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Global flood extent segmentation 
in optical satellite images
Enrique Portalés‑Julià 1*, Gonzalo Mateo‑García 1,2, Cormac Purcell 2,3 & Luis Gómez‑Chova 1

Floods are among the most destructive extreme events that exist, being the main cause of people 
affected by natural disasters. In the near future, estimated flood intensity and frequency are projected 
to increase. In this context, automatic and accurate satellite‑derived flood maps are key for fast 
emergency response and damage assessment. However, current approaches for operational flood 
mapping present limitations due to cloud coverage on acquired satellite images, the accuracy of flood 
detection, and the generalization of methods across different geographies. In this work, a machine 
learning framework for operational flood mapping from optical satellite images addressing these 
problems is presented. It is based on a clouds‑aware segmentation model trained in an extended 
version of the WorldFloods dataset. The model produces accurate and fast water segmentation 
masks even in areas covered by semitransparent clouds, increasing the coverage for emergency 
response scenarios. The proposed approach can be applied to both Sentinel‑2 and Landsat 8/9 data, 
which enables a much higher revisit of the damaged region, also key for operational purposes. 
Detection accuracy and generalization of proposed model is carefully evaluated in a novel global 
dataset composed of manually labeled flood maps. We provide evidence of better performance than 
current operational methods based on thresholding spectral indices. Moreover, we demonstrate the 
applicability of our pipeline to map recent large flood events that occurred in Pakistan, between June 
and September 2022, and in Australia, between February and April 2022. Finally, the high‑resolution 
(10‑30m) flood extent maps are intersected with other high‑resolution layers of cropland, building 
delineations, and population density. Using this workflow, we estimated that approximately 10 
million people were affected and 700k buildings and 25,000 km2 of cropland were flooded in 2022 
Pakistan floods.

Floods are one of the most destructive and frequent extreme events that exist: between 1995 and 2015, 2.6 bil-
lion people were affected by floods, accounting for 56% of people exposed to weather-related  disasters1. A large 
portion of the exposed people (89%) live in low-to-middle income  countries2 where the effects of the floods are 
sometimes followed by a food security  crisis3. According to Tellman et al.4, the population affected by floods 
grew by 58-96 million from 2000 to 2015 and the frequency and magnitude of flood events have also increased. 
Climate change projections indicate that these trends will  continue4–7. In 2022, two striking flooding events 
hit Pakistan and Australia, both of them cataloged as very high-return events and the worst in their countries 
in a century. In Australia, heavy rainfall episodes in February, March, and April broke all historical records in 
several main cities in the eastern part of the country. Thousands of houses and businesses were flooded with an 
estimated cost of claims of 1.83$ billion  USD8. Persistent heavy rainfall throughout the remainder of 2022 led to 
further extreme flooding events in October, affecting Queensland, NSW and Tasmania. In Pakistan, two months 
of heavy monsoonal rains affected 33 million people and caused very serious food security issues due to cropland 
losses with an estimated flood impact cost of 14.9$ billion USD in damage and 15.2$ billion in economic  losses9.

Flood extent maps derived from satellite images are key to understanding the magnitude of a flooding event, 
as well as quantifying and mitigating its damage. In the first stage, flood extent maps are used for planning and 
assisting the emergency response on the terrain. In the second stage, these maps are used for flood damage 
assessment by intersecting them with high resolution geographical layers. Nowadays, with the proliferation of 
free and global high resolution map products, flood damage assessment can be carried out automatically in many 
locations worldwide. However, current approaches for operational flood extent mapping and damage assess-
ment at a global scale present several limitations. Firstly, in order to cover large areas, typically low to medium 
resolution products ( ≥ 100 m) are used to produce flood extent maps. For instance, Tellman et al.4 estimated 
population exposure to flooding using MODIS products (250 m spatial resolution), which in urban areas with 
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high population density may lead to very imprecise  estimates10. Another example is the flood extent map released 
by UNOSAT for the flood event in Pakistan, which was generated using 375 m VIIRS  data11, also used to derive 
statistics of the affected population and post-flood damage.

Imagery from Sentinel and Landsat constellations can potentially be used for more accurate global flood 
extent mapping since they have a much higher spatial resolution (10 m and 30 m, respectively) and also a high 
revisit frequency (2–4 days depending on the geographic location)13. Additionally, flood extent maps based on 
cloud-free optical imagery, e.g. Sentinel-2, are more accurate than those based on Synthetic Aperture Radar (SAR) 
such as Sentinel-114. This is because, inherently, SAR data for flood mapping faces challenges such as speckle 
noise interference, inconsistencies from wind-driven capillary waves, distortions from layover and shadow effects 
due to side-looking geometry, terrain-induced artifacts, and variations from polarization effects. In particular, 
accurately detecting floodwater becomes a greater challenge in urban environments or areas covered by dense 
forest canopies. In such scenarios, floodwater segmentation from optical imagery, while complex, tends to yield 
more successful  outcomes15. However, there are several limitations that hamper the use of data from optical 
sensors in operational pipelines. First, clouds are very frequent in peak-flood and post-flooding imagery. In the 
WorldFloods  dataset16, approximately 50% of the pixels are marked as cloudy in the first available Sentinel-2 
revisit: on average 1.3 days after the date of the flood  event16. Thus, in order to exploit partially cloudy revisits, 
flood detection algorithms should be able to operate in the presence of clouds and optimally distinguish between 
thin semitransparent clouds, where the surface can still be observed, and opaque thick  ones17,18. Secondly, most 
methods applied automatically to large scale flood events are based on spectral indices that exploit the spectral 
properties of water  bodies4,19–22. These methods have been widely studied and used in the remote sensing com-
munity, but they produce a significant amount of false positives in dark surfaces and situations, such as high sun 
zenith angles, dark soils, terrain shadows, and cloud  shadows23,24. Additionally, these methods are reported to 
underperform when the water has suspended debris or pollutants, which are very frequent in flooding  episodes25; 
and they do not properly capture flood traces, i.e. non-flooded areas in the acquired satellite image that were 
inundated in the peak of the event. Thirdly, potentially more accurate solutions, such as those based on machine 
learning, lack comprehensive datasets for training the detection models and are validated on a few flooding 
episodes over a limited number of different geographies. In addition, given the more complex nature of these 
models, most of them are not open-source, nor are the final trained models available, which operational applica-
tion and intercomparison very  difficult26.

In this work, we address these limitations by demonstrating an end-to-end flood mapping system to produce 
flood extent maps from Sentinel-2 and Landsat-8/9 optical imagery without human intervention. Our pipeline 
uses a new cloud-aware flood segmentation model that produces independent cloud and water masks, and it is 
able to detect flood water under semitransparent clouds. The model is carefully validated in a manually labeled 
dataset of 11 globally distributed flood events.

In order to demonstrate the capabilities of the system for large scale flood extent mapping, we run the pro-
posed pipeline over the extreme flooding events in Australia and Pakistan in 2022 (Fig. 1) to produce vectorized 
flood extent maps covering a total area of 475,000 km2 and 165,000 km2 , respectively. Afterward, we derive 
flood damage maps and metrics by intersecting the flood extent maps with global high-resolution products of 
population  density27,  buildings28, and  crops29. We publish both the dataset and code, which are accessible at 
ml4floods (https:// space ml- org. github. io/ ml4fl oods), a comprehensive Python package that covers data ingestion 
and processing, model training and evaluation, inference and all the necessary tools to post-process the results 
to derive vectorized flood products.

Results
Flood mapping and damage assessment in large flooding events
Pakistan floods
Pakistan monsoon season started in late June 2022 and lasted until late September 2022. During this period 
several episodes of prolonged torrential rains occurred, resulting in 375 mm of rainfall, almost three times higher 
than the national 30-year average of 130.8  mm30. This fact, preceded by a period of prolonged drought, resulted 
in one of the most catastrophic events that the country has ever experienced. For these reasons, there have been 
great efforts to map the extent of this event 11,31, and to develop new frameworks to quantify its  consequences32.

We ran our flood segmentation method on imagery acquired by Sentinel-2 (S2) and Landsat 8 and 9 (L8/L9) 
to produce a vectorized flood extent map with pre-flood and post-flood water polygons. To create this map, we 
defined a region of interest covering the Indus river basin and we split this region into a grid of square tiles of 
25× 25 km2 . For each of the tiles, we downloaded pre-event images from the 16th of May to the 6th of June, and 
post-event cloud-free images from the 25th of August to the 10th of September. In total, we processed 2491 Sen-
tinel-2 images and 1691 Landsat images, corresponding to 265 GB of data acquired over an area of 165,000 km2.

We run our segmentation model in all the downloaded images producing per-pixel maps (raster masks) with 
three classes: water, cloud, and land. In this process, we vectorize the water and cloud masks, aggregate these 
vector flood maps in time, and mosaic them. For the temporal aggregation, we first obtain pre-event (perma-
nent) water from the pre-event maps. Afterward, we derive the post-event product by merging the time series 
of post-event maps obtained for each grid tile, resulting in a maximal flood extent product. After obtaining 
the flood extent product for each individual grid tile, we perform a spatial merge over all the tiles to obtain the 
complete flood map. Finally, we subtract the pre-event product from the post-event flood map, resulting in the 
final flood inundation product that distinguishes between pre-flood and post-flood water. Figure 2 shows the 
pre- and post-event mosaics with the Sentinel-2 imagery and the final flood maps. Although extremely large 
in spatial extent, the final flood map has been produced with multispectral images of 10m and 30m resolution, 
allowing flood damage assessment at these fine spatial scales. For damage quantification, we compute the affected 

https://spaceml-org.github.io/ml4floods


3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20316  | https://doi.org/10.1038/s41598-023-47595-7

www.nature.com/scientificreports/

Figure 1.  Vector-format flood extent maps generated through our pipeline for the Australia and Pakistan 
case studies. From left to right, the figures depict the entire Area of Interest under consideration, a section of 
the flood map, and a closer view of city-size region: the city of Lismore (Queensland) in Australia and Sukkur 
(Sindh province) in Pakistan, to showcase the precise resolution of the generated flood maps. These maps have 
been produced using Quantum GIS (QGIS)12.

Figure 2.  Vector flood product of Pakistan floods in 2022. False color composites of Sentinel-2 multispectral 
bands (B11, B8, B4) were produced with images from early June (pre-event composite) and early August (post-
event composite). The considered area of interest covers an area of 165,000 km2 . In total, 265 GB of Sentinel-2 
and Landsat imagery were used to produce these flood products. These maps have been produced using 
Quantum GIS (QGIS)12.
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population, damaged infrastructure, and areas of cropland lost. For estimating the damaged infrastructure, we 
use the Microsoft Building  Footprints28, which provides worldwide building delineations derived from very 
high-resolution Maxar images; for cropland impact assessment, we vectorize the ESA Land Cover Map from 
 202029; and for the affected population, we use the High Resolution Settlement Layer (HRSL)27. Figure 3 shows 
an example of pre- and post-flood Sentinel-2 images and the intersection of the flood map with those layers. In 
the top row, we show a pre-flood (27th June 2022) and post-flood (31st August 2022) image covering the city 
of Larkana, one of the largest in Pakistan, and the intersection of the flood extent map with the buildings layer 
(top-right panel). In this 25×25 km2 tile we estimated a total area of 190 km2 covered by flood water (30% of the 
total mapped area), potentially affecting 36,000 buildings. Nevertheless, many of the city buildings (shown in 
green) are not marked as flooded. According to the  HRSL27, the estimated direct number of people affected in 
this scene is roughly 240,000. In the second row of Fig. 3, we show the results for the analysis in one of the grid 
tiles that is mostly covered by cropland, near the city of Layyah. At the right, we show the intersection of the 
cropland with the flood extent product. This analysis reveals a significant amount of water that overtopped the 
Indus river banks and inundated the crops covering the floodplain. In total, we estimated an area of 107 km2 of 
cropland affected by flood water in this scene.

We conducted this analysis for each of the 372 tiles of 25× 25 km2 that encompass the mapped region of the 
Indus basin. Figure 4 provides an overview of the flooded area, affected buildings, flooded cropland, and affected 
population. The province of Sindh emerged as the most severely affected area, primarily due to its high popula-
tion density and extensive cropland. Consequently, it suffered the greatest losses in terms of cropland, affected 
population, and buildings. Additionally, a substantial amount of floodwater was observed in Balochistan, near 
the Sindh border. However, this region has a lower population density, resulting in comparatively lesser estimated 
damage. Finally, the province of Punjab, located in the top-east region, also experienced a significant impact. The 
analysis suggests that an estimated total area of approximately 54,300 km2 was covered by floodwater, encompass-
ing approximately 28,700 km2 of cropland. The flood event is estimated to have impacted around 10.8 million 
individuals, and roughly 656,000 buildings were potentially affected by flooding.

To provide a comparative perspective, we intersected the same building, cropland, and population data 
with the flood map released by  UNOSAT11, generated using VIIRS at a spatial resolution of 375m. This analysis 
revealed that 43,300 km2 were potentially covered by flood water, 25,700 km2 of which would be cropland. 
Moreover, the flood event had an estimated impact on approximately 10.0 million people and the potential to 
damage a total of around 673,000 buildings. The statistics obtained from both flood products exhibit consistency, 
thus supporting the reliability of our method.

Australian floods
In 2022, the eastern part of Australia was affected by persistent heavy rainfall and successive extreme weather 
events that broke many historical  records8. For instance, in two months from February to April the equivalent 
of one years’ average rainfall occurred in the New South Wales (NSW)  region33. In Queensland, official sources 
counted tens of thousands of displaced people and around twenty thousand flooded homes.

Figure 3.  Example of the intersection of the flood product with selected land-cover and building delineation 
products. In the top row, we examine Larkana, a major city in Sindh province. Here, our estimation is that 
36,000 buildings and approximately 240,000 people were potentially affected by the flood within this grid tile. 
In the bottom row, our focus shifts to an agricultural area near Layyah, located in the Punjab region. In this grid 
tile, the intersection indicates an estimated 107 km2 of potentially damaged cropland.
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We deployed our flood mapping system to generate a maximum-extent water map covering over 450,000 km2 , 
sampled by 763 processing tiles ( 25 km on a side, as before). The total area of interest includes parts of southeast 
Queensland, eastern NSW and eastern Victoria, as illustrated in the top-left panel of Fig. 1. The time-range of 
interest spanned February 26th to March 30th, encompassing several successive rainfall events. In total, more 
14,681 Sentinel-2 images and 9328 Landsat-8 images were curated to produce the final flood map. We followed 
an identical procedure as described previously to generate pre- and post-flood maps, and we estimated that 
approximately 27,000 km2 were likely inundated, and by intersecting the derived products with Bing Microsoft 
Buildings maps we found that 125,00 buildings were potentially affected in the event, with significant impact on 
the area near Brisbane, in Queensland.

Machine learning based flood extent segmentation
Flood extent delineation from multispectral satellite images is tackled in this work as a binary semantic segmen-
tation task. We want to classify each pixel in an image as land or water (either flood water or permanent water). 
Most basic remote sensing techniques using optical data to detect water relied on spectral indices such as the 
Normalized Difference Vegetation Index (NDVI)34. After the inclusion of thermal and more infrared bands in 
MODIS and Landsat missions, specific water detection indices were designed, e.g. the Normalized Difference 
Water Index (NDWI)19 and a modified version (MNDWI)20 that uses the short-wave infrared (SWIR) bands to 
substantially improve water detection. These indices are fast and easy to compute, and one can obtain a binary 
segmentation mask by applying a threshold.

Deep learning methods such as Convolutional Neural Networks (CNNs) and Fully Convolutional Neural 
Networks (FCNNs)35,36 have shown superior performance in the task of semantic segmentation of remote sensing 
images in problems such as land-use  classification37, cloud  detection38,39 and also flood and water  detection16,40. 
Contrarily to classical spectral methods, DL methods excel at discerning intricate structures and patterns unique 
to water in a multi-dimensional, often low-level, feature space. Concretely, FCNNs exploit both spectral and 
spatial dimensions of satellite images by learning these patterns from the huge catalog of EO data. However, 
the training process of deep learning methods requires a huge amount of labeled data, i.e. annotated reference 
masks that are fed into the network to learn the relevant features and the best mapping to classify water. This is 
a problematic limitation, since labeling satellite images is time-consuming, and requires significant expertise, 
especially to distinguish water bodies mixed with clouds and cloud shadows, which are frequent in flood events. 
Currently, only a few labeled datasets for flood extent segmentation are publicly available. On the one hand, the 
Sen1Floods11  dataset41 consists of 446 512×512 patches of Sentinel-1, Sentinel-2, and manually labeled ground-
truth masks, as well as 4370 automatically labeled patches that were extracted from 11 flood events. On the other 
hand, the WorldFloods  dataset16 contains co-located pairs of Sentinel-2 images and reference flood extent masks 
from 119 flood events that occurred between 2016 and 2019, resulting in approximately 180,000 patches of size 
256×256. It is the result of harmonizing flood extent products that have been generated by emergency response 
organizations such as Copernicus Emergency Management Service (CEMS), UNOSAT, or GlofMIR when their 
services are activated to cover flood events. The size of this dataset allows the training of large deep learning 

Figure 4.  Local estimations of damage over the Indus basin. In total, 372 grid cells of 25× 25 km2 . From left to 
right, we show per cell estimations of: (a) area of water detected, (b) number of affected buildings, (c) area of 
flooded cropland, and (d) affected population counts.
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models. However, it has some drawbacks such as the limited size of the test set, which hampers the evaluation 
of the trained models or the low quality of several flood maps in the training split.

In this work, we build a framework (i.e. data pipeline, dataset, models, and deployment platform) that can be 
applied operationally to produce flood extent maps in flood events from any location of the world. In order to 
build a globally diverse dataset we further improved and extended the WorldFloods dataset. Firstly, we incorpo-
rated the flood events that occurred from 2019 to 2023. Secondly, we filtered low-quality flood maps that were 
mostly covered by clouds or presented significant labeling errors. Thirdly, we manually curated more than 200 
maps using a labeling tool specifically developed for this work. Finally, we created new validation and test sets 
with high spatial variability to ensure robust model selection and evaluation. The resulting dataset has 13-band 
Sentinel-2 level 1C patches co-located with their corresponding reference masks from more than 180 different 
flood events. In total, when we split the data in tiles of 256×256 pixels, we get approximately 75,000 sub-images 
pairs (see Fig. 10 for more details).

Regarding the presence of clouds, they are usually frequent in peak-flood and post-flood imagery. Thick 
clouds force to discard many observations, and thin clouds are one of the main sources of classification errors and 
increased uncertainty in the predicted water  mask42. Previous  works43 developed models for Landsat that were 
forced to predict presence or absence of water underneath the clouds. We adopted a similar strategy albeit more 
conservative for the reference labels generation. Instead of one layer containing three, mutually exclusive classes 
(land, water, and cloud), we generated two independent binary reference masks, one for the clear/cloud problem 
and another for the land/water problem. These are two separate (but overlapped) problems, and a multioutput 
model can be trained to confidently distinguish many types of clouds (e.g. thick clouds and semitransparent 
clouds), and at the same time be confident at predicting land/water in cases where the clouds permit to partially 
see the ground. This allows the models to output the maximum amount of information and the user to decide 
to be more or less cloud conservative. Moreover, creating a separate binary mask for clouds, instead of grouping 
these in a non-water class, makes the learning easier than in previous  studies43 and allows one to take advantage 
of newly developed cloud detection  algorithms44,45 that have significantly increased cloud detection accuracy. 
We also included in the label generation process small water streams from CEMS flood maps which were not 
included in the first version of the dataset. Figure 5 shows at the top the training procedure were the two-layer 
binary masks are used to train the multioutput segmentation models.

Once a segmentation model with a multioutput layer is trained (see "Methods" section for training details), 
an image of arbitrary size can be fed to output cloud and water probabilities of the same size. Afterward, we 
produce a three-class segmentation mask by combining the water and cloud probabilities with the brightness 
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Figure 5.  Multioutput binary model training and inference flowchart. The 2-layer reference masks 
corresponding to the cloud/clear and land/water problems is fed to train the segmentation model (in our best 
case, a Unet++). The input features are a C ×H× W Sentinel-2 image patches, where C is the number of channels 
of the image. Once the model is trained, it produces an output with two layers, one that gives the per-pixel 
probability of cloud, and another that gives the per-pixel probability of water. The brightness reflectance of the 
input image is computed as the norm of the visible bands. The models’ output probability and brightness are 
then combined according to the prediction rule to yield the final flattened three-class segmentation mask.
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computed from the visible bands according to the prediction rule detailed in Fig. 5. The brightness threshold is 
included to distinguish between bright clouds were we assume surface cannot be observed and thin clouds. We 
set this threshold thBR experimentally to 0.35. The thresholds applied to the output probabilities to classify a pixel 
as cloud or water are thcloud and thwater , respectively. We set them to 0.5 by default, but it is possible to tune them 
according to the user requirements (depending on the application the user might need to be more or less cloud 
and water conservative). In order to let the users make an informed decision about the thresholds, Fig. 6b shows 
the Precision-Recall (PR) curve which illustrates the trade-offs of changing the water probability threshold. It 
can be seen that with the default threshold of 0.5 the multioutput model has a very high recall, which is good in 
order to detect most of the flooded areas. However, the threshold that resulted in the highest Intersection over 
Union (IoU) value in our evaluation dataset is 0.7, meaning that changing the threshold towards more restrictive 
values can result in a better balance for tasks where it is important to not commit false positives. In comparison, 
the original multiclass model  from16 has less room for tuning the predictions, and changing the threshold in 
MNDWI would produce a high rate of false positives or false negatives.

Global validation of proposed models
Before showcasing our model in Australia and Pakistan floods, we have validated our models in a novel bench-
marking dataset that satisfies the required conditions for a robust evaluation. It is composed of 17 flood maps 
from 11 flood events that occurred in a wide variety of locations and biomes of the world, i.e. it is a global dataset 
(see Fig. 6) and it has been manually curated to ensure the trust in the evaluation results. We show the evaluation 
results of five models. As a baseline, we use the  MNDWI20 with bands B11 and B3 of Sentinel-2. Additionally, we 
also consider a linear model as a second less strong baseline. Our proposed clouds-aware operational segmen-
tation model is a modified Unet architecture that we call Unet multioutput, which uses Sentinel-2 as input to 
produce a segmentation mask. The main advantage of this multioutput model is that it produces two independent 
binary masks: one for cloudy/clear pixels and another for the water segmentation mask. Additionally, we refer 
to Unet S2-to-L8 for a modified version that has been trained with Sentinel-2 visible bands, NIR band (B8), 
and SWIR bands, resulting in a model that can also be applied to Landsat 8 images. Finally, we compare these 
models with an Unet multiclass that was originally proposed in ref.16, which produces a segmentation mask of 
three mutually exclusive classes: land, water, and clouds. With regard to the evaluation metrics, we considered 
recall, precision, and IoU for the water class: three common segmentation metrics that highlight the possible 
errors that can be committed in binary segmentation. Values are computed for each flood event and we report 
the mean value across all floods in the test dataset (see performance metrics in Fig.  6). For further comparison 
of the generalization of the models at detecting flood water, we calculated the IoU of the water class stratified by 
land cover classes according to the ESA Land Cover (Fig. 6c). We also analyze a “Thin cloud” class, generated 
by combining the cloud labels from the reference mask with the brightness threshold of 0.3. We refer the reader 

Figure 6.  (a) Performance metrics obtained in the evaluation set, at a 0.5 threshold for water probability output 
from Unet models and a 0.0 threshold for MNDWI output. (b) Precision-recall (PR) curve for the best models 
and MNDWI (default threshold is 0 for MNDWI). (c) Mean IoU of the class water (flood) stratified per land 
cover type, according to ESA Land Cover classes. The percentage of each class in the dataset is indicated, and 
minority (or non existent) classes of Mangroves, Snow and Ice, and Moss and Lichen have been removed.
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to the "Methods" section and Supplementary material for more details about evaluation metrics, the dataset, 
models, and training strategy.

MNDWI has been shown to be a strong baseline. It produces fairly good results in terms of accuracy, taking 
into account that it was applied with a general threshold for all flood events. However, in our experiments, deep 
learning segmentation models outperform MNDWI results in terms of all considered metrics.

Multioutput models have higher IoU than multiclass model when detecting flood water, which is arguably the 
hardest and most important task. Apart from the metrics, the output layer of these models is highly configurable 
and can be tuned to yield a model with more restrictive predictions in terms of water detection. We provide 
evidence of the advantages of using these models in Fig. 8 and Supplementary Figs. 3 and 4.

Regarding the stratification by land cover type, we observe an overall good performance of the models for 
the majority of classes, with lower performances in built-up and forest areas. Due to the high spectral mixing 
that exists in these areas, it is expected that detecting flood water becomes more challenging. The results of 
our analysis are consistent with other studies, which also reported lower performances in built-up and forest 
 areas15. Among multioutput models, Unet S2-to-L8 is consistently the best-performing model. It is also worth 
mentioning that has lower variance across different training initializations. It uses the most important bands for 
water detection, i.e. visible, NIR, and SWIR bands, and we suspect that adding additional Sentinel-2 bands to the 
model only adds redundant information. Consequently, addressing this complexity requires a higher-dimensional 
model, which, in turn, necessitates a larger training set and a longer training period to converge to a solution 
and can become more dependent on the initialization. In addition to the quantitative results, this model also 
offers a huge operational advantage, since it can be applied to both Sentinel-2 and Landsat 8/9 images. Finally, 
it is worth mentioning that the accuracy of models without the SWIR bands (i.e. Unet multioutput RGBNIR) 
does not decrease significantly. Supplementary Fig. 1 shows the predictions of models that use different band 
combinations.

Figure 7 shows the predictions generated by the Unet multioutput S2-to-L8 in three flood events that are part 
of our global evaluation dataset. In particular, they correspond to floods in Finland, Madagascar, and Australia. 
Firstly, the event in Finland shows a cloud-free image that was acquired at the peak of the flood. This is a relatively 
easy case to predict, and the model accurately captures all the water. Secondly, the event in Madagascar shows 
post-flood imagery that has not been acquired at peak time; some areas are covered by mud and water debris, i.e. 
flood traces. In this case, our model is able to capture both the flood water and most of the flood traces, which 
can be really useful in post-flood damage quantification when the first satellite overpass is not coincident with 
the flood peak, or images are overly cloudy. Finally, the Australian evaluation event shows a moderately-cloudy 
image with plenty of flood water. In this type of images, cloud shadows can be challenging, as well as cases where 
there is water under thin clouds.

Since one of the biggest advantages of our model is being able to account for or discard observations under 
thin clouds, we have zoomed in on an area of the Australian event (Fig. 8) to compare the predictions generated 
by all the models in this type of scenario. First, a false color Sentinel-2 composite that highlights water is shown 
(bands 12, 8, and 4), followed by the reference segmentation mask and the predictions generated by the three 
main models that we are comparing. The multiclass Unet produces highly accurate predictions in cloud-free areas 
(top of the image), however, predicting three mutually exclusive classes results in thin clouds being classified 
as clouds and thus discarding valuable information that can actually be extracted from the acquired image. The 
segmentation mask produced by the multioutput Unet only predicts ‘cloud’ over thick clouds, which does not 
allow confident detection of flooded areas, while showing accurate predictions in cloud-free areas and flooded 
areas under semitransparent clouds. Finally, MNDWI produces moderately accurate predictions in cloud-free 
areas but fails in regions surrounded by thin clouds (which are combined with land and any non-water surface).

To further extend the visual analysis of the predictions in presence of thin clouds, we have created an addi-
tional evaluation set composed of WorldFloods events that contain a high percentage of transparent clouds and 
water. In this dataset, we have compared the IoU of multiclass and multioutput Unet (Fig. 9). In the plot of the 
left, we see that in events where there are very few thin clouds both models perform similarly in most of the 
events. However, in events with abundant semitransparent clouds (right plot), the multioutput model exhibits 
significantly higher IoU than the multiclass model. We also see in this figure that the performance of the models 
in these scenes with thin clouds is lower. This shall be taken into account for operational applications: for instance, 
if the image has many thin clouds, these scenes shall be validated by human experts before utilizing them to 
produce the final flood extent product, regardless of the selected method. Nevertheless, thin clouds represent a 
total amount of 4.54% of pixels in the WorldFloods dataset (see Fig. 10a); to compare with, flood water represents 
3.36% of the dataset. Considering the trade-offs, with the proposed model we increase the amount of usable 
post-flood imagery leading to more precise flood extent maps. Additionally, to provide a deeper exploration into 
the ramifications of the brightness (BR) threshold adjustments on the model’s predictive capabilities, we have 
computed the Precision-Recall curves for different values of the brightness threshold, both in WorldFloods test 
set and in the thin clouds subset. These results can be found in supplementary Fig. 5. Moreover, Fig. 4 shows a 
visual demonstration of the produced segmentation masks, showcasing the impact of adjusting the brightness 
threshold in flood maps with a significant presence of thin clouds. The effect of changing the brightness threshold 
is minimal in the test set since there are very few examples of thin clouds in comparison to thick clouds or clear 
observations. However, from the results obtained in the thin clouds subset it can be seen that increasing the 
brightness threshold results in lower precision. This is expected, because increasing the threshold causes more 
(thick) cloudy observations to be treated as thin clouds, thus being included in the predicted water masks, likely 
resulting in more misclassifications. From our experiments in flood segmentation, empirical evidence running 
the models in inference mode, and previous work in cloud  segmentation46, we concluded that 0.3 is a reason-
able brightness threshold to fully exploit the available observations without sacrificing precision. However, if 
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one would like to mask all these observations, the threshold could be reduced to 0. In this case, the output cloud 
mask would be completely determined by the output of the cloud segmentation model.

Discussion
In this work, we have presented an end-to-end pipeline for flood extent mapping in multispectral satellite images 
that can be used operationally at any location in the world. We have presented a detailed validation of its robust-
ness and global applicability in a manually labeled data set composed of 11 flood events that occurred in a wide 
variety of locations and biomes.

One differentiating factor of our proposal is that it can deal with the presence of thick and semitransparent 
clouds, which are frequent in post-flood imagery. Previous works exclude partially cloudy images from the train-
ing or inference  steps14. In our view, this has several drawbacks: firstly because some recent works have found 
that training deep learning models on cloud free imagery causes severe misclassification  problems42. Secondly 
because excluding cloudy images leads to an under-exploitation of the available information which is critical in 
emergency response scenarios.

Figure 7.  Multioutput binary model predictions in evaluation images. From top to bottom: flood events in 
Finland, Madagascar, and Australia. These are meant to represent models’ performance in different real-case 
scenarios of post-flood imagery in a variety of worldwide locations: a post-flood cloud-free image at peak-flood 
time, a cloud-free image with presence of flood traces, and a moderately cloudy image with presence of flood 
water covered by thin clouds, respectively.
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Our proposed methodology is also configurable and it can be tuned depending on the needs and available 
imagery. For instance, if a conservative estimation of water extent is needed, the brightness threshold can be 
adjusted to discard areas covered by semitransparent clouds (see Supplementary Fig. 4). Additionally, due to the 
temporal misalignment that exists for some samples of the dataset, the models detect also flood traces (areas that 
are not inundated in the current scene but have been in the past). This can be useful in scenarios when there is 
limited post-event data. If those are not needed, flood traces can be discarded by adjusting the water threshold 
(see the PR curve on Fig. 6) or by combining the output with the MNDWI.

The proposed models have been trained on different bands combinations and they can be applied to Sentinel-2 
but also Landsat 8 and 9. As a result, the output products have a spatial resolution of 10m to 30m, much higher 
than the resolution utilized in other large scale flood mapping works (e.g. Refs.4,11,47 which use MODIS or VIIRS 
data). Also, this interoperability increases the temporal cadence of images, allowing to have images almost daily, 
which is key for monitoring the evolution of the floods. It can also enable the detection of short-time events that 
might be undetected with larger temporal  revisits13.

We have tested our methodology in two large-scale flood events that occurred in 2022 in Australia and Paki-
stan. In Pakistan, the derived statistics are consistent with the analysis carried out for the flood map released by 
UNOSAT, which was produced with VIIRS imagery of 375 m resolution. Although this results are encouraging, 
further validation is required in the process of deriving the metrics of the flood impact. In particular, there are 

Figure 8.  Predictions for an evaluation flood event in Australia, in an area with presence of thin clouds and 
flood water. The multioutput Unet correctly delineates the flood extent even in presence of semitransparent 
clouds. MNDWI is hampered by clouds and predicts much less flood extent than the actual one, while 
multiclass Unet discards a lot of valuable information by predicting ‘cloud’ in thin clouds where the flood water 
can be distinguished.

Figure 9.  Comparison of models in images with thin clouds. We compare the IoU obtained by the multiclass 
and multioutput model in two evaluation sets: one with few thin clouds (left) and another with higher presence 
of thin clouds (right).
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several uncertainties that affect the estimates of affected population. On the one hand, land cover classification 
in urban areas is challenging, even with optical satellites, due to the heterogeneity of  background15, and the flood 
extent delineation problem is not an  exception48. On the other hand, estimates of flood exposure present high 
discrepancies depending on the population density data that is  used10.

We foresee two main directions of future work. Firstly, by utilizing the proposed pipeline, the impact of past 
flood events can be re-quantified. This can be helpful, for instance, to study flood-induced migrations, as well as 
flood  exposure49. Secondly, by incorporating data of different modalities (e.g. SAR or DEM), we could increase 
the coverage on areas with persistent cloud coverage. Following this line an easy to do extension would be to add 
simultaneous Sentinel-1 imagery to our database. This expansion could enable the development of new strategies 
that overcome the limitations posed by cloudy optical scenes while maintaining the accuracy of the models in 
cloud-free scenarios. Another limitation to be tackled is the slightly worse performance of the models working 
only in RGBNIR bands. This will enable the applicability of the model on most commercial satellites which lack 
SWIR bands. This will increase, in turn, the availability of post-flood imagery. As shown in several works, SWIR 
information is crucial for accurate water  detection50,51and there are already preliminary work aiming to mitigate 
this downside tested on commercial satellites imagery from  Planet52.

Methods
Architectures and model training
In the updated version of the WorldFloods dataset, validation and test data split were carried out by hand-picked 
examples to evenly cover worldwide locations and biomes. The training set is composed of pairs of Sentinel-2 
images and reference masks of the flood maps. However, we pay careful attention to avoid any data leakage by 
excluding from training the flood maps of events that are represented in test and validation sets. For instance, 
one flood event represented in the test split is EMSR342 (according to Copernicus EMS codes). Two of the flood 
maps corresponding to this flood event (06NORTHNORMANTON and 07SOUTHNORTHNORMANTON) 
are included in the test set. Therefore, we excluded from the training process the rest of the flood maps of this 
emergency activation.

The training dataset includes data from 475 flood maps of 119 different flood events (see Fig. 10b). Each flood 
map is split into patches of 256×256 pixels to train the models. On each training epoch, we loop randomly over 
all the patches; in total there are around 65,000 256×256 image patches in the training dataset. We trained the 
models using different band combinations as inputs. Unet multioutput is trained with all 13 bands of Sentinel-2. 
Unet S2-to-L8 is trained using the RGB, NIR and SWIR bands of Sentinel-2 (6 bands in total), which allows using 
of the models in Landsat 8 images. Finally, we also trained models using only RGB and NIR bands as inputs. 
With respect to the data augmentation, we used common nondestructive transformations such as flips and 

Figure 10.  (a) Statistics of the extended WorldFloods dataset used to train the models. (b) Locations of the 
flood events included in the extended WorldFloods dataset. Color codes correspond to the associated data split 
for training and validating the models.
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90-degree rotations. The models produce as outputs two images: the water probability and the cloud probability 
(see Fig.  5). The models are trained to minimize the average binary cross-entropy loss over all the pixels on both 
problems (water/land and cloud/clear). The final loss weights the water/land problem higher (0.8) than the cloud/
clear (0.2). The dataset has a strong class imbalance, being land much more frequent than clouds and water. We 
accounted for that by weighting the pixels of the binary-cross entropy loss for the water/land problem with the 
inverse frequency of the water class (Fig.  10a). This allows us to obtain high recall models, especially for the class 
of water which is the most relevant in flood detection. Finally, the learning rate was set to 10−4 with a scheduled 
reduction after two epochs. We also implemented early stopping after 4 epochs if there was no improvement in 
validation loss, in order to avoid overfitting. All the necessary code to reproduce the training is implemented in 
our Python package ml4floods, available at https:// pypi. org/ proje ct/ ml4fl oods/.

Metrics calculation
In order to evaluate models performance we have considered Precision, Recall and Intersection over Union (IoU), 
three common metrics in semantic segmentation problems. These are defined based on the possible errors that 
can be committed in a binary segmentation problem: (1) True Positives (TP), water pixels correctly classified as 
water; (2) True Negatives (TN), non-water pixels correctly classified as non-water regions; (3) False Positives (FP), 
non-water pixels incorrectly classified as water; and (4) False Negatives (FN), water pixels incorrectly classified as 
non-water. Precision measures the percentage of the TP pixels that are actually water, in contrast, recall measures 
the percentage of TP that have been captured by the model. Finally IoU is a trade-off between precision and recall.

We compute these metrics for each flood map in the test and validation dataset masking invalid pixels and bright 
clouds (pixels that are labeled as clouds and have a brightness above 0.3), since the surface information in this 
case is totally blocked.

Figure 6c and Supplementary Table 1 report these metrics calculated over the water class in our evaluation 
dataset.

Duplicate publication statement
Preliminary results of this work have been presented in AGU Fall Meeting  202117 and ESA Living Planet Sympo-
sium  202218. These conferences do not have conference proceedings and only accepted abstracts are published.

Data availability
WorldFloods extended flood maps and Pakistan flood maps can be found at Zenodo (https:// zenodo. org/ record/ 
81535 14). Satellite imagery from Landsat and Sentinel has been downloaded from the Google Earth  Engine53.

Code availability
All the necessary tools for ingesting data, training and evaluating models, and running inference in new data 
can be found in the ml4floods repository https:// github. com/ space ml- org/ ml4fl oods. Manuscript figures were 
created with our own custom software. Our software is open-source and uses other open-source python librar-
ies for plotting.
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