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Electricity consumption in Finland 
influenced by climate effects 
of energetic particle precipitation
Veera Juntunen * & Timo Asikainen 

It is known that electricity consumption in many cold Northern countries depends greatly on 
prevailing outdoor temperatures especially during the winter season. On the other hand, recent 
research has demonstrated that solar wind driven energetic particle precipitation from space into the 
polar atmosphere can influence the stratospheric polar vortex and tropospheric weather patterns 
during winter. These changes are significant, e.g., in Northern Europe, especially in Finland. In this 
study we demonstrate that geomagnetic activity, as a proxy of energetic particle precipitation, 
significantly influences Finland’s average temperature and total wintertime electricity consumption in 
Finland. This influence is only seen when the prevailing equatorial stratospheric winds, so called QBO 
winds, are easterly. The results demonstrate a previously unrecognized societal influence of space 
weather, and imply that long-term energy consumption forecasts could potentially be improved by 
considering long-term space weather predictions.

Prevailing weather conditions, especially outdoor temperatures are known to have a pronounced effect on elec-
tricity consumption in different European  countries1–3. During wintertime a large fraction of total electricity 
consumption is used for heating in countries that have cold winter temperatures, including  Finland1. Therefore, 
any factor influencing the wintertime weather conditions directly affects the total electricity consumption as well. 
For example, it has been shown that the North Atlantic Oscillation (NAO), the dominant air pressure pattern 
over the North Atlantic which largely governs the type of wintertime weather in Europe, influences, e.g., the 
energy consumption in  Norway4, the electricity markets in  Ireland5, and the energy penetration rate in  Europe6. 
While much of the wintertime weather variability in the Northern Hemisphere arises from internal tropospheric 
variability, it is also known that a significant influence to the this tropospheric variability is exerted from the 
 stratosphere7. During wintertime the polar stratosphere is characterized by the polar vortex, a strong westerly 
wind flow that circulates the cold and dark winter polar region in high-latitude stratosphere. Variations of the 
polar vortex have been shown to project on the so called Northern Annular Mode (NAM)8 and North Atlantic 
Oscillation (NAO)9 modes of air pressure variability throughout the stratosphere down to the troposphere and 
ground  level7,10.

An interesting aspect to all this is brought by the fact that varying solar activity and corresponding changes 
in space weather have been shown to influence the Earth’s middle atmosphere and the climate system (e.g.11–15). 
Particularly, it has been noted that energetic electron precipitation (EEP) from near-Earth space, mainly driven 
by fast solar wind streams from the solar  corona16, influence the polar vortex and wintertime climate con-
ditions on the Northern  Hemisphere17–19. This influence is exerted by chemical destruction of stratospheric 
ozone by odd hydrogen (HOx) and nitrogen oxides (NOx), which are created when energetic particles ionize 
the upper  atmosphere20–22. The NOx compounds are especially important because in the absence of sunlight 
they can remain in the polar atmosphere for long time periods and be transported from the upper atmosphere 
down to the mesosphere and stratosphere where they then catalytically destroy  ozone23–25. Since ozone is an 
important regulator of stratospheric temperature, variations in its concentrations change stratospheric heat-
ing rates and  temperatures26,27. In dark early and mid winter ozone depletion decreases radiative cooling rates 
and leads to warming of the mesosphere and upper stratosphere, while in late winter when sunlight starts to 
return to the polar region the ozone loss leads to decreased radiative heating rate, which results in cooling of the 
 stratosphere22,28. These thermal changes ultimately lead to enhancement of the polar vortex in accordance with 
the thermal wind shear balance.

Recent research has demonstrated that the above described influence of EEP on the polar vortex is dependent 
on the distribution of planetary waves, large scale north-south undulations of wind streams, which are caused 
by fluctuations of tropospheric air pressure  centers19,29. While these waves can propagate to the stratosphere 
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and influence the zonal winds there, their propagation is also influenced by the zonal winds thereby setting up a 
back and forth feedback known as the wave-mean-flow  interaction30. An important factor affecting the guiding 
of planetary waves to the polar stratosphere is the Quasi-Biennial Oscillation (QBO) of equatorial stratospheric 
zonal  winds31. The direction of the wind changes around every 14 months between easterly and westerly. During 
easterly QBO winds (negative phase) the planetary waves are guided more effectively from the mid-latitudes to 
the polar  region32. There they have been suggested to act as an amplifier of the EEP-induced changes of the polar 
vortex. Consequently the EEP influence on the polar vortex is preferentially seen during the easterly phase of 
the QBO (e.g.19,29,33,34). While a high level of EEP enhances the polar vortex a low EEP level has been shown to 
make the vortex prone to breaking leading to a Sudden Stratospheric  Warming35,36.

As the strength of the stratospheric polar vortex influences the surface temperatures, the polar vortex also 
works as a link transmitting the EEP effects to the surface  level17,19. As mentioned earlier, these changes largely 
project to the NAM/NAO modes of climate variability and, e.g., in Northern Europe/Scandinavia, especially in 
Finland, lead to warm and wet (cold and dry) winter weather when the EEP level is high (low) in easterly QBO 
 phase17,33.

Based on this premise, this study now considers for the first time how the EEP related climate variability 
influences the total electricity consumption in Finland, for which detailed long-term energy statistics since early 
1990’s are available. We first show that, apart from long-term trends, Finland’s total electricity consumption cor-
relates extremely well with Finland’s average temperature. We then demonstrate that geomagnetic activity (an 
indirect proxy for EEP) influences the surface geopotential patterns and thereby affects Finland’s wintertime 
temperatures. Finally, we show that this connection projects into a significant correlation between geomagnetic 
activity and total electricity consumption in Finland when the phase of the QBO easterly.

Results
Reconstruction of the total electricity consumption by using surface temperature data
Figure 1 shows monthly averages of Finland’s total electricity consumption from 1990 to 2021 obtained from 
the archives of Finnish Energy (see “Methods” section). The evolution of electricity consumption is dominated 
by a non-linear trend increasing from 1990 to about 2008 after which it has stayed relatively constant. Another 
persistent feature is the strong seasonal variation, which peaks in winter. Evidently, there is also year-to-year 
variability in electricity consumption, which is not related to weather variations but to changes in industry and 
overall energy consumption. In this study we concentrate only on the part of the inter-annual variations in elec-
tricity consumption, which can be attributed to variability of Finland’s average surface temperature obtained from 
the ERA-5 re-analysis dataset (see “Methods” section). Extracting the temperature dependent part of electricity 
consumption variability involves normalizing the electricity consumption with temperature and removing the 
long-term trends not associated to temperature changes (see “Methods” section). Figure 1 shows the normalized 
electricity consumption values with a red curve.

After the normalization procedures we find that all calendar months and different years are systematically 
similarly related to Finland’s monthly average temperature, and the correlation of this relation is very high 

1990 1995 2000 2005 2010 2015 2020
time

3000

4000

5000

6000

7000

8000

9000

10000

Fi
nl

an
d'

s 
to

ta
l e

le
ct

ric
ity

co
ns

um
pt

io
n 

(G
W

h)

Finland's total monthly electricity consumption

unnormalized values
normalized values
normalized detrended values

Figure 1.  Finland’s total monthly electricity consumption from 1990 to 2021 (blue) and normalized values 
(red). The green curve shows the normalized detrended monthly electricity consumption values (linear trend 
removed from each month separately) used in the analysis.
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(cc = − 0.98, p < 10−279 ). The good correlation between temperature and normalized electricity consumption 
allows us to calculate by linear regression a representative estimate for the normalized electricity consumption 
for 1950–1989 using Finland’s monthly temperatures as proxies (see “Methods” section). Figure 2 shows the 
Jan–Mar (JFM) averages of Finland’s average temperature and the normalized total electricity consumption in 
1950–2021 both as time series (top) and a scatter plot (bottom). The interval from 1950 to 1989 consists of the 
reconstructed electricity consumption data and the red shading indicates the one and two standard deviation 
(sigma) uncertainty ranges of the reconstruction. From Fig. 2 one can clearly see how average temperatures (right 
side axis) translate to electricity consumption values (left side axis).

Influence of geomagnetic activity on surface temperature
Earlier studies have already established the influence of EEP on large-scale ground temperature and sea level 
pressure patterns in the Northern Hemisphere during winter (e.g.14,17,33,34). For example, Maliniemi et al.17 showed 
that the EEP influence projects to a NAM like pattern predominantly during easterly QBO phase and is associ-
ated to warming in northern Eurasia, where Finland is also located. Let us now investigate more closely how 
Finland’s average temperature in winter is associated to global patterns of geopotential height in the Northern 
Hemisphere and how those patterns are connected to geomagnetic activity (aa index), which is here used as a 
proxy for energetic electron precipitation.

Figures 3, 4 and 5 show the patterns of 1000 hPa geopotential height, which are associated to variation of 
aa index (left side panels) and Finland’s average temperature (right side panels) in 1950–2021 separately for all 
winters (Fig. 3), QBO-E winters (Fig. 4) and QBO-W winters (Fig. 5). We deseasonalize the QBO (see “Methods” 
section) and employ here a 6 month lag to the QBO so that it is taken from July preceding the winter season. 
Earlier studies on the EEP effect have found the 6 month lagged QBO to influence the EEP effect more strongly 
than other  lags19. The different rows of Figs. 3, 4 and 5 represent different winter months with the bottom row 
showing the JFM average. These patterns were obtained by maximum covariance analysis and projecting them 
on the monthly geopotential height data produces a time series, which maximally covaries with either aa index or 
Finland’s average temperature time series (see “Methods” section). It is important to note that for February, March 
and JFM average the aa index was taken from preceding January. A similar time lag for the EEP (aa) influence 
has been found in many earlier studies (e.g.,19,33). We have also excluded from the analysis winters 1984/1985 and 
2003/2004, which experienced large sudden stratospheric warming events breaking the polar vortex for a long 
time. These two winters have been found exceptional in several earlier studies and they are strong outliers, which 
greatly dilute the estimated EEP (and aa) related variability in the polar vortex and ground  climate17,19,37. Figures 3 
and 4 also show the Pearson correlation coefficients and p-values between aa and Finland’s temperature related 
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Figure 2.  The Jan–Mar (JFM) averages of normalized detrended total electricity consumption and Finland’s 
surface temperature anomaly (JFM) in 1950–2021. The scatter plot shows QBO-E winters in blue and QBO-W 
winters in pink. The QBO has been taken from July preceding the winter season. The red shading in the time 
series plot and red bars in the scatter plot indicate the uncertainty range of 1 and 2 sigma for the reconstructed 
electricity consumption values.
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patterns in the middle (see “Methods” section) and they indicate how similar the two patterns are (however, they 
do not represent the correlation between aa and Finland’s temperature time series).

For all winters (Fig. 3) the geomagnetic activity in Dec–Feb months is associated to a pattern that resembles 
the NAM/NAO patterns. Generally, the NAM pattern has a negative response over the pole surrounded by 
patches of positive responses over northern Atlantic and Pacific oceans. The NAO pattern lacks the positive 
response over Pacific and thus resembles the Atlantic sector of the NAM pattern. In all winter months Finland’s 
temperature is maximally associated with a NAM/NAO like pattern. Especially in January and February as well 
as in JFM averages the geomagnetic activity is associated to a NAM/NAO like pattern, by which Finland’s tem-
perature is predominantly influenced. The correlation between the two patterns, e.g., for the JFM averages is high 
and statistically significant ( r = 0.87 , p = 1.0× 10−4 ). Figure 4 shows the same patterns for QBO-E phase. In 
accordance with earlier studies, the aa-related response is now more systematically NAM/NAO-like throughout 
all winter months, except December. The geopotential pattern associated to Finland’s average temperatures is 
not significantly different from Fig. 3. However, the correlations between the aa patterns and Finland’s average 
temperature related patterns are now much stronger and more systematic for Jan–Mar months. Especially the 
JFM average patterns attain a very strong and highly significant correlation of r = 0.98 ( p = 1.0× 10−4 ). In 
QBO-W phase (Fig. 5) the geopotential patterns associated to Finland’s temperature are similar as in QBO-E, 
but the patterns associated to aa index are very different resembling almost a negative NAM/NAO pattern. The 
correlation between the aa and temperature related geopotential patterns is positive in December, rather weak 
and insignificant in January, moderately negative in February and zero in March. The correlation for the JFM 
average remains negative ( r = −0.21 , p = 0.37 ), and reflects the correlation in February.

The results in Figs. 4 and 5 indicate that especially in QBO-E phase geomagnetic activity drives a NAM/
NAO-like pattern and at the same time a NAM/NAO-like pattern strongly influences Finland’s average tem-
peratures. While Finland’s average temperature responds to a similar NAM/NAO-like pattern also in QBO-W 
the geomagnetic activity does not systematically produce a positive NAM/NAO-like pattern then. If any, the 
pattern bears more resemblance to a negative NAM/NAO. It is, therefore, expected that the geomagnetic activity 
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Figure 3.  Patterns of maximum covariance between 1000 hPa geopotential height and detrended aa on the 
left and Finland’s surface temperature anomaly on the right. Different rows correspond to different winter 
months and the Jan–March (JFM) average. The correlations and p-values indicate the correlation and statistical 
significance between aa and temperature associated maximum covariance patterns. The patterns shown here 
were computed for 1950–2021 excluding winters 84/85 and 03/04. The grey (pink) contours indicate 90% (95%) 
significance levels. The colorbar represents dimensionless MCA pattern loadings scaled by dividing with the 
standard deviation of all loading values of the same map.
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influences Finland’s temperature and electricity consumption predominantly during QBO-E phase. We shall 
investigate this next.

Relationship between the geomagnetic activity and Finland’s wintertime total electricity 
consumption
Table 1 shows the correlation coefficients and corresponding p-values between January’s aa-index and the JFM 
average of the total electricity consumption in Finland separately for all winters, for QBO-E winters and for 
QBO-W winters. The statistical significance of the correlations was estimated with a Monte–Carlo resampling 
method which also estimates the likelihood of obtaining the observed results by aliasing, when the data is irregu-
larly sampled by the QBO phase (see “Methods” section). We use here the January’s aa-index as in Figs. 3, 4 and 
5 since it produces best correlation with the JFM average of the total electricity consumption and corresponds 
to the lagged EEP influence through downwelling of NOx inside the polar vortex as discussed earlier above. 
Table 1 shows that for the direct measurements in 1990–2021, when winter 2003/2004 has been excluded, the 
correlation for all winters is moderately negative but not statistically significant ( r = −0.42 , p = 0.095 > 0.05 ). 
For QBO-E winters the correlation is strongly and significantly negative ( r = −0.83 , p = 4.0× 10−4 ) and for 
the QBO-W winters near zero and statistically insignificant ( p = 0.99 ). The Table 1 also shows the correlations 
obtained if the outlier winter of 2003/2004, which occurred in QBO-E phase, is retained in the data. One can see 
that including this 1 year dramatically decreases the magnitude of the correlation in QBO-E phase from − 0.83 
to − 0.57, but the correlation remains statistically significant.

For the longer time period 1950–2021, partly consisting of the reconstructed electricity consumption values, 
the correlations are a bit smaller, but statistically much more significant due to the increased number of data 
points compared to the 1990–2021 period. It is important to note that the statistical uncertainty range of the 
electricity consumption reconstruction in 1950–1989 was taken into account when evaluating its correlation 
with aa-index (see “Methods” section). The correlations shown in Table 1 also imply that the aa influences the 
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The patterns shown here were computed for 1950–2021 excluding winters 84/85 and 03/04. The grey (pink) 
contours indicate 90% (95%) significance levels. The colorbar represents dimensionless MCA pattern loadings 
scaled by dividing with the standard deviation of all loading values of the same map.
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electricity consumption predominantly during QBO-E phase, while no statistically significant connection is 
seen during QBO-W.

For the 1950–2021 time period another particularly influential outlier, winter 1984/1985, exists in the data. 
This winter has also been identified as an outlier in earlier  studies17. Excluding also the 1984/1985 winter sig-
nificantly improves the correlation in QBO-E phase to − 0.71 from − 0.51 (if all data is included) or from − 0.60 
(if only 2003/2004 is neglected).

The connection between the geomagnetic activity and electricity consumption is further investigated in Fig. 6 
which shows the time series and the corresponding scatter plots of the January aa-index and the variability of 
JFM-averaged normalized total electricity consumption of Finland (note the inverted y-axis) separately for the 
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Figure 5.  Patterns of maximum covariance between 1000 hPa geopotential height and detrended aa on the 
left and Finland’s surface temperature anomaly on the right for the QBO-W winters. Different rows correspond 
to different winter months and the Jan–March (JFM) average. The correlations and p-values indicate the 
correlation and statistical significance between aa and temperature associated maximum covariance patterns. 
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Table 1.  Pearson correlation coefficients and corresponding p-values between detrended aa-index (Jan) and 
normalized detrended Finland’s total electricity consumption (JFM). Correlations and p-values for 1950–2021 
and p-values for 1990–2021 were obtained from Monte Carlo simulations.

JFM All winters QBO-E QBO-W

1950–2021 (Winters 84/85 and 03/04 removed) r = − 0.42 (p=0.0081) r = − 0.71 (p=2.0 x  10-4) r = 0.019 (p=0.91)

1950–2021 (Winter 03/04 removed) r = − 0.36 (p=0.0045) r = − 0.60 (p=8.0 x  10-4) r = 0.019 (p=0.91)

1950–2021 (All winters included) r = − 0.33 (p=0.0070) r = − 0.51 (p=0.0020) r = 0.019 (p=0.91)

1990–2021 (Winter 03/04 removed) r = − 0.42 (p=0.095) r = − 0.83 (p=4.0 x  10-4) r = − 0.0043 (p=0.99)

1990–2021 (All winters included) r = − 0.35 (p=0.12) r = − 0.57 (p=0.042) r = − 0.0043 (p=0.99)
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two QBO phases. The upper right hand scatter plot of Fig. 6 also highlights the two outlying winters of 1984/1985 
and 2003/2004.

We also considered each winter month’s electricity consumption (December, January, February and March) 
separately and compared them with the aa index. The correlations between the two are shown in Table 2. In this 
comparison the aa index was taken from the previous or the same month (as shown in Table 2) as electricity 
consumption, depending on which month produces the best correlation in QBO-E phase. For December the 
best correlation was obtained with November aa, although overall the correlations in both QBO phases remain 
a somewhat low and insignificant for the longer period 1950–2021. For the shorter period 1990–2021 a margin-
ally significant correlation of − 0.47 was obtained for QBO-E phase. For January and February the electricity 
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Figure 6.  The normalized and detrended total electricity consumption (JFM average) and the detrended 
aa-index (Jan) during 1950–2021 for QBO-E winters (top row) and for QBO-W winters (bottom row). 
The QBO was taken from July preceding the winter season. The grey points in the scatter plots indicate 
reconstructed electricity consumption values. The error limits indicate uncertainty range of 1 and 2 standard 
deviations (sigmas) for the reconstructed electricity consumption values. The correlation coefficients indicated 
in the scatter plots have been computed by excluding the two outlier winters of 1984/1985 and 2003/2004 (pink 
and green).

Table 2.  Pearson correlation coefficients and corresponding p-values between Finland’s normalized detrended 
total electricity consumption and detrended aa-index for 1950–2021 and 1990–2021. The month indicates the 
month of the total electricity consumption. The QBO has been taken from July preceding the winter season 
and the aa from previous or same month as indicated in the table. Here winters 1984/1985 and 2003/2004 have 
been excluded from all correlations. Correlations and p-values for 1950–2021 and p-values for 1990–2021 were 
obtained from Monte Carlo simulations.

Month All winters QBO-E QBO-W

December 1950–2021 (aa Nov) r = − 0.084 (p=0.49) r = − 0.24 (p=0.19) r = 0.12 (p=0.52)

December 1990–2021 (aa Nov) r = − 0.040 (p=0.90) r = − 0.47 (p=0.077) r = 0.32 (p=0.23)

January 1950–2021 (aa Jan) r = − 0.34 (p=0.0079) r = − 0.60  (p = 2.0 x  10-4) r = − 0.019 (p=0.92)

January 1990–2021 (aa Jan) r = − 0.42 (p=0.034) r = − 0.76 (p=0.0017) r = − 0.17 (p=0.55)

February 1950–2021 (aa Jan) r = − 0.31 (p=0.011) r = − 0.63 (p=6.0 x  10-4) r = 0.028 (p=0.87)

February 1990–2021 (aa Jan) r = − 0.28 (p=0.19) r = − 0.68 (p=0.016) r = − 0.031 (p=0.92)

March 1950–2021 (aa Feb) r = − 0.29 (p=0.011) r = − 0.55 (p=9.0 x  10-4) r = 0.028 (p=0.87)

March 1990–2021 (aa Feb) r = − 0.40 (p=0.031) r = − 0.63 (p=0.011) r = − 0.036 (p=0.90)
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consumption correlates best with aa index from January. The correlations for Jan and Feb in QBO-E are − 0.60 
and − 0.63 for 1950–2021 period and − 0.76 and − 0.68 for 1990–2021 period in QBO-E, and in all cases statisti-
cally highly significant. In QBO-W phase the correlations for these months are weak and insignificant. For March 
the best correlation is found when using aa index from February. In QBO-E phase the correlations are − 0.55 for 
1950–2021 period and − 0.63 for the 1990–2021 period and in both cases highly significant. Therefore, generally, 
the correlations are a bit better for shorter time period 1990–2021, but statistically much more significant for the 
longer time period 1950–2021 containing more data points. We also note that the correlations for the individual 
winter months are somewhat lower than for the JFM average electricity consumption. This is evidently, because 
taking the average of three winter months reduces the variance of the contribution that comes from factors not 
related to aa variations.

The correlation between aa and the electricity consumption found here is due to the influence of energetic 
electron precipitation on the Finland’s average temperature. The correlations between aa and temperature are 
not shown here explicitly as they are not significantly different from those between aa and electricity consump-
tion (due to the strong correlation between temperature and normalized electricity consumption shown above).

Discussion
Past research has demonstrated that energetic electron precipitation into the atmosphere can influence the win-
tertime polar vortex when the QBO phase is easterly (e.g.,19,33,35). In westerly QBO phase this influence is much 
weaker, likely because the EEP influence on polar vortex has been shown to depend on planetary  waves29,38, which 
are preferentially guided into the polar stratosphere during QBO-E  phase32. The EEP-related influences can even 
be seen as statistically significant variations of ground temperatures in the Northern Hemisphere. Here we also 
demonstrated how the aa index of geomagnetic activity (proxy for energetic electron precipitation) projects its 
influence on a NAM-type pattern of 1000 hPa geopotential height (Fig. 4) in the QBO-E phase. On the other 
hand Finland’s wintertime temperatures were also shown to be dominantly dependent on a similar NAM-type 
pattern. Based on this the aa-associated variations greatly influence the wintertime (Jan–Mar) temperatures in 
Finland in QBO-E phase.

Based on this premise we studied here how the influence of geomagnetic activity is seen in the wintertime 
total electricity consumption in Finland. After carefully extracting the part of electricity consumption attributed 
to temperature changes we found a statistically significant and rather high correlation between the normalized 
electricity consumption and aa index in QBO-E winters since 1950–2021, which suggests that more than 50% of 
the temperature related part of electricity consumption can be explained by variations of geomagnetic activity. 
In QBO-E phase increased geomagnetic activity (high aa) leads to higher winter temperatures in Finland which 
in turn reduces the total electricity consumption as less electricity is needed for heating. Correspondingly when 
geomagnetic activity is decreased (low aa), Finland experiences colder winter temperatures causing increased 
total electricity consumption.

Figure 6 indicates that the average level of the electricity consumption (normalized to the level of year 2021) is 
about 8500 GWh per Jan–Mar season. On the other hand the range of variability of the electricity consumption is 
about 1200 GWh. Based on this the geomagnetic activity associated part of the electricity consumption is about 
14% of the average level. This magnitude is not negligible and has two major implications. On one hand, it indi-
cates a significant societal influence of space weather (geomagnetic activity associated particle precipitation into 
the atmosphere) which has not been previously recognized. On the other hand, the results imply that long-term 
predictions of electricity consumption for months ahead could potentially be improved by considering long-
term forecasts of the space environment and their influence on wintertime ground weather variations (e.g.36).

Methods
Data
We use the fifth generation of ECMWF’s (European Centre for Medium-range Weather Forecasts) atmospheric 
reanalysis dataset called ERA5 (https:// cds. clima te. coper nicus. eu) for geopotential height, equatorial strato-
spheric zonal wind (QBO) and surface temperature  data39. The dataset has a spatial resolution of 0.25◦ both in 
latitude and longitude over entire globe in 37 different pressure levels from 1000 to 1 hPa. Here we used data from 
1950 to 2021. For this study we computed Finland’s monthly average surface temperature using the ERA-5 dataset 
as a mean value between latitudes 60◦ N–71◦ N and longitudes 21◦ E–30◦ E. We also used ERA-5 data to deter-
mine the QBO as the average zonal wind between latitudes 10◦ S–10◦ N. The QBO was further de-seasonalized by 
removing from the values of each calendar month the overall average value of the corresponding calendar month.

As a proxy of EEP we used the geomagnetic aa index provided by International Service of Geomagnetic 
indices (http:// isgi. unist ra. fr). The aa index has been determined since 1868 and it represents the range of geo-
magnetic variability measured on ground in 3-h time intervals normalized to ±50◦ geomagnetic latitude. The 
index is based on the data from two stations located in England (presently Hartland) and Australia (presently 
Canberra). The aa index forms the longest running time series of geomagnetic  activity40. The aa index and the 
closely related ap index, containing data from more stations, have often been used as a good proxy for the ener-
getic electron  precipitation16,37,41.

The Finland’s electricity consumption data was obtained from the Finnish Energy database (https:// energ 
ia. fi/ en/ newsr oom/ publi catio ns/ month ly_ elect ricity_ stati stics. html), which contains detailed statistics of elec-
tricity production and consumption in weekly and monthly time resolution. In this study we use monthly total 
electricity consumption data for 1990 to 2021. To extend the time range of monthly electricity consumption 
data we reconstruct the monthly total electricity consumption dataset for years 1950–1989 by using Finland’s 
monthly temperature data.

https://cds.climate.copernicus.eu
http://isgi.unistra.fr
https://energia.fi/en/newsroom/publications/monthly_electricity_statistics.html
https://energia.fi/en/newsroom/publications/monthly_electricity_statistics.html
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Processing of electricity consumption data
The electricity consumption data contains the total amount of electricity consumed (GWh) each month. Because 
different months have different number of days the electricity consumption was first normalized to a constant 
number of 30 days per month. This is done by multiplying each monthly value by a factor of 30/N, where N is the 
number of days within a month. After this normalization we found that the electricity consumption extremely 
well linearly correlated with Finland’s monthly average temperature in each year. This is shown in Fig. 7a, which 
indicates that for all years the correlation exceeds 0.92. However, when fitting a line (electricity consumption 
vs. temperature) we find that each year has a different intercept and slope as shown in panels b and c of Fig. 7. 
This is because of the long-term trends in electricity consumption unrelated to temperatures. These are mostly 
reflected in the intercept (Fig. 7b), which indicates a rising trend until 2007 after which the trend drops slightly 
and attains a roughly constant level with small year-to-year variations. This trend roughly follows Finland’s 
overall economical growth  indicator42.

The long-term changes in how Finland’s electricity consumption responds to outside temperatures is also 
reflected in the slope of the electricity vs. temperature fit (Fig. 7c). Generally the slopes are always negative 
indicating that a decrease in temperature leads to increase in electricity consumption. However, the slope seems 
to systematically decrease towards larger negative values until 2009 after which it attains a somewhat constant 
level with small year-to-year variations. The decreasing slope especially from 1997 to 2009 indicates that the total 
electricity consumption became more and more sensitive to outside temperatures. This is likely due to increase 
in the number of residential and industrial spaces heated with electricity. There has been a steady increase in 
the overall number of residential and industrial spaces in Finland in the recent decades and between 2005 and 
2017 the number of residential and industrial spaces heated with electricity increased from 500,000 to 590,000, 
i.e. by almost 20%43. On the other hand, the slowing in the decrease of the slope after 2009 may be related to 
increased energy efficiency of heating in residential and industrial sector, e.g., rapid increase of energy efficient 
air-source heat  pumps44.

In this study we concentrate on extracting the variability of electricity consumption, which is related to Fin-
land’s temperature variations. Therefore, we first scaled each year separately to have the same linear dependence 
on temperature as year 2021 (last year of our dataset). For the ith year the 12 monthly values were scaled by the 
following equation

where E′ is the scaled electricity consumption, E is the unscaled (but normalized to number of days within a 
month) electricity consumption, a2021 and ai are the intercepts and b2021 and bi the slopes of the linear fits for year 
2021 and year i respectively. This scaling removes the long-term non-linear trend in the electricity consumption 
and normalizes all the monthly values in different years to have the same temperature dependence on average. 
This means that all values with the same temperature correspond on average to same level of electricity consump-
tion, regardless of which calendar month they correspond to.

However, after this scaling the different calendar months still have differences in the way they separately 
respond to temperature. This is shown in Fig. 8a, where one sees subtle differences between the different cal-
endar months. Panels c) and d) show the intercepts and slopes of the linear fits made separately to the different 
calendar months. One can see that the intercept (Fig. 8c) systematically changes over the course of the year and 
is lower in summer months than in winter months. These differences are due to systematic differences in elec-
tricity consumption not related to heating (e.g., lighting, seasonal changes in industry etc.). The slope of the fit 
(Fig. 8d) is steeper (more negative) in winter than in summer indicating that during warmer summer months 
the temperature variations influence the electricity consumption less than in colder seasons.

(1)E′ = E + (a2021 − ai)+ (b2021 − bi)T ,
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Figure 7.  (a) The correlation coefficient between monthly total electricity consumption and Finland’s monthly 
average temperature for different years. (b,c) The intercept and slope of the linear fit between electricity 
consumption and monthly temperature as a function of time.
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Because of these differences between calendar months we further scaled each calendar month separately to 
follow the same linear dependence on temperature as the January. To normalize the values of calendar month 
k we used equation

where E′′ is the final scaled electricity consumption, E′ is the scaled electricity consumption obtained from Eq. 
(1), cJan and ck are the intercepts and dJan and dk the slopes of the linear fits (shown in Fig. 8c,d) for January 
month and calendar month k.

The plot in Fig. 8b shows the final normalized electricity consumption values as a function of temperature. 
The plot also indicates the linear fit

where E′′ is the normalized electricity consumption and T is the monthly average temperature. The standard 
errors of the fit parameters have been indicated in parentheses in Eq. (3). The correlation corresponding to this 
linear fit is extremely high 0.98 ( p < 10−279 ) and the standard deviation of the residuals is 172.16 GWh. We 
used this fit to reconstruct representative normalized electricity consumption values for years 1950–1989 with 
Finland’s average temperatures obtained from the ERA-5 re-analysis. We also computed the uncertainty range 
for the reconstructed values.

Trend removal from the datasets
The normalization procedures outlined above remove the part of the long-term trends in electricity consumption, 
which are not associated to temperature variation. However, the monthly temperatures in Finland do exhibit a ris-
ing linear trend over 1950–2021, which is related to the global warming. In order to concentrate on inter-annual 
variations we subtract a linear trend from all variables, i.e., temperature, normalized electricity consumption 

(2)E′′ = E′ + (cJan − ck)+ (dJan − dk)T ,

(3)E′′ = 7833.4(±9.7) GWh− 114.28(±1.12) GWh/◦C× T ,
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Figure 8.  (a) Electricity consumption normalized by length of month as a function of Finland’s average 
monthly temperature. Different colors represent different calendar months. (b) Electricity consumption 
normalized by length of month and temperature as a function of Finland’s average monthly temperature. The 
panel also shows the linear fit to all points, which is used to reconstruct normalized electricity consumption for 
years 1950–1989. (c,d) Display the intercepts and slopes of linear fits made separately to each calendar month of 
(a), and which were used to obtain the normalized the electricity consumption values shown in (b).
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and aa index. The linear trends are slightly different for different calendar months and are therefore estimated 
and subtracted separately for each calendar month.

Regression and correlation analysis
For estimating the relationships between variables, we use the basic linear regression of form

where yi is the response variable, xi is the explanatory variable, regression coefficients a and b are the intercept 
and slope of the fit, ǫi is the residual term and index i goes from 1 to n (number of data points).

As outlined above we use the linear regression model to reconstruct past normalized electricity consump-
tion values with monthly temperatures. In the analysis we then compute correlation coefficients between the 
electricity consumption and temperature/aa index. In such calculations it is important to consider the statistical 
uncertainty of the reconstructed electricity consumption values in order not to overestimate the correlation or 
its statistical significance.

In those calculations where reconstructed electricity consumption values are involved, a Monte Carlo simula-
tion is used to obtain a distribution of the correlation coefficients. The simulation has 10,000 repetitions and in 
each repetition new values for the reconstructed electricity consumption were generated from Eq. (3) for years 
1950–1989 and the measured values for years 1990–2021 were appended thereafter. In each repetition and for 
each monthly value new values for the intercept, slope and the residual term were generated from their cor-
responding statistical distributions. The intercept and slope follow Student’s T-distribution with n− 2 degrees 
of freedom and mean/stadard deviation indicated by the numerical values of Eq. (3). The residual term ǫi to be 
added was generated from a Gaussian distribution with zero mean and a standard deviation of 172.16 GWh. 
For each repetition of the Monte Carlo simulation we then calculated the correlation coefficient between the 
generated electricity consumption time series and either temperature or aa index as discussed in the analysis 
above. The final correlation was taken as the mean of the 10,000 repetitions.

For the correlation coefficients the p-values representing the statistical significance were in all cases calculated 
by a Monte Carlo simulation instead of the conventional method based on Student’s t-test. This was done because 
the data points in the time series are not fully independent due to inherent autocorrelation. Furthermore, when 
segregating the data by QBO phase there is the potential of introducing low frequency aliasing to the resampled 
data series, which could be incorrectly attributed, e.g., to influence of aa, which also naturally contains these low 
frequencies. To overcome these problems our Monte Carlo simulation runs 10,000 repetitions and in each repeti-
tion one of the compared data series (the electricity consumption data or temperature or aa data, depending on 
which variables are studied) as well as the QBO time series is randomly circularly  shifted45, the data points are 
segregated according to the time-shifted QBO and the Pearson correlation coefficient is calculated. The p-value of 
the correlation is determined by computing the fraction of those repetitions, where the magnitude of the correla-
tion coefficient is larger than the magnitude of the correlation obtained for the unshifted data calculated before.

Calculation of geopotential patterns by maximum covariance analysis (MCA)
The maximum covariance analysis (MCA) was used to find patterns of 1000 hPa geopotential height that explain 
a maximum fraction of the covariance between the geopotential and aa index or Finland’s average temperature. 
In other words, when monthly geopotential fields are projected onto the patterns found by the MCA one obtains 
a time series of this projection, which possesses the maximum covariance between the aa index time series or 
Finland’s average temperature time series.

The MCA is calculated by first defining the covariance matrix of the two datasets as

where n is the number of points (time samples), X is the standardized time series of the aa index or Finland’s 
surface temperature and Y is the geopotential height data matrix, where the monthly geopotential height maps 
are reorganized as rows of the matrix. In this study we only include the data from the Northern Hemisphere 
between latitudes 20◦ N–90◦ N. Before calculating the covariance matrix C the matrix Y is centered by subtract-
ing from each column the average value of the corresponding column. Thereafter, each column is weighted by 
the area of the corresponding latitude-longitude grid box on the spherical surface.

A singular value decomposition (SVD) of the covariance matrix is then computed as

The vector V contains the patterns of maximal covariance with the vector X.
The found patterns are the scaled by dividing the pattern with the standard deviation of all the grid point 

values before plotting. We also determined the statistical significance of the patterns with a Monte Carlo simu-
lation of 10,000 repetitions. In each repetition the aa index or Finland’s surface temperature time series were 
randomly circularly shifted in time. This procedure retains the autocorrelation structure of the time series, but 
breaks the temporal association of the two datasets. Then the maximum covariance pattern of geopotential height 
was calculated as outlined above either for all data points or for a randomly selected set with the same number 
of data points as in either the QBO-E or QBO-W phase (when determining the significance for the patterns 
in these two phases). The p-value for each grid point was then determined by computing the fraction of those 
repetitions where the value of the grid point differs from the median of all repetitions more than the value in 
the original pattern obtained above.

(4)yi = a+ bxi + ǫi , i = 1, 2, ...n,

(5)Cxy =
1

n− 1
XTY ,

(6)Cxy = U�VT .
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