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Osmotic and Gibbs–Donnan 
equilibrium for ions and neutral 
solutes
Jacek Waniewski 

The general set of equations for the equilibrium of two solutions with a mixture of non-permeating 
and permeating ions and neutral solutes at each side of a permselective membrane is formulated 
using the principles of electroneutrality and mass conservation law for each solution, and equilibrium 
conditions: equality of electrochemical potentials at both sides of the membrane for each permeating 
solution component. There is at least one permeating neutral chemical species (solvent) in the system. 
The theory is in general valid for non-ideal solutions. The generalized Gibbs–Donnan (G–D) equilibrium 
coefficients depend on activities/fractions of all species at one side of the membrane, and charges of 
ions and partial molar volumes of all species. The equilibrium osmotic pressure across the membrane is 
also provided by the theory and can be calculated using the ratio of activities (or equivalently the G–D 
factor) of any permeating neutral solute (including solvent) or the ratios of activities (or equivalently 
the G–D factors) of any two permeating ions.

The Gibbs–Donnan equilibrium across a permselective membrane is frequently analyzed as equilibrium for 
solutions that include different ions, and some of them can penetrate across the membrane while the other ions 
cannot cross the membrane 1–4. The presence of neutral (permeating and non-permeating) solutes and (neutral) 
solvent and their equilibrium is typically ignored. However, the equilibrium conditions in general solutions 
must involve all solutes and solvent, and, in the presence of non-permeating solutes, not only hydrostatic but 
also osmotic pressure needs to be considered 5–8. Such generalized theory may provide some corrections to the 
available results and suggest the description of new phenomena. For example, it appears from our theory that 
Gibbs–Donnan (G–D) effect can be observed also for neutral solutes, although it is much weaker for typical 
physiological concentrations. Furthermore, the presence of neutral solutes in the mixture of ions may influence 
the Gibbs–Donnan factors for ions.

The theory is based first of all on the relationships between solute activity and the electrostatic potential and 
hydrostatic pressure of the fluid (i.e., on the electrochemical potential). The electrostatic neutrality of the solu-
tion is the second component of the theory, while the mass balance of all species (including solvent) is the third 
component. The second and third components involve the molar fractions of the species. To solve this problem 
we need a relationship between species activity and molar fraction—this is frequently assumed to be described 
by the activity coefficients 3,7,9.

The standard theory of Gibbs–Donnan factors includes their dependence on the charge of the involved  
ions 1–4. In general however, as we show in this study, the partial volumes of all species in the solution are also 
involved in the conditions for equilibrium, Section "The Gibbs–Donnan theory for solution of neutral solutes and 
ions solution". This is also true if the solution contains only charged species, Section "Generalized Gibbs–Donnan 
factors". The equilibrium conditions for neutral species depend directly on their partial volumes only, Section 
"The Gibbs–Donnan theory for multi-ion solutions". The osmotic pressure of ideal solutions is related to the ratio 
of solvent (or, equivalently, any permeating neutral solute) molar fractions at both sides of the membrane. For 
non-ideal solutions the equilibrium conditions (i.e., generalized Gibbs–Donnan factors and osmotic pressure) 
depend also on the activity coefficients.

Theoretical derivations
The Gibbs–Donnan theory for solution of neutral solutes and ions solution
Let us consider two compartments, denoted as 1 and 2, separated by a selectively permeable membrane. Each 
compartment contains a solution with multiple charged species, multiple neutral species (including solvent), 
some of which the membrane is permeable to (permeating ions and neutral solutes) and some other to which the 
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membrane is not permeable (non-permeating charged and neutral solutes). The system is considered isothermal 
and the solutions incompressible.

We also assume that all considered permeating solutes are present only in free state, i.e., that they do not form 
any chemical compounds (pairs or complexes) with other solutes. For the description of a general case with the 
solutes present in various chemical forms, see Appendix B in the Supplementary material of reference 4. We also 
assume that none of the permeating solutes are bound to non-permeating species. Moreover, we assume that the 
solutes do not adsorb on the membrane; this assumption is always fulfilled if the membrane may be considered 
infinitesimally thin.

The solution in each compartment contains n permeating ions with charge number zi  and molar fraction Xi , 
i  = 1, 2,…n. The non-permeating charged (npc) species in each solution are described by ZnpcXnpc , where 
Znpc =

u
∑

γ=1
zγXγ /Xnpc , where u is the number of different non-permeating ions, is their average (molar fraction-

weighted) charge number and Xnpc =
u
∑

γ=1
Xγ is their total molar fraction (fixed in each compartment).

The solution in each compartment contains m permeating neutral solutes with molar fraction Xβ , β = n + 1, 
n + 2,…n + m. The non-permeating neutral (npn) species in each solution are described by their total molar frac-
tion Xnpn (fixed in each compartment). We assume that in the system there is at least one neutral permeating 
species—solvent, which molar fraction is denoted Xw.

The electroneutrality of the solution in each compartment requires:

where α = 1, 2 for compartments 1 and 2, respectively, and, from the definition of molar fractions (c.f. Appendix):

Equation (2) codes the physical principle of mass conservation, i.e., the overall molar mass of the solution in 
each compartment separately is the sum of molar masses of all its constituents in this compartment.

The equilibrium of two multi-solute solutions separated by a permselective membrane requires the inter-
compartmental equilibration of the electrochemical potentials of each permeating ion and chemical potentials 
of each permeating neutral solute as well as the equilibration of the chemical potential of the solvent in both 
compartments. Let us also assume that there is no electrochemical gradient across the membrane caused by 
mechanisms other than the G-D effect discussed here (e.g., no active transport of ions across biological cell 
membranes). However, we assume that there is a chemical gradient caused by a hydrostatic pressure difference 
across the membrane due to effect of non-permeating ions, that is osmotic pressure 2,3. Thus, we consider here 
the electro-diffusive-osmotic equilibrium of all components of the solution.

At the state of equilibrium, the activities of permeating ion i, ai , in two compartments separated by a 
permselective membrane are related to the potential �� and pressure �P difference across the membrane as 
follows 3,7, c.f. Appendix:

where R is the ideal gas constant, T is the absolute temperature of the mixture, F is the Faraday constant, Vi is 
the partial molar volume of solute i, �� = �2 −�1 , and �P = P2 − P1 . Thus:

Selecting ion 1 as the reference permeating ion (note that any ion can be selected as a reference ion) and 
solvent w as the reference permeating neutral solute (note that any permeating neutral species can be selected 
as the reference neutral solute) one gets:

At the state of equilibrium, the activities of permeating neutral solute β, aβ , (including solvent activity aw ) in 
two compartments separated by a permselective membrane are related to the pressure difference �P across the 
membrane as follows 3,7, c.f. Appendix:

where Vβ is the partial molar volume of solute β . Selecting solvent w as a reference species one gets:

Let us denote:
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Then, from Eqs. (4) and (6):

and in particular:

From now on, we assume that each species activity may be described as equal to its molar fraction multiplied 
by an activity coefficient, ai = fiXi , where fi is the activity coefficient that may in general be a function of the 
composition of the solution, in particular of Xi . Then, from Eqs. (9)–(11):

with

where j represents any of the subscripts i, β or w.
Let us also assume that all molar fractions of permeating species in compartment 1 are known and we want 

to calculate the respective equilibrium molar fractions of permeating species in compartment 2 together with 
the equilibrium differences in electrostatic potential and hydrostatic pressure between the compartments.

Using Eqs. (12)–(15) and mass balance for compartment 2, Eq. (2) for α = 2 , one gets:

From the condition of electrostatic neutrality in compartment 2, Eq. (1) for α = 2:

In general, the system of two Eqs. (16) and (17) needs to be solved numerically for x and y.
If the composition of fluids at both sides of the membrane is the same, i.e., if molar fractions for all species 

are the same in compartments 1 and 2, then the activity coefficients f  are also the same and therefore all the 
parameters K are equal to one [see Eq. (15)], and Eqs. (16) and (17) are automatically valid for this case. One 
can however obtain more general conditions for equality of molar fractions at both sides of the membrane under 
additional assumptions on the involved solutions. For example, if the solutions are ideal, i.e., all the coefficients 
f  and parameters K are equal to one, then variables x and y are equal to one if Xnpc,2 + Xnpn,2 = Xnpc,1 + Xnpn,1 , 
Znpc,2Xnpc,2 = Znpc,1Xnpc,1 . To prove this, let us write Eqs. (16) and (17) for ideal systems and x = y = 1:

that, with our additional assumption on non-permeating species, are simply our base Eqs. (1) and (2) for α = 1.
The mathematical solution x = 1 and y = 1 in general describes the equilibration of activities of all ions, 

neutral solutes as well as of electrostatic potential and hydrostatic pressure across the membrane. In particular, 
these conditions are satisfied if there is no non-permeating ions nor non-permeating neutral solutes, or if the 
non-permeating species have the same composition at both sides of the membrane. However, for ideal systems, 
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only total molar fraction and total electrostatic equivalent of non-permeating species need to be equal whereas 
the specific composition of these species may be different at the opposite sides of the membrane.

It is worth to notice that in general we cannot consider the molar fractions of non-permeating solutes in 
compartment 2, Xnpc,2 and Xnpn,2 , as known, because the fractions of other solutes are to be found. Instead, we 
may assume other measures of non-permeating solutes as known, for example the molar volumetric concentra-
tions, cnpc,2 and cnpn,2 , that are frequently fixed in experimental studies. Then, using the relationships between c 
and X , see Appendix, one may derive from Eqs. (16) and (17) the following equations for x and y:

where

with subscript j denoting any of subscripts i , β and w (see Appendix for details of the derivation).

Generalized Gibbs–Donnan factors
The generalized Gibbs–Donnan (G–D) factor for species j ( j = i,β ,w ) according to the extended theory can 
be defined as:

and, for known solutions x and y of Eqs. (20)–(21), it can be calculated as:

Thus, the calculation of aj,2 if aj,1 is known may be performed for the known G-D factors:

and for calculation of Xi,2 if Xi,1 and activity coefficients f are known as:

In particular, the Gibbs–Donnan factor for neutral solute β (the electrostatic neutrality means zj = 0  in 
Eq. (25), c.f. Equation (10), is:

Furthermore, the G-D factor for solvent is:

Note also that osmotic transmembrane pressure, that is the hydrostatic pressure that counteracts osmotic 
pressure of non-permeating species to provide the equilibrium in the system, can be calculated, if y was found 
as a solution of Eqs. (20)–(21), as:

or, equivalently, using Eq. (29), as:

If other permeating neutral solutes are present in the system, then their activities (or G-D factor) can also be 
used to calculate osmotic pressure in the system:
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To calculate osmotic pressure using G-D factors (or equilibrium activities) for permeating ions, one should 
use two such ions, c.f. Eq. (25):

if zkVi − ziVk �= 0.
The equilibrium electrostatic potential difference �� can be calculated from Eq. (7), if x was found as a 

solution of Eqs. (20)–(21), as:

Each G–D factor depends on the overall composition of the mixture, i.e. n different permeating ions, their 
charge numbers z , m neutral species, the partial molar volumes V  of all species (including solvent), their (and 
solvent) activity coefficients, and molar fractions of all species in compartment 1, and the amount of non-
permeating species in compartment 2. In general, the G–D factors depend on the properties of all permeating 
and non-permeating species.

The activity coefficients need to be known as the functions of molar fractions and other thermodynamic 
parameters of the system 3,7,9. However, the composition of the solution in compartment 2 is unknown, so the 
coefficients K, Eq. (15), are functions of x and y, and in general this dependence needs to be taken into account 
while solving Eqs. (20) and (21) for equilibrium conditions. In many cases, when the molar fractions in both 
compartments are not much different, the ratios K of activity coefficients, Eq. (15), that appear in Eqs. (20) and 
(21) may be assumed to be approximately one, even if the activity coefficients k themselves are different from 1. 
In the following examples we assume the solutions to be ideal, i.e., all the activity coefficients being equal to one. 
If necessary, those examples may be extended and activity coefficients incorporated into the general equations 
presented in this section. We assume also the partial molar volumes as constant, whereas for some system they 
may depend on the composition of the solution and its thermodynamic parameters 10,11. Such variability may be 
incorporated into the theory if the respective functions are known.

The Gibbs–Donnan theory for multi‑ion solutions
Let us assume, as a special case of the general theory, that the solution contains only charged solutes, i.e., m = 0 , 
and a neutral solvent w . Then Eqs. (16) and (17) are reduced to:

In general, nonlinear Eqs. (35) and (36) need to be solved numerically for x and y. If only electro-diffusive 
equilibrium in the system is considered, the standard conditions for Donnan equilibrium are obtained from 
Eq. (36) for y = 1 or, equivalently, �P = 0 , and then only Eq. (36) needs to be solved for x, compare 4:

Example 1.  Let’s consider the (ideal) solution of Na+ and Cl- in water with negatively charged non-permeating 
protein (albumin) in compartment 1. The parameters of the solution components are presented in Table 1. In this 
example we discuss the concentrations in compartment 1 typical for physiological systems, see Table 2; the con-
centration of albumin in compartment 2 is assumed zero. After recalculation of concentrations in compartment 
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Table 1.   Solute parameters for Examples 1–12.

Ion Charge number
Partial molar volume (L/
mmol) References Neutral solute

Partial molar volume 
(L/mmol) References

Na+  + 1 − 7.5·10–6 12 Water 18·10–6 10

Cl− − 1 24.1·10–6 12 Glucose 112·10–6 13

Lysozyme  + 12 0.01 10,14 PEG 10,000 0.01 15,16

Albumin − 16 0.05 10,17 Dextran 70 0.07 15,16
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1 to molar fractions (see Appendix for the recalculation formula), we can solve the equations for x and y. The 
Eqs. (35) and (36) can be reduced to:

Thus, from Eq. (39):

where a = (VCl − VNa)/Vw . From Eqs. (38) and (40):

Equation  (41) needs to be solved numerically, and for the assumed parameters we get x = 0.941 and 
y = 1.000028 . Thus DFNa = 0.941, DFCl = 1.063, and �P = -30.1 mmHg, see Table 2. Note that the Donnan fac-
tors are here defined by the ratio of molar fractions. After recalculation of molar fractions to molar volumetric 
concentrations, see Appendix, one finds that the Donnan factors based on the ratio of volumetric concentrations 
are the same within the range of digits taken into account in this example. They are also approximately the same 
as the Donnan factors calculated for �P = 0 in the standard approach 4. The concentrations in compartment 2 
are cNa,2 = cCl,2 = 138.7 mmol/L.

The predicted equilibrium concentrations expressed per volume of water (solvent), see Appendix, are 
cwCl,2 = cwNa,2 = 138.9 mmol/L for compartment 2, and are approximately equal to the respective concentra-
tions per volume of solution in this compartment. The concentrations per water volume in compartment 1 are: 
cwNa,1 = 147.7 mmol/L and cwCl,1 = 130.8 mmol/L.

Example 2.  Here we compare the predictions from our theory on the change in osmotic pressure with the change 
of non-permeating solute (albumin) concentration in the solution of NaCl, as in Example 1. The prediction of 
osmotic pressure of albumin in solution of NaCl of 150 mmol/L at pH = 7.4 compared to experimental data 
shows that our theory for ideal solution provides reasonably good nonlinear approximation in the physiologi-
cal range of albumin concentration in human plasma from 3.5 to 5 g/dL 2,18–20, see Fig. 1. The calculations were 
performed assuming, according to the experimental data, Fig. 1, that in compartment 1: cNa,1 = 150 mmol/L, 
cCl,1 = 150 mmol/L, Cnpc,1 = 0 mmol/L, whereas in compartment 2 the concentration of albumin was changed 
from Cnpc,2 = 0 to Cnpc,2 = 1 mmol/L; Eqs. (20)–(21) were applied.

Example 3.  The G-D factors for ions are dependent on two multiplicative terms: (1) generated by the equilibrium 
Nernst potential and represented by x, and (2) generated by osmotic pressure and represented by y. The con-
tribution of y to G–D coefficients is negligible for the solution described in Example 1 because of low osmotic 
pressure (i.e., low concentration of non-permeating albumin) and low values of partial molar volumes of Na and 
Cl. Let us now add to the water solution of albumin, Na and Cl, one more ion: positively charged lysozyme, see 
Table 1 for the parameters; lysozyme is assumed to permeate across the membrane. Concentrations of solutes in 
compartment 1 are described in Table 2; for compartment 2: Cnpc,2 = 0 mmol/L. The solution is assumed ideal.

(38)x2yVNa/VwXNa,1 + yVCl/VwXCl,1 + x
(

yXw,1 − 1
)

= 0

(39)XNa,1x
2yVNa/Vw − yVCl/VwXCl,1 = 0

(40)x2 = ya
XCl,1

XNa,1

(41)2yVCl/VwXNa,1 + ya/2
(

XNa,1

XCl,1

)1/2
(

yXw,1 − 1
)

= 0

Table 2.   Concentrations of ions in compartment 1, and Donnan factors and osmotic pressure for Examples 
1–5. a Osmotic pressure is calculated as −�P.

Solution component Example 1 Example 3 Example 4 Example 5

Concentrations, mmol/L

 Na+ 140 140 140 140

 Cl− 124 136 60 72

 Lysozyme 0 1 0 1

Albumin 1 1 5 5

 Donnan factors

 Na+ 0.941 0.960 0.655 0.716

 Cl− 1.063 1.042 1.528 1.397

 Lysozyme NA 0.618 NA 0.023

 Water 1.000028 1.000025 1.000520 1.000417

 Osmotic pressure, mmHga 30.1 26.9 557.2 447.2
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Proceeding as in Example 1 and solving Eqs. (35) and (36) with n = 3, one gets x = 0.960 and y = 1.000025 ; the 
G-D factors and osmotic pressure are provided in Table 2. The concentrations of permeating ions in compartment 
2 are: cNa,2 = 142.0 mmol/L, cCl,2 = 149.8 mmol/L, cLys,2 = 0.65 mmol/L. Note that G-D factors for small ions (Na 
and Cl) are slightly closer to 1 and osmotic pressure is lower than for the solution without lysozyme, and that 
G-D factor for lysozyme is much different from 1. However, the contribution of osmotic pressure to G-D factors 
is still low, only for lysozyme it increases the factor by around 1.4% ( yVLys/Vw = 1.014).

Example 4.  To observe the role of osmotic pressure in the lack of equilibration of small ion concentrations, let 
us consider the solution with high concentration of albumin in compartment 1, see Table 2; for compartment 2: 
Cnpc,2 = 0 mmol/L. The calculated x = 0.655, y = 1.000520, and G-D factors and osmotic pressure are presented in 
Table 2. The concentrations of permeating ions in compartment 2 are: cNa,2 = cCl,2 = 122.1 mmol/L.

Example 5.  Let us add lysozyme, a small positively charged protein, see Table 1, to the solution discussed in 
Example 4 at concentration cLys,1 = 1 mmol/L in compartment 1, see Table 2. As the result x = 0.716, y = 1.000417, 
and the G–D factors and osmotic pressure are presented in Table 2. Thus, concentrations of permeating ions in 
compartment 2 are: cNa,2 = 135.3 mmol/L, cCl,2 = 135.7 mmol/L, cLys,2 = 0.023 mmol/L. Note that the difference 
in the concentrations of small ions between compartments and osmotic pressure are considerably lower than in 
Example 4, at the cost of the difference in the concentrations of lysozyme across the membrane that is increased 
compared to Example 3. However, the contribution of osmotic pressure to G-D factors is still low, only for 
lysozyme it increases the G–D factor by around 26.1% ( yVLys/Vw = 1.261).

The Gibbs–Donnan theory for solutions with neutral solutes
Let us now assume that there are only neutral solutes in the solution, i.e., n = 0 . Then, from Eq. (16):

The osmotic pressure induced by non-permeating dextran 70 (see Table 1) in water solution as function of 
its concentration, calculated using Eq. (42), is presented in Fig. 1. The nonlinear profile of this curve departs 
from the van’t Hoff law although the different is not so high as for non-permeating ions represented in Fig. 1 
by albumin in saline.

Example 6.  Let’s consider the (assumed ideal) solution of glucose in water with dextran 70 as a neutral non-
permeating solute in compartment 1, see Table 1 for the parameters of solutes and Table 3 for their concentrations 
in compartment 1, there is no dextran in compartment 2: Cnpn,2 = 0 mmol/L.

Equation (42) takes the form:

and needs to be solved numerically. For the assumed parameters we get y = 1.000019. Thus DFGlu = 1.000120 and 
�P = − 20.7 mmHg. The generalized Gibbs–Donnan effect is therefore very weak in this system, but the related 

(42)
m
∑

β=1

Kβ ,21Xβ ,1y
Vβ/Vw + Xnpn,2 + Kw,21Xw,1y = 1

(43)1− XGlu,1y
VGlu/Vw − Xw,1y = 0

Figure 1.   Theoretical prediction of osmotic pressure −�P of albumin in NaCl solution of 150 mmol/L using 
Eqs. (20) - (21) (continuous line), polynomial curve −�P = 2.8CAlb + 0.18C

2

Alb
+ 0.012C

3

Alb
 , CAlb in g/dL, 

based on the experimental data for pH = 7.4 18 (hatched line), the linear van’t Hoff rule (dotted line), and the 
theoretical description of osmotic pressure induced by dextran 70 in water solution (dot-hatched line).
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osmotic pressure is not negligible in biological systems. Note that the G–D factors calculated for �P = 0, as in 
the classical approach, are equal to 1.

Example 7.  The Gibbs–Donnan effect can be more visible if one assumes higher concentration of non-permeating 
solute in compartment 1, see Table 3. Then y = 1.012575, the G–D factor and osmotic pressure are presented in 
Table 3.

Example 8.  If we replace glucose by a neutral permeating solute of partial volume similar to the partial volume of 
lysozyme, for example PEG 10,000, see Table 1, and increase the concentration of dextran, compared to Example 
6, see Table 3, then y = 1.000579; the G-D factor for PEG 10,000 and osmotic pressure are presented in Table 3. 
Without PEG in the system, the osmotic pressure of the pure dextran solution would be 642.2 mmHg. Thus, the 
disequilibrium in PEG yields lower osmotic pressure compared to the solution of dextran alone.

The Gibbs–Donnan theory for solutions with a mixture of neutral and charged solutes
The role of charge of non-permeating solute may be seen if one compares Examples 1–8 and Examples 9–12 
presented in Table 4. In the latter Examples it is assumed that in the solutions of permeating ions, Na+, Cl− and 
lysozyme (see Table 1 for their parameters) there is also a neutral non-permeating solute, dextran 70. The solu-
tions in Examples 9 and 11 do not contain lysozyme and the predicted Donnan factors for Na+ and Cl− are close 
to one, and osmotic pressure is not much different from that induced by dextran 70 in the solution of neutral 
permeating solutes, see Example 6 in Table 3, and slightly higher than that predicted by the van’t Hoff law (that 
is 19.8 mmHg for concentration of 1 mmol/L and 99 mmHg for concentration of 5 mmol/L of non-permeating 
solute). Adding lysozyme, Examples 10 and 12, has only slight impact on G-D factors of Na+ and Cl−, and G–D 
factor for lysozyme is different from one, whereas lysozyme has almost no impact on osmotic pressure, Table 4. 
In contrast, the charged albumin as a non-permeating solute in the same solutions of ions induces considerably 
higher osmotic pressure than dextran 70 at the same concentration and that predicted by van’t Hoff law, see 
Table 2 and Example 2.

Table 3.   Concentrations of neutral solutes in compartment 1, and Donnan factors and osmotic pressure for 
the system of Examples 6–8. a Osmotic pressure is calculated as −�P.

Solution component Example 6 Example 7 Example 8

Concentrations, mmol/L

 Glucose 6 6 0

 PEG 10,000 0 0 6

 Dextran 70 1 14 10

Donnan factors

 Glucose 1.000120 1.081 NA

 PEG 10,000 NA NA 1.379

 Water 1.000019 1.012575 1.000579

 Osmotic pressure, mmHga 20.7 13,378.2 619.9

Table 4.   Concentrations of solutes in compartment 1 and Gibbs–Donnan factors and osmotic pressure for 
Examples 9–12. a Osmotic pressure is calculated as −�P.

Solution component Example 9 Example 10 Example 11 Example 12

Concentrations, mmol/L

 Na+ 140 140 140 140

 Cl- 140 152 140 152

 Lysozyme 0 1 0 1

 Dextran 70 1 1 5 5

Donnan factors

 Na+ 1.0000 0.9997 1.000 0.998

 Cl− 1.0000 1.0003 1.000 1.002

 Lysozyme NA 1.007 NA 1.046

 Water 1.000019 1.000019 1.000120 1.000120

 Osmotic pressure, mmHga 20.3 20.3 128.5 128.5
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Discussion
The effect of non-permeating ions on the equilibrium concentrations of permeating ions at the opposite sides of 
the membrane is well known for long time and easily observable in experimental conditions and real biological 
and physiological systems 2,3,7. Its explanation is based on the assumption of the overall neutrality of the solutions 
and the thermodynamic relationship between electrochemical potential and ion activity/concentration and equi-
librium (Nernst) electrostatic potential 3,7. The general formulation of the standard theory was presented recently 
4. However it included only ionic species, without taking into account possible presence of neutral solutes nor 
the solvent that need also to adjust their equilibrium characteristics. The presented here generalized approach 
is based on two physical principles, the electroneutrality of the solutions at both sides of the membrane and 
the conservation of mass, i.e., the total mass is the sum of masses of mixture components, or, equivalently, that 
molar fractions of all components sum up to one, Eqs. (1) and (2), and the equilibrium conditions: equality of 
electrochemical potentials at both sides of the membrane for each solution component, Eq. (3). Now, besides the 
charge of ions, the partial molar volume of each component needs to be taken into account. The theory allows for 
the calculation of the ratios of permeating solutes activities/molar fractions/concentrations at both sides of the 
membrane, i.e., the generalized Gibbs–Donnan factors, and the difference of hydrostatic pressure necessary to 
equilibrate osmotic pressure of non-permeating species as well as the equilibrium electrostatic potential, Section 
"Generalized Gibbs–Donnan factors"

The consideration of all types of species present in the solutions (permeating and non-permeating, charged 
and neutral) provides generalization of the classical Gibbs–Donnan formulas 3,4,7. Osmotic pressure in the equili-
brated system has an impact on the Gibbs–Donnan factors for ions, Eq. (25), as well as defines the G-D factors 
for neutral solutes, Eq. (28). These corrections are typically very low in biological systems, see Examples, and 
this observation provides the theoretical foundation for the common practice in reducing the considerations 
for biological systems to charged solutes only 2–4,7. The general theory, as presented here, is however necessary 
to check to what extent this simplification is practical for other systems with higher concentrations of solutes.

On the other hand, Gibbs–Donnan factors are directly related to osmotic pressure of the solution that is not 
negligible in many applications. This observation has been previously reported for solvent only, while our results 
extend it to all permeating neutral solutes and any pair of permeating ions, Section "Generalized Gibbs–Don-
nan factors".

The non-ideal solutions need additional consideration because some important parameters as the activ-
ity coefficients k and partial volumes V  are in general functions of the composition of the solutions and these 
functions, mostly nonlinear functions of molar fractions or concentrations, have to be incorporated into the 
basic Eqs. (20) and (21) before the equations are solved. Such general approach may be difficult to realize and 
frequently different approximations are proposed for the description of these parameters 21–26. Our examples are 
restricted to ideal systems that are often assumed as approximately valid and used with relatively good results 
in biological applications 2–4,7.

In our description of the theory one neutral solute is selected as “solvent” and this approach facilitates practical 
applications if this selection is obvious, as for example for diluted solutions. However there is no need for such a 
selection from the theoretical point of view and any neutral solute can be selected as “solvent”, which means here 
a reference neutral solute. Similarly, we select one permeating ion as a reference species for other ions. However, 
this selection is also arbitrary and aimed on facilitating the notation—any permeating ion can be selected as a 
reference species for charged solutes.

The general scheme for experimental tests of the presented theory is simple: to measure the concentrations 
at both sides of the membrane at equilibrium together with osmotic pressure and electrostatic potential, and 
compare to the theoretical predictions if the solutes’ parameters (including activity coefficients) are known. 
Nevertheless, the G-D factors for solutes with middle molecular mass (as, for example, lysozyme and PEG) has 
not been measured, although new membranes, so called medium cut off (MCO) membranes, which tend to 
separate medium from large (as albumin) proteins were recently designed 27,28. In the case of very high osmotic 
pressures some precautions, as degasification of water and the application of a solid membrane, are warranted 29.  
However, the measured G-D factor, electrostatic potential and osmotic pressure may be used for estimation of 
some of the solute’s parameters, as for example partial molar volume, see Eqs. (31)–(33). In such applications 
the problem of overfitting may arise, so some caution is necessary.

Our considerations are based on equilibrium thermodynamics and it was not our aim to extend them to 
linear non-equilibrium thermodynamics, where osmotic pressure and G-D factors have their applications 3,30. 
There was also substantial effort to provide mechanistic interpretation to different concepts from equilibrium 
thermodynamics, as for example equilibrium osmotic pressure 31,32.

In summary, the general theory of thermodynamic equilibrium for solutions separated by semi-permeable 
membrane in the presence of non-permeating solutes predicts the lack of full equilibration for each permeating 
solutes as well as the difference in electrostatic potential and osmotic pressure across the membrane. There are 
two reasons for this phenomenon: solute charge and its steric characteristics (partial volume). For any number of 
solutes the mathematical problem can be reduced to two algebraic equations for two variables. The Gibbs–Don-
nan effect due to electrostatic interactions can be observed for ions at physiological concentrations, whereas the 
impact of steric factor is of importance for solutes with high partial volume and at high osmotic pressure. The 
new aspects of the presented theory include:

1.	 If solution separated by a permselective membrane contain non-permeating solutes with different activities/
concentrations at opposite sides of the membrane, i.e. there exists osmotic pressure across the membrane, 
then the activities/concentrations of all permeating solutes are different at opposite sides of the membrane.
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2.	 The ratio of solute activities/concentrations at opposite sides of the membranes, the generalized Gibbs–Don-
nan factors, depend on osmotic pressure and partial molecular volume of the solute.

3.	 For permeating neutral solutes, the G–D factors depend only on osmotic pressure and partial molecular 
volume; for neutral solutes with low partial molecular volume and for low osmotic pressure (as physiological 
pressures), the G–D factors are close to unity.

4.	 For permeating ions, the G–D factors depend also, beside osmotic pressure, on electrostatic potential across 
the membrane and solute charge, as in the classical theory of G–D factors; thus, the presented here theory 
reduces to the classical one for sufficiently small osmotic pressures.

5.	 The prediction of the change in osmotic pressure with the change of non-permeating solute concentration is 
a nonlinear function different from the approximation of van’t Hoff law, and for physiological concentrations 
of albumin close to the experimental curve.

Data availability
All data generated or analysed during this study are included in this published article.

Appendix
General background
Electrochemical potential µi of a species i in the mixture of species:

where ai is the activity of species i, Vi is its partial molar volume, zi is its charge number, � is the electrostatic 
potential, P is the hydrostatic pressure, R is the perfect gas constant, F is the Faraday constant, and T is the abso-
lute temperature of the mixture. Some of the species may be neutral, i.e. have the charge number z = 0.

For the species activity we assume that ai = fiXi , where fi is the activity coefficient and Xi = ni/n is the molar 
fraction of species i with the number of molecules ni , and n is the total number of molecules in the mixture.

Let’s note that the mixture volume V  may be presented as 3:

and select the counting of solution components with the solvent as species k = 0 , and denote it also by subscript 
w, while the other species will be called solutes and denoted with indexes 1, 2…, N.

Using the definition of molar fraction Xi , molar concentration ci = ni/V  and Eq. (45) one gets:

For solute concentration expressed per solvent volume, cwi = ni/
(

nwVw

)

 , we have:

and

The case of Xnpc,2 + Xnpn,2 �= 0

To derive Eqs. (20) and (21) let us start from a useful formula for any of the species:

where the definitions of X and c are applied together with the formula (45) for V. Now:

(44)µi = µi0(T)+ RT ln (ai)+ ziF�+ ViP

(45)V =

N
∑

k=0

nkVk

(46)
Xi =

ni
N
∑

k=0

nk

=
ci

N
∑

k=0

ck

=
ci

cw +
N
∑

k=1

ck

=
ciVw

1+
N
∑

k=1

ck
(

Vw − Vk

)

(47)
ci =

ni

V
=

Xi

XwVw +
N
∑

k=1

XkVk

=
Xi

Vw −
N
∑

k=1

Xk

(

Vw − Vk

)

(48)cwi =
Xi

XwVw

(49)
Xi =

cwi

N
∑

k=0

cwk

(50)Xi =
ni

n
=

ni

V

V

n
= ci

N
∑

k=0

nkVk

n
= ci

N
∑

k=0

XkVk
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and the summation is carried out over all permeating species.
Applying formula (50) to i = npc one gets:

and, using Eq. (52):

Proceeding in the same way for i = npn:

Then, inserting Eqs. (54) and (55) into Eqs. (1) and (2), and gathering the terms with the same Xk one obtains:

where coefficients rj and sj are described by Eqs. (22) and (23), respectively.
Finally, the application of formulas (12)–(14) to Eqs. (56) and (57) Eqs. (56) and (57) yields Eqs. (20) and (21).
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