R package49 was used for unsupervised non-negative matrix consensus clustering of the normalized 
expression data of the prognostic FAM gene set. For each cluster number (k in 2:10), the NMF was run 50 times 
to evaluate cluster stability. The optimal cluster number k = 2 was selected for the magnitude of the cophenetic 
coefficient began to decrease. The "PCA" R package was used for dimension reduction analysis, the Survival "R 
package for subtype predictive analysis, and P < 0.05 was used as the significant difference threshold.

Differential expression gene analysis, protein–protein interaction analysis, and functional 
enrichment analysis of subtypes
Differential gene expression between subtypes was analyzed using the "Limma" R package50. The adjusted P 
values for multiple tests were calculated using Benjamini-Hochberg. The absolute value of logFC greater than 1 
and FDR < 0.05 were regarded as the threshold of significantly differentially expressed genes. PPI analysis was 
performed on the differential gene set by the String database, and the MCODE plug-in of Cytoscape software 
screened the hub module. The threshold was set as MCODE score ≥ 4 and node ≥ 6. The "clusterProfiler" R 
package51 was used for GO and KEGG52 enrichment analysis of differentially expressed genes, with an adjusted 
p value less than 0.05 as the threshold of significant enrichment. The "ggplot2" R package53 was used to visualize 
the results.

Immune infiltration analysis
The CIBERSORT (https://​ciber​sort.​stanf​ord.​edu/) and MPCcounter platforms were utilized to evaluate the 
immune cell infiltration of GC patients. Only the samples with p < 0.05 were included in subsequent immune 
infiltration analysis in CIBERSORT. The ESTIMATE package was used to calculate the immune score, stromal 
score, and tumor purity of GC.

Statistical analysis
R software (https://​www.r-​proje​ct.​org/) was used for all calculations and statistical analysis. Unpaired Student’s 
T test or Mann Whitney U test were used to compare two groups of variables with normal or non-normal dis-
tribution. The chi-square test or Fisher exact test was used for categorical data. Survival analysis was performed 
using the "survival" R package. Log-rank test was used to determine whether there was a significant difference 
in survival curves.

Data availability
The datasets ANALYZED for this study can be found in The Cancer Genome Atlas (TCGA, https://​portal.​gdc.​
cancer.​gov/) and Gene Expression Omnibus (GEO) database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​
cgi?​acc=​GSE84​437).
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