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Dynamic accommodation 
measurement using Purkinje 
reflections and machine learning
Faik Ozan Ozhan 1, Ugur Aygun 1, Afsun Sahin 2,3 & Hakan Urey 1,2*

Quantifying eye movement is important for diagnosing various neurological and ocular diseases 
as well as AR/VR displays. We developed a simple setup for real-time dynamic gaze tracking and 
accommodation measurements based on Purkinje reflections, which are the reflections from front and 
back surfaces of the cornea and the eye lens. We used an accurate eye model in ZEMAX to simulate the 
Purkinje reflection positions at different focus distances of the eye, which matched the experimental 
data. A neural network was trained to simultaneously predict vergence and accommodation using 
data collected from 9 subjects. We demonstrated that the use of Purkinje reflection coordinates 
in machine learning resulted in precise estimation. The proposed system accurately predicted the 
accommodation with an accuracy better than 0.22 D using subject’s own data and 0.40 D using other 
subjects’ data with two-point calibration in tests performed with 9 subjects in our setup.

Eye movements are essential for our visual system to function correctly. Eyes converge to fixate on points in space 
during these movements. The distance between a specified point and the eyes is called the vergence distance, 
and the amount of rotation during this process is known as the vergence angle. The quantification of eye move-
ments and vergence is essential in the diagnosis and management of many neurological diseases such as multiple 
 sclerosis1,2, Parkinson’s  disease3,4, ocular diseases such as  strabismus5,6,  nystagmus7–9, and visual impairments 
such as  amblyopia5,10,11 or  achromatopsia12. Eye movements are coupled with the focusing mechanism of the eye. 
The effective focal length of the eyes is adjusted by a change in the shape of the human crystalline lens, which is 
controlled by the ciliary muscles. This process is called accommodation, and the distance at which the eyes are 
focused is called accommodation depth measured in diopters (D), which is the reciprocal of the focus distance 
in meters. Accommodation depth typically varies between 4 D (25 cm) and 0 D (infinity) in adults. Accurately 
measuring the accommodation of the eye is crucial for understanding refractive  errors13–15. Therefore, objectively 
measuring vergence and accommodation responses is beneficial in both research and clinics.

The accommodation and vergence are coupled and follow one another. Vergence can be predicted using eye 
movements and gaze angle. However, discrepancies are present between accommodation and vergence in certain 
situations, such as with 3D displays. In the case of 3D displays, the viewers’ accommodation distance is at a 3D 
screen in contrast to the vergence distance, which is at the object’s apparent distance in 3D. This phenomenon 
is referred to as vergence-accommodation conflict (VAC)16, and its effects on various tasks have been analyzed 
in different  studies17–20. Therefore, while vergence can be predicted with high accuracy using eye movements, 
accommodation cannot always be predicted accurately. Consequently, an alternative method is required for 
precise accommodation measurement.

Autorefractors are a commonly used technique for measuring accommodation by examining how light is 
refracted by the eye to determine refractive  errors21–23. Although widely used in clinical assessments, autorefrac-
tors rely on retinoscopy, a method involving the projection of a light beam into the eye and observing the light 
reflected from the retina. As a result, they do not provide information about the shape and optical power of the 
human crystalline lens during the accommodation process without a reference from the unaccommodated state. 
Moreover, many clinical autorefractors are bulky, limiting continuous monitoring and evaluation of accommoda-
tion during different activities and lacking information about vergence.

Accommodation depth and vergence angle can be measured using the Purkinje reflections from the cornea 
and the eye lens illuminated by a point light source and measured using a camera focused on the pupil. Specifi-
cally, the first Purkinje image (P1) is the reflection from the anterior, the second Purkinje image (P2) from the 
posterior surface of the cornea, the third Purkinje image (P3) from the anterior, and the fourth Purkinje image 
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(P4) from the posterior surface of the human crystalline lens. It should be noted that P1 and P2 are indistin-
guishable since they are formed very closely to each other, and the combination of them forms the brightest spot. 
ZEMAX simulations are performed to simulate these reflections, and one NIR (near-infrared) LED source and 
one NIR camera are used to capture Purkinje images experimentally. Figure 1 shows ZEMAX layouts demonstrat-
ing how Purkinje reflections are formed on the camera, the image formed on the camera sensor (from ZEMAX 
detector view), and the experimental result illustrating Purkinje image formations using NIR illumination.

The locations of Purkinje images are highly related to the shape of the human crystalline lens. As the eye 
accommodation depth changes, the shape of the human crystalline lens changes. More specifically, as the subject 
focuses on near distances, the ciliary muscles contract, and the curvature of the lens increases. Researchers have 
developed accommodation-dependent models of the human eye by measuring the corneal radius of curvature, 
lens radii of curvature, and lens thickness as a function of  accommodation24–26. Additionally, rotational move-
ment of the eye occurs when the subject looks at different points, resulting in changes in the locations of reflec-
tions. Since P3 and P4 are formed after some refraction processes, the locations of P3 and P4 change significantly, 
while P1 and P2 remain almost stationary with eye rotation.

Prior work has shown that Purkinje reflections can be used for vergence estimation and eye-tracking27,28. With 
the rise of machine learning (ML) and deep learning techniques, researchers have explored the use of these meth-
ods on Purkinje reflections to develop an eye tracker capable of predicting accommodation depth as  well29–31. 
However, these studies use either P1 with  P329,30 or P1 with  P427,28,31 while discarding the other reflection. As a 
result, data and the accuracy of model predictions have been limited. In our previous study, we proposed a primi-
tive version of our work, illustrating that accommodation can be measured dynamically using Purkinje images 
for different  subjects32. However, the accommodation depth predicted with the previous ML model, trained with 
the subject’s own data, and resulted in higher error than the current version of our work, and vergence was only 
predicted with the feature extracted from P3 and P4 for one subject, not using ML.

In this work, we present a novel dynamic eye accommodation depth and vergence measurement system 
based on Purkinje reflections and the ML model. In order to achieve user-independent dynamic accommoda-
tion measurement, we propose a simple optical setup consisting of a NIR LED illuminating the eye, a camera 
to capture Purkinje reflections, and a controllable RGB light source array with target points. We used the pupil 
center and the first 2 Purkinje reflections (P1 and P2) from the cornea and higher-order reflections (P3 and P4) 
from the eye lens for our measurements. In addition to AR/VR applications, the proposed system can be used 
in vision science applications and in multifocal intraocular lens simulators for cataract  patients33 for dynamic 
accommodation and vergence measurement.

Results
The relationship between Purkinje images and accommodation/vergence
We designed a setup that enables us to relate Purkinje images to both accommodation and vergence. Details of 
the optical setup are given in the Methods section. To simulate the changes in Purkinje reflections with accom-
modation, we modified Navarro’s accommodation-dependent eye  model24. The Navarro model consists of four 
refracting surfaces, making it convenient to simulate Purkinje reflections. In addition, the model parameters 

Figure 1.  (a) Ray tracing simulation layouts illustrating 4 Purkinje reflections. (b) Detector view using the eye 
model in (a). (c) Experimental result illustrating Purkinje image formations using NIR illumination.
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are well-established and accommodation-dependent, enabling continuous observation of changes with accom-
modation. However, the ocular media in the model are designed for visible wavelengths. The refractive indices 
of the ocular media at NIR were adjusted to make the Purkinje reflection locations more accurate compared 
to our experiments. The axial length from the cornea to the retina was kept constant. In contrast, other model 
parameters (radius of curvature of the eye lens, lens thickness, anterior chamber length, and refractive indices 
of the ocular media) were changed to make focus adjustments (see Supplementary Table S1 online). It should be 
noted that these parameters can vary between subjects due to anatomical variations in the eye. Eye rotation was 
also modeled. If the distance to a target point is d and the distance between the optical axis of the eye and the 
target point is dtarget , the rotation angle is calculated using Eq. (1) to take vergence into account in our model. 
We assumed that the height of the target point was properly adjusted with respect to the eyes, so the rotation 
only occurred in one direction.

Figure 2 illustrates the directions of Purkinje reflections for different accommodation and vergence values, as 
predicted by our eye model, corresponding to the target point depicted by the small inset to the right of each 
subfigure. The optical path in each inset illustrates the top view of the eye and the target point. Note that the most 
significant change due to accommodation occurs in the reflection from the anterior lens surface (P3). Impor-
tantly, the relative positions of the eye, camera, and light source can affect the specific changes in the Purkinje 
image locations, and different setups would yield different results. We configured the position of the camera 
and the light source to achieve a large angular separation without causing vignetting for P3 and P4 reflections, 
especially when the pupil size is small.

The captured images on the camera were processed using image processing techniques to identify Purkinje 
reflections. ZEMAX non-sequential ray tracing simulations resulted in similar changes in Purkinje reflection 
locations in response to changes in accommodation and vergence, as illustrated in Fig. 3a. Based on these results, 
we identified 10 parameters, which are pupil center and size (xPC , yPC , r1, r2) and locations of Purkinje images 
(xP1, yP1, xP3, yP3, xP4, yP4). The use of 2 parameters r1, r2 for pupil size may seem confusing at first; however, it 
is necessary to accurately describe the size and the elliptical image of the pupil in our off-axis imaging system. 
These parameters and their dependence on accommodation and vergence changes can be seen in Fig. 3b.

Accommodation and vergence prediction using features extracted from the Purkinje images
Before applying the ML algorithms, we first expressed the accommodation and vergence angles as functions of 
the features extracted from the parameters detailed in the previous section. To identify which features were most 
correlated with accommodation and vergence, we conducted correlation analyses between the different extracted 
features and the target accommodation depths for the left eyes of 9 subjects. This allowed us to obtain a matrix 
of correlation coefficients, which revealed that the vertical distance between P3 and P4 in our configuration was 
highly correlated with accommodation, while the distance between P1 and P4 was highly correlated with ver-
gence. The unit of measure for distances is pixels (px). Using these findings, we calculated these features for all the 
experimental results and were able to express the linear relationship between these features and accommodation/

(1)θ = arctan

(

dtarget

d

)

Figure 2.  Simulation layouts and optical paths illustrating chief ray reflections from 4 different optical layers 
for different accommodation and vergence conditions. (a) Focus of the eye at 1D (distance vision) with no eye 
rotation. (b) Focus of the eye at 1D (distance vision) with vergence angle of 5 deg. (c) Focus of the eye at 4D 
(near vision) with no eye rotation. (d) Focus of the eye at 4D (near vision) with vergence angle of 5 deg.
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vergence for each subject individually. Figure 4a,d illustrates the extracted features from experimental results 
with corresponding target accommodation/vergence values and curves based on linear relationships for one of 
the subjects. Mathematically, the resulting function for accommodation prediction is expressed in Eq. (2) where 
aacc (D/pixels) represents the slope of the curve, bacc (pixels) the x-intercept, as illustrated in Fig. 4a. The resulting 
function for vergence prediction is expressed in Eq. (3), where aver (deg/pixels) is the slope of the curve cor-
responding to Eq. (3), and bver (pixels) is the x-intercept, as illustrated in Fig. 4d.

After determining these mathematical functions, we calculated the accommodation depth and vergence angle 
using experimentally found parameters and these functions. Considering the experimental data collected can 
be expressed as a time sequence, we analyzed the dynamic accommodation response and the change of vergence 

(2)Predicted Accommodation Depth [D] =aacc((yP4 − yP3)− bacc)

(3)Predicted Vergence Angle [deg] =aver(

√

(xP4 − xP3)2 + (yP4 − yP3)2 − bver)

Figure 3.  (a) Image processing algorithm results and ZEMAX eye model predictions (figure inset) are 
compared and they are in good agreement . (b) Coordinates of 4 points (pupil center, P1, P3, and P4) extracted 
with our algorithm, which are used as input to the machine learning algorithm.

Figure 4.  Accommodation and vergence predictions using analytical formulas (without machine learning) 
using data for 9 subjects (a) The vertical distance between P3 and P4 ( yP3 − yP4 ) obtained from the 
experimental results of one subject is correlated with accommodation distance of the target LED in the setup. 
(b) Predicted accommodation depth as a function of time using ( yP3 − yP4 ) (red line shows target LED 
distance) for one subject. (c) Mean values of predicted accommodation depths at all target accommodation 
depth levels for all 9 subjects. (d) The Euclidean distance between P1 and P4 ( d(P3− P4) ) obtained from the 
experimental results of one subject is correlated with vergence angle of the target LED. (e) Predicted vergence 
angle as a function of time using ( d(P3− P4) ) (red line shows target LED distance). (f) Mean values of 
predicted vergence angles at all target vergence angle levels for all 9 subjects.
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angle for different subjects as functions of time. In Fig. 4b,e, it is evident how well accommodation and vergence 
are predicted with mathematical functions over time for the same subject in Fig. 4a. The same procedure is fol-
lowed for 9 subjects, and average values of accommodation and vergence were calculated for all target accom-
modation depths and vergence values. The average values of predicted accommodation depth/vergence angle 
and corresponding target accommodation depth /vergence angle are illustrated in Fig. 4c,f. As shown in Fig. 4c,f, 
the accommodation depth is predicted by the feature of the vertical distance between P3 and P4, with an average 
root-mean-square-error (RMSE) of 0.21 D.

Accommodation and vergence prediction utilizing machine learning
The accommodation and vergence can be related to specific features obtained from the locations of Purkinje 
images, as can be seen in Fig. 4. Even though vergence is predicted with low error, the accommodation depth 
error is high with this method. In the next step, we used ML regression algorithms where the inputs are the 
combination of 10 parameters (Purkinje reflection and pupil coordinates, and pupil shape) as defined above, 
and the outputs are the accommodation depth and the vergence angle. Different ML regression algorithms were 
tested for this purpose, and the multi-layer perceptron (MLP) was chosen as the best option. In the first method, 
the MLP algorithm was tested on the left eyes of all 9 subjects individually, and 30% of the each subject’s data 
was used for training while the entire dataset obtained from the same user was used for testing. After splitting 
the data into training and testing, the batch size, number of epochs, number of hidden units at each layer, and 
the number of layers were specified by hyperparameter tuning. The predicted results from our MLP regression, 
using the locations of Purkinje reflections (xP1, yP1, xP3, yP3, xP4, yP4) as inputs, are expressed as a time sequence 
for one of the subjects in Fig. 5a. Figure 5b illustrates the average values of the predicted accommodation depth 
and vergence angle for 2 different configurations and how they deviate from the target accommodation depth 
and vergence angle. The same procedure was followed for all subjects. Figure 5c illustrates the average values 
of predicted accommodation depth/vergence angle and corresponding target accommodation depth (top) and 
vergence angle (bottom) by MLP regression for all subjects. The effect of pupil parameters on vergence and 
accommodation predictions was also investigated. Our aforementioned MLP model was used for analysis, but 
this time pupil parameters (xPC , yPC , r1, r2) besides the locations of the Purkinje images (xP1, yP1, xP3, yP3, xP4, yP4) 
were given as input to our MLP model. The results are included in Table 1 and Supplementary Fig. S1.

The MLP regression model was trained and tested for each subject individually using the first method. A 
more robust and generalized approach is to use different subjects’ data for training and testing. For this pur-
pose, we applied leave-one-subject-out cross-validation (LOSO-CV) by training the model using data from 8 
subjects and leaving the remaining subject out at each fold. Grid search was used to tune hyperparameters for 

Figure 5.  Accommodation and vergence predictions for 9 subjects using machine learning trained only with 
the subject’s own data (a) Our MLP model, trained on the subject’s own data, predicts the accommodation 
depth (top) and vergence angle (bottom) for the subject as a time sequence. (b) The error between the target 
and estimated points is illustrated using the average values of the predicted accommodation depth and vergence 
angle for this subject. (c) Average values of predicted accommodation depth and vergence angle are shown using 
our MLP model, trained on subjects’ own data, for all 9 subjects.
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the training set at each time, and the best hyperparameters were chosen. After training the model using the 
data from 8 subjects, the user was asked to look at the 2 target calibration points at 3.5 D and 1.5 D, selected 
to provide a large range while allowing subjects with myopia and hypermetropia to focus. The 10 parameters 
stated in the previous section were calculated by our image processing algorithm using the set of frames obtained 
for the 2 calibration points (CP). The accommodation depth/vergence angle values at the calibration points 
(ACP1(pred),ACP2(pred),VCP1(pred),VCP2(pred)) are predicted by the ML model. Subsequently, calibration data were 
used to introduce a variable offset to the initial predictions by the ML algorithm to obtain the final predicted 
accommodation and vergence values ( Apred and Vpred ) using Eqs. (4) and (5):

where ACP1(target) , VCP1(target) , ACP2(target) and VCP2(target) are target accommodation depths and vergence angles 
at the calibration points, Apred and Vpred are the predicted accommodation depth and vergence angle found by 
the regression model, and Acalib and Vcalib are the accommodation depth and vergence angle after calibration. The 
results, where only Purkinje image locations were given as input to the MLP model, are analyzed in Fig. 6. The 
predicted results from our MLP regression are expressed as a time sequence for one subject in Fig. 6a. Figure 6b 
shows the average values of predicted and calibrated accommodation depth and vergence angle for 2 different 
configurations, and how they deviate from the target accommodation depth and angle. The same procedure is 
followed for all subjects. Figure 6c illustrates the average values of predicted accommodation depth/vergence 
angle and corresponding target accommodation depth (top) and vergence angle (bottom) by MLP regression 
for all subjects. According to the results, accommodation depth is found with an RMSE of 0.32 D and vergence 
with 0.32◦ on average.

Table 1 provides an overview of the vergence and accommodation estimation results using different meth-
ods and parameters. Detailed statistical analyses for different subjects are presented in Supplementary Fig. S1. 
It shows the RMSE error for different subjects using the 14 target test points as input to different methods. The 
first ML method (ML trained with the subject’s own data using P1, P3, and P4) results in the lowest maximum 
RMSE error of 0.22 D. On the other hand, the second ML method using P1, P3, and P4, which uses a pre-trained 
model without the subject’s data, has a maximum error < 0.40 D. Note that the second method using P1, P3, 
and P4 performed better than the second method using P1, P3, P4, PC, and PS. For 3D display applications, in 
order to minimize the vergence and accommodation conflict to < 0.25 D, the accuracy of the method needs to 
be improved further, which can be done by enhancing the model using additional training data.

To investigate the impact of potential variability on the measurements, two of the subjects underwent addi-
tional tests. Their right eyes were also tested to determine whether eye selection (right or left eye) affects meas-
urements. We noticed no meaningful difference between the predictions for the left and right eyes. The results of 
the first ML method for the right and left eyes of one of the subjects are compared with each other, as illustrated 
in Supplementary Fig. S3. Similar patterns can be observed in this figure across the 2 measurements. A rand-
omized procedure (LEDs are turned on and off randomly) on the left eyes of 2 subjects is performed to avoid 
habituation to repeated stimulation. As expected, accommodation response times are longer in the randomized 
procedure. However, the predicted accommodation depth accuracy remained similar, as seen in Supplementary 
Fig. S2. System repeatability was tested by replicating experiments for the subjects and calculating the Pearson 
correlation coefficient. A fixed seed number was employed during calculations, guaranteeing the initial weights 
would not change. When we used the first ML algorithm, trained with the subject’s own data and took P1, P3, 
and P4 as inputs, the measurements from the same subject were highly correlated (r = 0.99, p < 0.001 for both 
subjects). Additionally, measurements from the second algorithm, using others’ data and taking P1, P3, and P4 
as inputs, were still highly correlated for 2 subjects (r = 0.91, p < 0.001; r = 0.85, p < 0.001).

To quantify the effects of the Purkinje image locations on the accommodation and vergence estimations, we 
used a feature importance technique on the whole dataset (experimental results from 9 subjects) named permu-
tation importance. This technique randomly shuffles the values of a single feature in the dataset, then uses the 

(4)
ACP1(target) − Acalib

ACP1(pred) − Apred
=
Acalib − ACP2(target)

Apred − ACP2(pred)

(5)
VCP1(target) − Vcalib

VCP1(pred) − Vpred
=
Vcalib − VCP2(target)

Vpred − VCP2(pred)

Table 1.  Comparison of different methods and features on our dataset: (i) analytical function, (ii) Purkinje 
image locations as inputs to ML model trained only with the subject’s own data, (iii) Purkinje image locations 
as well as pupil parameters as inputs to the ML model trained only with the subject’s own data, (iv) Purkinje 
image locations as inputs to the ML model trained by excluding the subject’s own data, and (v) Purkinje image 
locations as well as pupil parameters as inputs to the ML model trained by excluding the subject’s own data.

Depth error [D] Angle error [deg]

Analytical function (Fig. 4) 0.21 0.19

ML trained with own data using P1, P3, P4 (Fig. 5) 0.18 0.16

ML trained with own data using P1, P3, P4, PC, PS 0.17 0.18

 ML trained with others’ data using P1, P3, P4 (Fig. 6) 0.32 0.32

ML trained with others’ data using P1, P3, P4, PC, PS 0.36 0.4
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algorithm to make estimations from the permuted dataset and measures how much the model’s performance 
has decreased.

The relative weights of xP1 , yP1 , xP3 , yP3 , xP4 , and yP4 are found as 0.23± 0.005 , 0.13± 0.004 , 1.0± 0.035 , 
0.50± 0.017 , 0.69± 0.020 , and 0.74± 0.015 , respectively, in the first configuration using the permutation impor-
tance technique. Results reveal that the location of P1 is the least important feature for the accommodation 
estimation in the first configuration, as expected, given that P1 is the reflection from the cornea and does not 
include information about the curvature of the lens. On the other hand, it is important to find relative weights 
in the second configuration to see the vergence effect. The relative weights of xP1 , yP1 , xP3 , yP3 , xP4 , and yP4 are 
found as 0.47± 0.015 , 0.06± 0.002 , 0.18± 0.005 , 0.09± 0.005,1.0± 0.019 , and 0.01± 0.001 , respectively, in this 
configuration. The most important parameter is xP3 for accommodation estimation, while xP4 is an indicator for 
vergence estimation. It should be noted that these values are specific to the camera, LED, and eye positions that 
have been optimized for our application. Variations may occur with different configurations.

Discussion
We proposed a simple setup for data collection and a real-time dynamic accommodation and vergence measure-
ment system based on Purkinje reflections. Previous studies have explored the use of the first reflection (P1) from 
the cornea along with the third reflection (P3) from the anterior surface of the human crystalline  lens29,30 or the 
fourth reflection (P4) from the posterior surface of the human crystalline lens for eye tracking  systems27,28,31. 
However, these studies reported limited accuracy even when the system was calibrated for a specific user. Some of 
these  studies29,30 mention the use of two-dimensional pupil size for vergence measurement, noting that vergence 
can be estimated by using changes in two-dimensional pupil size only. However, such methods are sensitive to 
ambient illumination changes and require calibration for each user.

In this study, we built a controllable RGB light source array-based setup for data collection to train our ML 
algorithm. We found that both P3 and P4 are important for accurate estimations, and the pupil center location 
is helpful for accurate vergence estimation. The proposed Purkinje reflection measurement setup is simple and 
uses only a camera and an NIR LED. We performed ZEMAX simulations to match our experimental results with 
the simulations, determining the optimum camera-LED-eye configuration for capturing all Purkinje images at 
accommodation depths covering 4 D to 1 D and vergence angles from 0 to 7 degrees.

In the first ML method, the data acquired from each subject was used in the training dataset for the ML 
algorithm. We demonstrate that an average RMSE of 0.17 D and 0.18 ◦ is achievable for accommodation and 
vergence predictions when the subject’s pupils are monitored in subsequent trials. This method is an effective way 

Figure 6.  Accommodation and vergence predictions for 9 subjects using machine learning trained by excluding 
the subject’s own data. (a) Our MLP model, trained on data from other subjects and calibrated, predicts the 
accommodation depth (top) and vergence angle (bottom) for a single subject as a time sequence. (b) The error 
between the target and estimated points is illustrated using average values of the predicted accommodation 
depth and vergence angle for the same subject. (c) Average values of predicted accommodation depth and 
vergence angle using our MLP model, trained on data from other subjects and calibrated for all 9 subjects.
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of finding the accommodation depth and vergence angle, as only a certain portion of the dataset is used for the 
analysis, while all of the images in the dataset are used when the results are found using the analytical function.

In the second ML method, we performed LOSO-CV to determine the possibility of predicting one subject’s 
accommodation and vergence with the information obtained from all other subjects, eliminating the need for 
user-dependent model training. Using the LOSO-CV method, only with two-point calibration data, the accom-
modation and vergence angle for a new user were predicted with an average accuracy of 0.32 D and 0.32 ◦ , 
respectively. It should be noted that due to the effects of the different orientations of the eye during the experi-
ments and the intra-subject variability of human eyes, we have applied two-point calibration for both configura-
tions to eliminate these effects. Nevertheless, subjects with refractive errors can affect the results as they cannot 
accommodate all target points. We tested our system on both eyes and observed similar patterns at various times 
using the subject’s own data. However, the camera-LED-eye configuration may vary between the right and left 
eyes, potentially affecting the system’s performance. We made repeatability and reproducibility tests using the 
data from the same subject at different times. Even if the results indicate a high correlation between measure-
ments, subjects’ alertness and misplacement of the eye may cause the measurements to deviate from each other.

Accommodation prediction of < 0.25 D can be considered adequate for AR/VR display applications since VAC 
remains within the acceptable  limits20. The vergence prediction can be improved further by using a binocular 
system, such as those used in AR/VR headsets.

In conclusion, our prototype offers a reliable and accurate method for measuring dynamic accommodation 
and vergence based on Purkinje reflections. Our findings demonstrate the importance of using both P3 and P4 
for precise estimation and provide a simple and efficient approach for implementing this technique. Our proposed 
method can be utilized for AR/VR displays and as a tool for vision research.

Methods
In this study, we developed a setup to measure both accommodation and vergence using Purkinje images. One 
component of the setup is a controllable RGB light source array (WS2812B, Worldsemi Co.,Limited) placed in 
the visual field of the eye, covering target points from 4 to 1 D with 0.5 D intervals. The individual target LEDs on 
the RGB light source array were turned on and off, with each LED remaining on for 2 s. Participants were asked 
to accommodate their eyes to the LED turned on during the experiment. It was ensured that the LED bright-
ness was adjusted to a level where the subject can accommodate without any disruption. Red LEDs at 620 nm 
were chosen as target points since the reaction time to red stimuli is short, and accommodation does not change 
significantly across different  wavelengths34. One NIR LED source (TSAL6200, Vishay Intertechnology, Inc.) 
and one NIR camera (SQ11 Mini DV Camera, Dilwe1) were used to capture eye images from the participants. 
The peak wavelength of the NIR LED illuminating the eye is selected as 940 nm. It is eye-safe, compatible with 
silicon detectors, and invisible to the eye, making it a practical choice for our system. Purkinje reflections in the 
model and the experiments are matched by changing the dispersion of the ocular media used in the model. We 
recorded the images captured from the camera at 50 Hz for 2 s, corresponding to 100 frames for each data point 
for 9 subjects. Reaction time, the time it takes for the visual system to respond to a visual stimulus, was considered 
during experiments, and the frames captured before eyes react were discarded. Purkinje image locations were 
detected in an average of 15 ms. It took 16.4 s to train and test the data taken from one subject when the analysis 
was done individually. However, since the training with the other subjects’ data can be done before testing, it 
takes 0.4 s to predict the accommodation/vergence with the LOSO-CV method. All analyses were performed 
with Python version 3.11.2, except for the correlation analyses between the different extracted features and the 
accommodation/vergence performed with the “corr” function in MATLAB’s Statistics and Machine Learning 
Toolbox (Math Works). Ray tracing simulations were carried out with ZEMAX OpticStudio version 19.4 SP1. 
All calculations were done with an Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz located inside DELL E5470. 
The speed can increase if more efficient processing units are used.

The precise position of the controllable RGB light source array was altered for different applications. Firstly, 
we placed the RGB light source array almost on the nose-to-chin axis to observe the effects of both vergence 
and accommodation. In this configuration, eye rotation was present to fixate on a point and accommodate. Both 
effects were present in this configuration. Secondly, the RGB light source array was also positioned along the 
left or right eye to enable observation of the effect of accommodation on the locations of Purkinje images. This 
allowed us to observe monocular accommodation directly, which is useful for many different applications. In 
this configuration, we ensured that all light sources were clearly visible to the eyes and that no occlusion was 
present. It is important to note that Purkinje images are sensitive to head movements and different orientations. 
Therefore, correct head placement is necessary to prevent inaccurate results. To this end, we placed a monitor 
before capturing any images and asked the user to look at the specific part on the monitor and adjust their head 
location until their pupils were in the desired region on the monitor. We made adjustments using piezo stages 
when the user could not adjust their head correctly and minimized the errors caused by environmental effects 
and subject-specific variations. Our experimental setup schematics, designed for measuring the effects of both 
vergence and accommodation, as well as only the effect of accommodation are illustrated in Fig. 7, along with 
a picture of the setup.

9 healthy adults participated in this study with no ophthalmological diseases, except for myopia or hyper-
metropia. An oral disclosure and paper-based consent form were given to all participants prior to the study. 
Each participant gave written informed consent for participation in the study. All experimental protocols were 
approved by the Koç University Ethics Committee on Human Research and conducted according to the institu-
tional guidelines. This study was conducted according to the principles of the Declaration of Helsinki.
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