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Data‑driven cranial suture 
growth model enables predicting 
phenotypes of craniosynostosis
Jiawei Liu 1*, Joseph H. Froelicher 1, Brooke French 2,3, Marius George Linguraru 4,5 & 
Antonio R. Porras 1,2,3,6,7

We present the first data‑driven pediatric model that explains cranial sutural growth in the pediatric 
population. We segmented the cranial bones in the neurocranium from the cross‑sectional CT images 
of 2068 normative subjects (age 0–10 years), and we used a 2D manifold‑based cranial representation 
to establish local anatomical correspondences between subjects guided by the location of the 
cranial sutures. We designed a diffeomorphic spatiotemporal model of cranial bone development as 
a function of local sutural growth rates, and we inferred its parameters statistically from our cross‑
sectional dataset. We used the constructed model to predict growth for 51 independent normative 
patients who had longitudinal images. Moreover, we used our model to simulate the phenotypes of 
single suture craniosynostosis, which we compared to the observations from 212 patients. We also 
evaluated the accuracy predicting personalized cranial growth for 10 patients with craniosynostosis 
who had pre‑surgical longitudinal images. Unlike existing statistical and simulation methods, our 
model was inferred from real image observations, explains cranial bone expansion and displacement 
as a consequence of sutural growth and it can simulate craniosynostosis. This pediatric cranial suture 
growth model constitutes a necessary tool to study abnormal development in the presence of cranial 
suture pathology.

The neonatal cranium is formed by different bone plates separated by fibrous tissue called sutures. This structure 
allows the cranial bones to displace and expand to create space for a rapidly growing  brain1. When the brain does 
not need additional volume, the cranial bone plates fuse at the sutures. Unfortunately, 1 in 2100 live births present 
a condition called craniosynostosis in which one or more cranial sutures fuse  early2. Patients with this condition 
typically present with brain growth constraints perpendicular to the fused sutures and cranial  malformations3. 
Surgical treatment is usually indicated for these patients to remove their growth constraints and treat their 
aesthetic  malformations4. However, since there are no personalized tools to study and predict development in 
these patients, the adequate time for treatment and the surgical approach are highly variable and  subjective5–8.

Personalized developmental predictions have traditionally been challenging because of the lack of quantita-
tive information about the rates of sutural growth and bone displacement in children. Consequently, there is 
limited understanding of the abnormal development of patients with cranial bone and suture pathology such 
as craniosynostosis. These limitations are important contributing factors to the uncertainty about the potential 
causes of this condition, which are unknown in more than 85% of children with  craniosynostosis9, 10.

Existing reports on longitudinal cranial growth provides descriptive statistics of simple cranial metrics (such 
as head circumference, width, and length) on discrete time  points11, 12, which are not predictive of local cranial 
development. Most existing works modeling cranial growth can be grouped into simulation-based and statistical 
methods. Simulation-based methods hypothesize biomechanical properties of the cranial bones and growth rates 
to make temporal predictions given a cranial geometry, either synthetic or obtained from images. For example, 
finite element modeling (FEM) has been used to study suture morphology and sutural collagen fibers response 
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to tensile  loads13, and to better understand the biomechanics of the cranial sutures in other  mammals14, 15. Other 
FEM models were used to predict craniofacial bone strains by measuring displacements of a tensile loaded in-
vitro mandible, comparing measured and predicted  strains16, and to predict blunt- and ballistic impact-related 
skull and pressure-related brain  injuries17. Hindered by the lack of population-based data to build and validate 
simulations, the main limitation of these methods is their simplifications and assumptions about the biophysical 
processes driving development. For example, Libby et al.18 created two FEMs to predict cranial displacements 
during the first year of life based on one skull from a cadaver. Then, they compared one FEM to a 3d-printed 
in-vitro physical model and the other to computed tomography (CT) images of 56 different subjects in terms 
of global shape and volume.

Unlike simulation-based approaches, statistical methods leverage existing datasets to infer statistically the 
anatomical variability observed in the population. Li et al. used principal components analysis (PCA) and tem-
poral regression to build independent models of cranial growth using 56 CT images of children aged 0–3  year19 
and 42 CT images of children aged 3–10  years20, respectively. Removing linearity constraints and accounting 
for sex, our group created a complete data-driven normative reference for cranial development during the first 
10 years of life using a large cross-sectional CT image dataset of 2068  subjects21. However, given the lack of 
longitudinal image datasets, these methods could not provide specific information about sutural growth and 
predictions were not personalized to specific patient anatomies. Partly addressing these limitations, our group 
also built a personalized spatiotemporal cranial growth model using 278 cross-sectional CT images based on 
a multi-resolution bilinear PCA method to model both anatomical variability in the population and temporal 
 changes22. However, this personalized predictive model still could not infer sutural growth rates to explain the 
observed anatomical changes in the population. Although other temporal shape-based regression  methods23,24  
have also been extensively studied to model temporal changes in other anatomical structures, these models 
struggle to interpret the local processes driving anatomical changes or to simulate pathology.

This work quantifies suture growth rates in humans for the first time by presenting a novel cranial develop-
ment model explicitly explained by sutural growth. Our model was designed to address the main limitations of 
simulation-based approaches (based on assumptions not fully supported by data), and of traditional statistical 
methods (limited interpretability and inability to predict pathological growth). Our group built on the concepts 
from our previous locally affine shape registration  framework25 to design a diffeomorphic cranial development 
model where bone plate expansion and displacement are a consequence of bone growth at the cranial sutures. 
To build our model, our group used the cranial segmentations from a cross-sectional CT image dataset of sub-
jects without cranial pathology and inferred statistically local sutural growth rates between birth and 10 years of 
age. Then, our group used our model to predict normative cranial growth. In addition, our group modified it to 
predict cranial growth in the presence of craniosynostosis. Our group evaluated the model’s predictive accuracy 
using independent normative and pathologic longitudinal datasets.

Materials and methods
Data description
Informed consent was waived by the Institutional Review Boards (IRB) of the University of Colorado (protocol 
#20-1563) and Children’s National Hospital (protocol #3792) for this secondary research study. Four retrospec-
tive datasets of patients younger than 10 years were collected after obtaining IRB approval and all methods were 
performed in accordance with the relevant guidelines and regulations. Dataset A contains retrospective CT 
images of 2068 normative subjects (965 female) with age 3.12 ± 3.05 years (see age distribution in Fig. 1a) and 
was used to construct the model. A higher number of subjects in early ages enables us to capture faster cranial 
changes in early  life26. These subjects were referred to the emergency room for trauma and clinical evaluation 
discarded any cranial anomaly as described in previous  work21. Dataset B contains two longitudinal CT images 
from each of 51 normative subjects (23 female, 2.24 ± 2.22 years at the first image and 3.55 ± 2.71 years at the 

Figure 1.  Data distribution and CT image processing pipeline. (a) shows the age distribution of the normative 
population in Dataset A. (b) shows an example of 3D volumetric CT. (c) shows the location of the cranial base 
landmarks, where G, DS1, DS2 and Op represent the glabella, two clinoid processes of the dorsum sellae and 
opisthion, respectively. (d) represents the cranial bone labels color-coded in a standardized 2D spherical map, 
where LF, RF, LP, RP and O represent left and right frontal, left and right parietal, and occipital bones, and M, 
LC, RC, S, LL, and RL represent metopic, left coronal, right coronal, sagittal, left lambdoid, and right lambdoid 
sutures, respectively. (e) shows the representation of the Euclidean coordinates of every point in the calvaria 
using a standardized 2D spherical map. The color represents the magnitude of the Euclidean coordinate vector 
at every point.
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second image) and was used to evaluate the accuracy of the model predicting normal growth. Datasets C con-
tains cross-sectional CT images of 212 patients (70 female) with single suture craniosynostosis (31 metopic, 
133 sagittal and 48 unicoronal) with age 0.59 ± 1.02 years. Finally, Dataset D contains 14 longitudinal image 
pairs. Specifically, 10 image pairs were available from 10 patients (4 female) with single suture craniosynostosis 
(2 metopic, 5 sagittal and 3 unicoronal), with age of 0.61 ± 0.60 at the first image and 1.24 ± 1.07 at the second 
image. In addition, two patients in Dataset D had a third CT image acquired at an average age of 3.04 ± 2.23 
years. Hence, four additional image pairs were available by pairing the first available image with the third, and 
the second image with the third for those two patients. Datasets C and D were used to evaluate the accuracy of 
our model simulating craniosynostosis. The average in-plane image resolution of the CT images across datasets 
was 0.37 ± 0.06 mm with slice thickness of 1.97 ± 1.28 mm.

CT image processing
We used our previous methods to automatically extract relevant information from the CT images as depicted 
in Fig. 1b22, 27. In summary, we used adaptive  thresholding28 to segment the skull from CT image as shown in 
Fig. 1c. We used our deep learning  model27 to detect the cranial  landmarks29 and label the cranial bone plates 
as shown in Fig. 1c. Any inaccuracies in bone labeling or landmark location were manually corrected. The 
segmented images were transformed to volumetric meshes using marching cubes  algorithm30 and sampled in 
spherical coordinates to create simplified two-dimensional (2D) manifold-based representations, which were 
iteratively registered using the diffeomorphic demons  algorithm31 to establish local correspondences between 
subjects guided by the location of the cranial sutures as proposed  in22. After this process, the calvarial surfaces 
of all subjects were represented using a standard spherical representation with point correspondences between 
subjects and uniform pose. Figure 1d, e show examples of the 2D spherical map representations for one patient.

Diffeomorphic cranial development model
We propose a spatiotemporal transformation model that explains the anatomical changes at every point on the 
cranial surface as a consequence of the local bone growth at the sutures perpendicular to  them3. In addition, 
our model incorporates the local displacements produced at the cranial base to account for the growth of the 
facial and cranial base structures, which adjust the position of the calvaria. Figure 2a represents the directions 
of sutural growth and cranial base displacements considered by our model.

Let va
(

t; pva
)

∈ R
+ be the local bone growth rate (in  days−1) tangential to the cranial surface at a location 

a in a cranial suture with coordinates xa at age t  , za
(

t; pza
)

 the velocity of the local displacement (in mm/days) 
observed at such location produced by the expansion of the facial and cranial base structures perpendicular to 
the cranial surface, and  pa =

{

pva , pza

}

 the parameters defining va and za (see Table 1 for a summary of math-
ematical symbols). The transformed coordinates at age T of a point on the cranial surface with initial coordinates 
x at age t0 caused by the bone growth ( va) and displacement ( za ) at suture location a with coordinates xa can be 
written as

where ua is a unitary vector tangential to the cranial surface and perpendicular to the suture at xa , and ya is 
a unitary vector perpendicular to the cranial surface at xa . va and za are scalars representing the scaling and 
translation components of an affine velocity field centered at xa , respectively. �·, ·� represents the inner product 
operation. Note that the displacement component za

(

t; pza
)

 only impacts the boundary between the calvaria 
and the cranial base as represented in Fig. 2a to account for the development of the lower cranial structures that 
are not considered in this model, and it does not model bone growth.

As previously  shown32, the combination of affine velocity fields centered at different locations such as the one 
presented in Eq. (1) can result into complex deformable spatial transformations. In our application, we aim to 
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Figure 2.  Suture growth directions and spatial weight functions. (a) shows the direction ua (as white arrows) of 
bone growth tangential to the cranial surface and perpendicular to the suture at different suture locations, and 
direction ya (as black arrows) perpendicular to the cranial surface at the cranial base. (b) shows the uniformly 
discretized control points at each suture in our model. (c) Representation of the spatial weight function wl 
associated with the metopic suture. (d) Representation of the local weight function wa

l
 associated with one 

control point (in red) in the metopic suture.
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find a deformable spatiotemporal mapping between the observed cranial anatomy of a subject at a specific age 
and its future anatomical shape at a different age by combining the affine velocity fields produced by the local 
growth at each suture. As we previously  showed25, different smooth and invertible weight functions can be used to 
model the area of influence and combine different local affine velocity fields to create a deformable diffeomorphic 
transformation model. Following a similar approach, we propose associating a spatial weight function with the 
affine velocity field produced at every suture location. Then, they can be combined to calculate the transformed 
coordinates of a point on the cranial surface with initial coordinates x at age t0 on the cranial surface to age T as

where wa
l (x) is the weight or contribution of the affine velocity field from location xa at suture l  at coordinates 

x , �l is the spatial domain of the cranial suture l  , and p =
{

pa, pwa

}

, ∀a ∈ �l is a vector concatenating the 
parameters pa =

{

pva , pza

}

 of the affine velocity fields and the parameters pwa
 which is associated with the 

weight functions wa
l  from every suture location a . The implementation of this weight function is described in 

section "Modeling the area of suture influence". Note that, in this formulation, all weights from all suture loca-
tions are normalized so 

∫

a∈�l ,∀l
wa
l (x)da = 1 . Equation (2) explicitly models the transformation of any point in 

the cranial surface as a consequence of only sutural growth and the displacements produced by the development 
of the facial and cranial base structures.

Model parameter inference
We inferred all model parameters p using our cross-sectional normative CT images in Dataset A. First, we 
calculated the average anatomical cranial shape at birth using the aligned 2D spherical map representations of 
the cranial anatomy of our subjects. Then, we estimated the model parameters p that minimized the difference 
between the predicted average anatomical development with our model and all the anatomical observations 
from Dataset A as:

where I0(m) represents the Euclidean coordinates at location m in the average spherical anatomical map at birth, 
I s(m) are the Euclidean coordinates at the same location in the anatomical map of subject s with age ts , N is the 
number of subjects in Dataset A, M is the number of points in our standard 2D spherical representation, and 
R(θ) is a matrix representing a rigid spatial transformation with rotation and translation parameters θ . Note that 
R(θ) is not part of our model and it is only used during optimization to minimize the impact of potential pose 
standardization inaccuracies in pre-processing stages. The differences between the model and the anatomical 
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Table 1.  Mathematical notations, summarized in the order of their appearance in the manuscript.

Notation Description

a Anchor index on the cranial sutures

xa The Euclidean coordinate at location a

va Local suture growth rate tangential to the cranial surface and perpendicular to the suture at location a

za Velocity at location a produced by the expansion of the lower cranial structures perpendicular to the cranial surface

pa =
{

pva , pza

}

Vector of parameters defining va and za

�
t0
a

(

x,T; pa
) The transformed coordinates at age T of a point on the cranial surface with initial coordinates x at reference age t0 caused 

by the expansion and displacements produced at suture location a with coordinates xa
ua A unitary vector tangential to the cranial surface at suture anchor a and perpendicular to the suture

ya A unitary vector perpendicular to the cranial surface at suture anchor a

�·, ·� Inner product operation

wa
l (x) Weight at coordinates x associated with the affine velocity field produced at location a in suture l

pwa
Parameter vector defining wa

l

I0(m) The Euclidean coordinates at location m in the average spherical anatomical map at birth

R(θ) A matrix representing a rigid spatial transformation with parameters θ

dl(x) The Euclidean distance between location x and the cranial bones separated by suture l

k Parameter controlling the smoothness of our weight functions wa
l

�l The variance matrix of the Gaussian kernel used in the weight function wa
l

ǫ(t, p) Trace of the Green–Lagrange strain tensor at time t  at any point p of the cranial surface

d(t, p) Displacement vector from birth to age t  at any point p of the cranial surface

∇ Spatial derivative operator

tr() Trace operator
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observation from each subject are scaled by the inverse of  ||I s(m)||2 to compensate for differential contribution 
to our objective function of subjects with different cranial size.

Implementation
Modeling the area of suture influence
As indicated in Eq. (2), the influence of each suture location to the growth at any point on the cranial surface 
with coordinates x is determined by the weight functions wa

l (x),∀a ∈ �l , ∀l . These functions should ensure that 
bone growth at suture l  only affects the cranial bones that this suture separates. Hence, we propose to define the 
area of influence of every suture using the expression:

where dl(x) represents the Euclidean distance between x and the cranial bones separated by suture l  , and k con-
trols the smoothness of wl at their boundary. Figure 2c shows the values of wl calculated for the metopic suture. 
As it can be observed, this function takes a value of one at the frontal bones, which are separated by the metopic 
suture, and it rapidly changes to 0 outside them.

Since there may be differential bone growth at different locations of any cranial suture, we uniformly sampled 
each suture using control points at discretized locations xa ∈ �l , which enabled creating spatial gradients within 
every suture using spatial kernels centered at those locations as shown in Fig. 2a and b. Hence, we defined the 
continuous spatial weight function that represents the contribution of the affine velocity field from each sampled 
location xa in suture l  to the growth observed at any point with coordinates x as

where �l is the variance matrix of the spatial kernel. Figure 2d shows the values of wa
l (x) for an exemplar loca-

tion in the metopic suture. The parameters k and �l define the exact area of influence of each cranial suture that 
are included in pwa

 and are estimated through optimization together with the rest of parameters p of our model 
as described next.

Parameter estimation and model evaluation
Since cranial expansion presents a semi-logarithmic temporal  profile21, 33–35, we modeled the local growth rate va 
of at suture location a using a velocity function that can take the form of the temporal derivative of a logarithmic 
growth function as

where t  represent age and pva = {pva ,0, . . . , pva ,2} are the parameters defining the growth rate. Similarly, we 
propose the following model for the velocity associated with the displacements produced the development of 
the facial and cranial base structures:

where pza = {pza ,0, . . . , pza ,2} are the parameters of za . Note that these displacements are only modeled at the 
boundary of the calvaria.

To estimate all model parameters, we first discretized Eq. (2) as

where �t is the temporal discretization interval, and T the time span of our dataset. In our implementation, we 
used a discretization interval of 5 days because it was shown that temporal interpolation at finer discretization 
intervals do not significantly improve prediction  accuracies22. Finally, we used the implementation of the adap-
tive moment estimation (Adam) gradient descent algorithm in PyTorch 3.10.4 with an initial learning rate of 
0.01 to estimate the model parameters using Eq. (3).

After estimating the model parameters, we calculated the fitting error of the model to the normative cross-
sectional Dataset A as the local Euclidean distance between the trained average model and their observed 
anatomy at each point. We also evaluated its predictive performance using the longitudinal studies of normative 
subjects in Dataset B. Specifically, we first segmented the cranial bones from the first available CT image of each 
subject, and we calculated the personalized suture growth and displacement vectors ( ua and ya in Eq. (8)) from 
the segmented cranial anatomies. Since all spherical maps were aligned at the cranial sutures and represented in a 
standard normalized space, the weight functions wa

l  calculated in the spatial domain of the 2D spherical maps do 
not change between subjects. We then used the previously inferred suture growth parameters to predict growth 
at the time of the second available CT image for each subject in Dataset B using Eq. (8). Finally, we quantified 
the predictive error as the distance between the observed and the predicted anatomies.

We also evaluated the accuracy of the model simulating craniosynostosis using Dataset C. Specifically, we used 
Eq. (8) to predict growth from birth to the age of every patient in Dataset C using the learned model parameters 
but setting the suture growth rates va within the fused sutures to zero to simulate fusion. We compared the pre-
dicted average shape in presence of suture fusion with the observed anatomies to quantify the simulation error.
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Finally, we used the longitudinal image pairs in Dataset D to evaluate our model predicting patient-specific 
growth in presence of suture fusion. We used the observed anatomies in the first study of each pair to calculate 
the vectors ua and ya . Then, we used Eq. (8) and the trained model parameters to predict the anatomy at the 
time of acquisition of their latter available image but setting the growth rates of their fused suture to zero. The 
Mann-Whiney U-test was used to compare the performance of the model between the different datasets with a 
significance level of 0.05.

Results
Model fitting and prediction of normative subjects
We trained our model using Dataset A, where we achieved an average fitting error of 3.28 ± 0.60 mm as shown 
in Fig. 3a. Figure 4a shows the average growth rates va

(

t; pva
)

 inferred at every cranial suture that explain the 
cross-sectional observations in Dataset A. In addition, we calculated the trace of the Green–Lagrange strain 
at each point on the average cranial surface of our trained model to quantify differential local growth patterns 
across different areas of the cranium as

were d represents the displacement vector from birth to age t  at any point p , ∇ is the spatial derivative operator, 
and tr represents the trace of the tensor. Figure 4b shows the average value of ǫ and its temporal derivative (strain 
rate) at every cranial bone. Figure 5 shows the strain distributions in the calvarium at 1, 2, and 10 years of age.

We tested the predictive accuracy of our model using Dataset B. The average distance between the segmented 
cranial anatomies from the first images in this independent dataset and our cranial model was 3.36 ± 0.65 mm, 
which was similar to the fitting error to the training dataset (p = 0.27 evaluated using a Mann–Whitney U test) 
as shown in Fig. 3a. Then, we used the previously inferred suture growth parameters to predict growth at the 
time of the second available CT image for each subject in Dataset B as described in section “Parameter estima-
tion and model evaluation”. We obtained an average predictive error of 2.17 ± 0.34 mm, which was significantly 
lower than the average fitting error to the first CT image (p < 0.001 using Mann–Whitney U test). Figure 3b and c 
shows linear regressions of the prediction error as a function of age and of the time between longitudinal images, 
respectively. The predictive error for normative growth was significantly associated with the time between studies 
(p < 0.001), but not with the age at the first study (p = 0.8).

Prediction of craniosynostosis
Modeling cranial bone development as a function of sutural growth allows modifying the inferred sutural growth 
rates to simulate cranial suture pathology. Benefitting from this explicit model representation, we evaluated 
its ability to predict growth in presence of single suture craniosynostosis using Datasets C and D as previ-
ously described. We did not incorporate the lambdoid sutures because of lack of data for this rare type of 
 craniosynostosis36–38.

Using the method described in section “Parameter estimation and model evaluation”, we compared the pre-
dicted average shape in presence of suture fusion with the observed anatomies in Dataset C and we obtained an 
average difference of 3.45 ± 1.22 mm (p = 0.29 compared to the fitting errors to Dataset A using Mann–Whitney 
U test). Specifically, we obtained errors of 2.60 ± 0.93 mm, 3.13 ± 1.26 mm and 3.77 ± 1.15 mm for patients with 
metopic, unicoronal and sagittal craniosynostosis, respectively. Interestingly, these errors were significantly 
lower than the fitting error to Dataset A for patients with metopic (p < 0.001) and unicoronal craniosynosto-
sis (p < 0.001), and significantly higher for patients with sagittal craniosynostosis (p < 0.001). Despite variable 
accuracy results, we show qualitatively in Fig. 6 how our model can reproduce the expected typical abnormal 
phenotypes associated with the individual fusion of the metopic, coronal or sagittal sutures.
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Figure 3.  Accuracy of our model on normative subjects. (a) shows the distance between our average normative 
model and the normative cranial anatomies from Datasets A and B. (b) shows the prediction error evaluated 
on the longitudinal images of Dataset B as a function of patient age in the first available study. (c) shows the 
prediction error evaluated on the longitudinal images of Dataset B as a function of the time between the two 
available longitudinal studies. A linear regression of the error is shown in each figure as solid and dotted blue 
lines for the average and the range of one standard deviation around the mean, respectively.
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We used the longitudinal image pairs in Dataset D to evaluate our model predicting patient-specific growth in 
presence of suture fusion. We achieved an average prediction error of 2.70 ± 1.07 mm (3.07 ± 1.98 mm, 3.08 ± 1.46 
mm and 2.49 ± 0.83 mm for patients with metopic, unicoronal and sagittal craniosynostosis, respectively), which 
was significantly lower than the fitting error to both Datasets A (p = 0.02 using Mann–Whitney U test) and C 
(p = 0.02) and not significantly different from the normative predictive error evaluated using Dataset B (p = 0.31). 
Figure 7a shows the fitting error of our model in Dataset C. Figure 7b and c shows linear regressions of the pre-
dictive errors as functions of the time at the first study and the time between longitudinal studies in Dataset D, 
respectively. The predictive errors for patients with craniosynostosis were not significantly associated with either 
patient age at the first study (p = 0.06) or the time between two studies (p = 0.38).

Discussion
Inspired by previous works on locally affine image  registration25, we presented a novel data-driven diffeomorphic 
cranial bone development model between birth and 10 years of age designed to explain cranial growth by bone 
expansion at the sutures. We proposed a local weighting scheme that can produce deformable cranial transfor-
mations explained only by bone growth at the cranial sutures and accounting for displacements produced by 
the development of the facial and cranial base structures. As it can be observed in Fig. 2c, d, the locality of our 
transformation model achieved through our proposed weighting scheme ensures that the growth observed at 
every cranial suture affects the expansion of its surrounding cranial bone plates. In addition, we introduced direc-
tional constraints to ensure that growth in the cranial sutures occurs perpendicular to  them3, which is essential 
to inferring realistic and explainable bone development patterns. Our model overcomes the main limitation of 
existing simulation (based on assumptions about growth rates) and statistical methods (hardly explainable and 
not useful to simulate pathology). Unlike existing longitudinal reports on population statistics at discrete time 
points, our model offers a predictive approach that can anticipate individualized local cranial growth in the 
absence or presence of suture growth constraints. The model parameters defining both the local bone growth 
rates at every suture and the area of influence of each suture were inferred statistically from real observations, 
and they provide an explicit quantitative explanation of cranial development as a consequence of sutural growth 
as shown in Fig. 4. To our knowledge, this is the first explicit data-driven quantitative reference of sutural growth 
inferred from large datasets of real human data.

We evaluated the personalized predictive accuracy of our model using an independent normative longitudinal 
dataset and we obtained state-of-the-art  performance22. As shown in Fig. 4a, our model inferred a faster growth 

Figure 4.  Average suture and bone growth as a function of age. (a) Represents the suture growth rates inferred 
from Dataset A. (b) Represents the average strain and strain rates in each cranial bone.
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in the coronal sutures during the first months of life compared to the rest of the sutures. This can explain the 
observed faster antero-posterior bone expansion (perpendicular to the coronal sutures) compared to the lateral 
direction in previous  works22. A similar anterior–posterior pattern is also shown in Fig. 4b, where a faster expan-
sion of the frontal bones is observed compared to the parietal bones, which also grow faster than the occipital 
bone. Such anterior–posterior pattern is consistent with previous  reports22. As shown in the local deformation 

Figure 5.  Shape development generated using the trained model, color-coded in strain values. The first, second, 
third rows represent the anterior, the posterior, and the lateral view, respectively. The first, second, and third 
columns represent the cranial shapes at 1 year, 2 years, and 10 years of age, respectively.

Figure 6.  Simulation of the average abnormal phenotypes of single suture craniosynostosis using the trained 
model. The top row shows a superior view of the cranial anatomy of three patients with metopic (female, age 10 
months), sagittal (male, age 13 months) and single right coronal (female, age 8 months) craniosynostosis. The 
bottom row shows average simulated models of single suture craniosynostosis between birth and the age of each 
patient, with shaded shapes representing the average normative shape for the age and sex of each patient. Red 
lines show the fused sutures for reference, and red arrows show the direction of constrained growth. A, P, L and 
R represent anterior, posterior, left and right, respectively.
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patterns in Fig. 5, higher rates of deformation are similarly observed around the coronal sutures compared to the 
rest of the areas. Our model produces average normative head shapes with cephalic index (the ratio between the 
lateral and the antero-posterior cranial distances) decreasing from 81.71% at birth to 77.54% at 2 years of age, 
which aligns with previous clinical reports on a decreasing cephalic index during early  childhood3, 21.

We also evaluated if our model could be used to simulate craniosynostosis. As shown in Fig. 6, our model 
realistically simulates the expected abnormal phenotypes of patients with single fusion of the metopic (trigo-
nocephaly), sagittal (scaphocephaly) and coronal (anterior plagiocephaly) sutures. We quantified its accuracy 
reproducing the abnormal cranial shapes in the presence of craniosynostosis by comparing our simulations 
with a cross-sectional dataset of patients (Dataset C). We obtained differences between the average model and 
the observed anatomies that were lower than the fitting errors of our model to the normative dataset for both 
patients with metopic and patients with unicoronal craniosynostosis. However, these errors were higher for 
patients with sagittal craniosynostosis. We also quantified the ability of our model to predict personalized growth 
in longitudinal dataset of patients with craniosynostosis (Dataset D). We obtained predictive errors that were 
lower than the difference between our average predictions of craniosynostosis and the observed cross-sectional 
phenotypes in Dataset C. Higher errors obtained when comparing our simulation of craniosynostosis at birth 
with the cross-sectional dataset C may be related to our assumption that sutures were fused at the time of birth 
for all patients in this dataset. Unfortunately, it is currently not possible to know the exact timeline of suture 
fusion for patients with craniosynostosis. However, once suture fusion is confirmed in a CT image study, our 
method enables making predictions of development with accuracies that are not significantly different to the 
predictions made for normative subjects (see experiments with longitudinal Datasets B and D). Future work 
could include further exploration of potential timelines of suture fusion for specific patients using the available 
model, which could provide insight to elucidate potential causes of suture fusion that are unknown for more 
than 85% of these  patients9, 39.

The diverse performance of our model in patients with craniosynostosis may also be related to the compensa-
tory volume mechanisms observed in patients with craniosynostosis parallel to the fused  sutures3. This effect is 
demonstrated in Fig. 8, where we show a comparison between the observed anatomies of a patient with metopic 
craniosynostosis, our average normative shape at the same age, and the personalized predictions from our 
model at different longitudinal observations. As it can be observed, while our model can simulate the abnormal 
constrained growth in the anterior area of the cranium, the patient presents a posterior compensatory volume 
overdevelopment produced by an increased pressure from the growing  brain3. Our model only presented a lower 
accuracy than the fitting error for our group of patients with sagittal craniosynostosis. This may be explained 
because the parietal bones that are separated by the sagittal suture have larger surfaces, which may translate into a 
larger volumetric constraint that may also produce larger volume overdevelopment in other areas. Unfortunately, 
the quantitative understanding of the complex relationships between the exact time of suture fusion, the local 
increased pressure from a growing brain and the compensatory overdevelopment that occurs as a consequence 
of it is still very limited. Our model constitutes an important step towards quantitatively understanding cranial 
growth at the sutures in children. Future work includes the study of volume compensation patterns in patients 
with craniosynostosis and how they relate to specific local growth constraints.

Prior work has successfully modeled cranial growth and/or created personalized temporal growth predictions 
for healthy subjects using statistical  data21, 22. Other studies have also successfully identified abnormal phenotypes 
associated with craniosynostosis for screening and diagnostic  purposes29, 40. However, previous data-driven 
studies could not quantify cranial growth at the sutures and hence, they could not make temporal predictions in 
patients with suture growth anomalies. The current work presents the first explicit statistical reference of sutural 
growth in humans inferred from clinical observations to study suture growth anomalies, establishing a statisti-
cal framework to understand how suture develops for future investigations. Moreover, our study constitutes 
an important step towards enabling personalized temporal predictions of development in patients with cranial 
suture pathology, which is important to study how cranial growth restrictions may affect local and global cranial 

Figure 7.  Accuracy of our model on patients with craniosynostosis. (a) shows the distance between our average 
model of single suture craniosynostosis and the cranial anatomies from Dataset C. (b) shows the prediction 
error evaluated on the longitudinal images of Dataset D as a function of patient age in the first available study. 
(c) shows the prediction error evaluated on the longitudinal images of Dataset D as a function of the time 
between the two available longitudinal studies. A linear regression of the error is shown in each figure as solid 
and dotted blue lines for the mean error and the range of one standard deviation around the mean, respectively.
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and brain volume development. This is essential to investigate the impact of surgical timing on cranial and brain 
growth in patients with craniosynostosis, which has the potential to be integrated into clinical practice to better 
inform treatment planning and improve outcomes. Our model will also provide a necessary tool to study the 
abnormal phenotypes of patients with craniosynostosis in the context of temporal sutural growth. Finally, our 
work shows both quantitatively and qualitatively the importance of understanding the volume compensatory 
mechanisms in the cranium, which will be subject of future work to understand the coupled developmental 
mechanisms between the cranium and the brain.

Data availability
The data used in this study corresponds to head CT images of pediatric patients that include private health 
information. Hence, these data cannot be made public due to HIPAA regulations. As part of a previous study, 
a generative normative  model21 built from this dataset has been made available in https:// github. com/ cuMIP/ 
norma tiveC rania lGrow th. The sutural growth model presented in this study is available in https:// github. com/ 
cuMIP/ crani alSut ureGr owth.
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