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A machine learning method 
to process voice samples 
for identification of Parkinson’s 
disease
Anu Iyer 1,5, Aaron Kemp 2,5*, Yasir Rahmatallah 2, Lakshmi Pillai 3, Aliyah Glover 3, Fred Prior 2, 
Linda Larson‑Prior 2,3,4 & Tuhin Virmani 2,3

Machine learning approaches have been used for the automatic detection of Parkinson’s disease with 
voice recordings being the most used data type due to the simple and non‑invasive nature of acquiring 
such data. Although voice recordings captured via telephone or mobile devices allow much easier and 
wider access for data collection, current conflicting performance results limit their clinical applicability. 
This study has two novel contributions. First, we show the reliability of personal telephone‑collected 
voice recordings of the sustained vowel /a/ in natural settings by collecting samples from 50 people 
with specialist‑diagnosed Parkinson’s disease and 50 healthy controls and applying machine learning 
classification with voice features related to phonation. Second, we utilize a novel application of 
a pre‑trained convolutional neural network (Inception V3) with transfer learning to analyze the 
spectrograms of the sustained vowel from these samples. This approach considers speech intensity 
estimates across time and frequency scales rather than collapsing measurements across time. We 
show the superiority of our deep learning model for the task of classifying people with Parkinson’s 
disease as distinct from healthy controls.

The clinical diagnosis of Parkinson’s disease (PD) is based on 4 core clinical features: Bradykinesia, Rigidity, Rest 
tremor and Postural Instability. According to the UK Brain bank and Movement Disorders Society’s diagnostic 
criteria for PD, bradykinesia in addition to 1 of the other 3 features is needed to make a clinical  diagnosis1,2. 
Strict application of clinical diagnostic criteria by experts can lead to diagnostic accuracy over 97% over the 
lifetime of a patient and 91.5% in the first 5 years of  disease2. However, for non-experts, the accuracy is lower 
(77% over lifetime, 76% in the first 5 years)2. It also takes time to be this confident of the diagnosis. As a result 
people with PD may go many years without a diagnosis until features of their disease become more recognizable 
to the untrained eye. Rest tremor is one of the most easily recognized disease features but does not occur in all 
patients with PD. As people often attribute aging to a number of changes in gait, balance, and cognition this 
may also prevent people from earlier diagnosis. There are a number of supportive features that can aid in clinical 
diagnosis, and speech, specifically hypophonic or low amplitude speech is an early disease  feature3. While low 
amplitude is the easiest speech feature to recognize in the clinic, there are other features of speech that change 
in people with PD (PwPD) including hoarser voice, dysarthric or slurred speech, and tachyphemic or rapid 
stuttering  speech4,5. Impaired communication is present in up to 90% of people with PD, with wide variability 
in the degree of  impairment6 and identification of those aspects of speech specific to this population represents 
a substantial body of  literature7–11.

Speech is a complex cognitive-motor skill that is highly susceptible to degenerative changes in the vocal motor 
apparatus and the cognitive networks involved in speech and language production, output and  comprehension6,7. 
The use of voice measurements as objective metrics to detect and track disease progression has been the focus 
of many studies, the majority of which have collected voice data in controlled laboratory environments. A 
promising avenue of research lies in development of objective metrics for detection of speech changes in PD 
occurring prior to onset of overt motor symptoms which could aid in earlier disease  diagnosis12. Earlier disease 
diagnosis is essential to developing neuroprotective strategies, as with current diagnostic criteria at motor onset 
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it is believed that approximately 50% of the substantia nigra pars compacta dopaminergic neurons have already 
 degenerated13–15. Additionally, since recording voice samples is easy and can be accomplished in the clinic and 
 remotely16, speech changes could also be used to track disease  progression17.

While the majority of attempts to find reliable acoustic features that discriminate between PwPD and healthy 
controls (HC) were made using speech data recorded in a controlled environment under professional supervision, 
a few recent studies have explored the utility of telephonic recordings of  speech18–20. Carron et al.20 analyzed the 
impact of uncontrolled and unsupervised recordings on the classification performance of PwPD versus HC using 
sustained vowel /a/ recordings from an in-house database recorded under controlled settings (30 PwPD and 
30 HC). They compared their results to a subset of the same size from the mPower  database21 recorded using a 
smartphone application with similar high quality (44 kHz sampling frequency) but with participants self report-
ing whether or not they had Parkinson’s disease. While multiple classifiers (6) were tested, the passive aggressive 
classifier achieved high accuracy (Area Under the receiver operating characteristic Curve or AUC between 0.8 
and 0.9) using the database recorded under controlled settings but lower accuracy (AUC between 0.6 and 0.7) 
using the smartphone recorded database (mPower). Also, the best features differentiating the groups were differ-
ent between the two databases, using any of the classifiers. In comparison, another study using parameters derived 
from voice captured using smartphone microphones and professional microphones showed good correlation and 
were deemed to be reliable in detecting pathological voices in clinical  settings22. These conflicting results put the 
clinical reliability of voice recordings captured via telephonic lines or smart phone applications into question.

A substantial body of work on the value of machine learning (ML) methods to enhance classification perfor-
mance using voice samples for automatic detection of PwPD has developed over the past  decade23–25. Typically, 
sustained vowel phonation is used to evaluate phonatory features, while connected speech has been used to 
evaluate articulatory and prosodic  features23–25. Numerous algorithms have been developed, and studies have 
evaluated the performance metrics between different  approaches26–28. Recently, convolutional neural networks 
(CNNs) and other deep learning methods have been applied to spectrogram images of audio signals to perform 
speaker  identification29 and prediction of bird  species30 achieving good performance. However, this approach 
has not been applied to differentiate PwPD from HC using recordings captured via telephonic lines or smart 
phone applications. Hireš et al.23 used an ensemble of CNNs to detect PwPD in spectrogram images of vowel 
recordings acquired in a controlled environment, the best performance was achieved with the sustained /a/ vowel 
with AUC = 0.89. The authors used a multiple fine tuning (MFT) approach that consisted of three steps. First, 
 ResNet5031 and  Xception32 CNNs were trained on a large dataset of natural images  (ImageNet33) to allow the 
network to learn to generate low-level image features. Weights of the CNN were fine-tuned using two datasets 
separately. These mediator datasets were a dataset of  vowels34 and the Saarbruecken Voice Database (SVD)35 of 
speech recordings from 687 healthy participants and 1355 people with 71 diseases. Finally, the CNNs were trained 
using the PC-GITA dataset (test dataset) of 100 native Spanish-speaking subjects (50 healthy and 50 PwPD)36. 
The classification decision was made by an ensemble of these diversly fine-tuned CNNs. While the dataset of 
vowels is not well-characterized, both the SVD and PC-GITA datasets were recorded under controlled settings 
with high-quality microphones and high resolution (16-bit codeword and 44 or 50 kHz sampling frequency). 
It is not clear if such an approach can achieve similar performance using recordings of lower quality and lower 
sampling frequency such as those captured by telephones. We will show that a simpler ML approach using a 
state-of-the-art CNN architecture pretrained on a large library can produce equivalent classification results using 
lower quality voice recordings.

This study explores the reliability of voice recordings captured remotely via telephone lines in classifying 
PwPD and HC using machine learning approaches. We collected voice recordings of the sustained vowel /a/ 
from a well characterized population of 50 PwPD with a movement disorders neurologist (TV) confirmed diag-
nosis, and 50 HC participants. Participants called into a phone number with digital voicemail (8 kHz sampling 
frequency). The samples from PwPD were collected in Arkansas, a predominantly rural state, and the ability 
to participate from home also allowed participation from a subset of people residing in medically underserved 
areas that traditionally do not participate in  research16. Such remote collection instruments in the future could 
allow easier tracking of disease progression and also response to novel therapies in clinical trials in PwPD. 
Development of a simple, cost-effective test that could be administered by a primary care physician that pro-
vides a risk assessment for potential PD could also lead to earlier referral to neurologists and even movement 
disorders neurologists. As voice changes may be difficult to hear by the human ear in the early stages of disease, 
a ML-aided classification may be more sensitive to these early changes. We therefore applied machine learning 
methods to classify the voice samples from our two groups. We introduce a novel application of a pre-trained 
Inception V3 CNN adapted to our problem with transfer-learning for the analysis of spectrogram images of the 
collected voice recordings. To provide a comparison in classification performance, we extracted commonly used 
feature vectors and applied two statistical machine learning classifiers, the random forest and logistic regression 
classifiers. These algorithms were chosen based on their prior use in the literature and because both approaches 
identify the features most significant to producing the final classification. We used cross-validation training with 
all ML approaches and partitioned our voice recordings randomly into training and testing sets in 100 different 
iterations to assess the robustness of different approaches to heterogeneity across samples.

Results
Study population
Voice samples from 50 PwPD and 50 HC were collected in compliance with two University of Arkansas for Medi-
cal Sciences (UAMS) Institutional Review Board (IRB) approved protocols (UAMS IRB #261021 & #273696) 
and in compliance with the Declaration of Helsinki. Informed consent was obtained electronically for one 
protocol. After pre-processing the resultant study population included 40 PwPD and 41 HC. Table 1 provides 
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demographics of the participants whose samples were used for further analysis. These data have been made 
publicly available.

Classification results using acoustic signal features
Signal processing techniques were used to estimate 23 features from the sustained vowel /a/ vocalized by 40 
PwPD and 41 HC. These features (identified in Fig. 1) were selected based on their common use in the litera-
ture. Logistic regression (LR) and random forest (RF) classifiers were applied with cross-validation training to 
estimate classification performance using the provided features (see the Methods section for details). The RF 
classifier outperformed the adaptive LR model (see Table 2). Figure 1 and supplementary Figure S1 respectively 
show boxplots of the estimated AUC values and feature importance assessed by the mean decrease Gini metric 
(estimated by the RF classifier) over 100 iterations. In general, standard deviation of the second formant fre-
quency, mean of the fourth formant frequency, standard deviation of the fundamental frequency, and duration 
of the sustained vowel were among the most important features. The poor performance of the LR model is likely 
secondary to the considerable collinearity among some features; 5 types of jitter and 6 types of shimmer showed 
Pearson correlation coefficients > 0.95. Discarding redundancy by selecting one representative metric for jitter 
and one for shimmer did not improve performance.

Table 1.  Participant demographics.

Healthy controls (n = 41) Parkinson’s disease (n = 40)

Sex (male/female) 16/24 21/19

Age at enrollment (years) 47.9 ± 14.5 66.6 ± 9.0

Hoehn & Yahr stage of PD – 2.1 ± 0.4

Disease duration (years) – 9.5 ± 6.0

Figure 1.  Estimated classification AUC achieved in 100 iterations using spectrograms, CNN with grayscale 
spectrograms, and random forest and logistic regression classifiers with acoustic signal features, and variance 
vectors of four spectral features (LPC, LAR, Cep, and MFCC).
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Classification results with spectral features
Analyzing the sustained vowel /a/ uttered by 40 PwPD and 41 HC, four types of spectral feature vectors were 
estimated within a 32 ms sliding window with 50% overlap, resulting in a minimum of 92 windows in 1.5 s. The 
mean and variance vectors for each type of feature were estimated across all possible windows and used as feature 
vectors for classification. LR and RF classifiers were applied with cross-validation training to estimate classifica-
tion performance. The mean feature vectors of all spectral features performed poorly in classifying PwPD and HC 
subjects (Figure S2). The variance feature vectors performed better, especially for the Cepstral Coefficients (Cep) 
and Mel-Frequency Cepstral Coefficients (MFCC) features (see Table 2 and Fig. 1). Supplementary Figures S3 
and S4 show feature importance using the mean and variance of feature vectors from the RF analysis. Feature 
importance estimated by the mean decrease Gini metric is generally higher for low-order coefficients in mean 
feature vectors and high-order coefficients in variance feature vectors. Implementation details are available in 
the Methods Section.

Sex is known to have a significant effect on spectral features of  speech37,38. We therefore examined if the sex of 
subjects in groups had any influence on results. A clear sex-related difference lies in the fundamental frequency 
 (F0), with women’s voices 1.45–1.7× higher than males due to differences in the size of  larynx37,38. A Chi-square 
test of independence between sex and group showed that the two factors are not dependent (p-value > 0.05) in 
our collected dataset.

Classification results using a CNN
We analyzed both color (RGB) and grayscale spectrogram images of 1.5 s of the vocalized sustained vowel /a/ 
using an equal number of participants in the HC and PD groups (n = 40 each). Sample spectrogram images 
are shown in Fig. 2 for a female HC participant (panel A) and a male PD participant (panel B). Some of the 
horizontal bright lines represent the fundamental and formant frequencies where signal energy is concentrated 
around specific frequency components in the spectrum. While these examples show a larger variability in these 
lines across time in the PD spectrogram compared to the HC spectrogram, such a pattern was not clear in all 
images, and discerning the specific differences between images that contribute to the classification decision by 
the CNN remains a challenge. The AUC was estimated in each of the 100 iterations performed, with images 
randomly split into 70% training and 30% testing sets for each iteration. The achieved AUC values using both 
color (average AUC = 0.97) and grayscale (average AUC = 0.96) spectrogram images were found to be comparable 
and outperformed acoustic signal and spectral features analyzed with RF or LR classifiers (see Table 2 and Fig. 1).

Table 2.  Average classification AUC using mean (m) and variance (v) vectors of the acoustic signal and 
spectral features or the CNN classifier using spectrogram images generated from the sustained vowel /a/.

Acoustic Signal LPC LAR Cep MFCC CNN

Logistic regression 0.60 0.60(m)
0.66(v)

0.56(m)
0.70(v)

0.60(m)
0.72(v)

0.50(m)
0.73(v) 0.97 (color)

0.96 (grayscale)
Random forest 0.72 0.57(m)

0.61(v)
0.56(m)
0.66(v)

0.56(m)
0.70(v)

0.57(m)
0.73(v)

Figure 2.  Colored spectrograms of 1.5 s of the sustained vowel /a/ uttered by selected subjects: (A) Healthy 
control (female), (B) Parkinson’s patient (male). The color scale represents 10  log10(|S|/max(|S|)), where S 
represents the complex numbers at the output of the FFT.
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Discussion
In this study, we have collected speech recordings of the sustained vowel sound /a/ from PwPD and HC via 
telephonic lines and digitized recordings using 16-bit codeword representation at 8 kHz sampling frequency. 
We demonstrated the feasibility of using these low-resolution samples to detect speech patterns associated with 
Parkinson’s disease that differentiated them from healthy control subjects. We proposed the novel application of 
a convolutional neural network with transfer learning to analyze spectrogram images of the sustained vowel. We 
showed the classification performance superiority of our novel approach, which considers speech signal energy 
distribution across time and frequency in spectrogram images, over conventional approaches which collapse 
measurements across time, as utilized in the acoustic signal features or spectral features derived from linear 
regression models. Our results show the feasibility of using telephone-collected voice samples and the promising 
potential of the proposed CNN approach in detecting voice changes in PwPD.

Notably, our CNN with transfer learning approach achieved a classification performance that is comparable 
to the similar approach proposed by Hires et al.23 However, Hires et al. applied their classifier to the PC-GITA 
speech corpus database that is comparable in sample size to our dataset but was recorded in a noise canceling 
controlled environment with professional quality microphones and digitized using 44.1 kHz sampling frequency 
and 16-bit codewords. In contrast, our dataset was recorded using low resolution telephone recordings. This sup-
ports the approach of using easier to obtain, low-quality recordings captured by telephone lines or smartphone 
applications as a substitute for high-quality recordings.

We chose to explore the impact of analyzing color spectral images versus grayscale images, as the CNN 
architecture we employed (Inception V3) was pretrained using the ImageNet dataset which is comprised of color 
images. We used pretraining since our dataset is too small to train a deep learning model de-novo so we relied on 
transfer learning. Since color images employ 3 data channels and grayscale images only one, we wanted to ensure 
this difference would not negatively impact our transfer learning results. Both color and grayscale spectrogram 
images achieved similar AUC values in 100 iterations (Fig. 1 and Table 2).

Aging is associated with changes in both speech production and comprehension as well as hearing sensitivity 
leading to poorer speech recognition and  comprehension37,39–42. Physiologically, age-related vocal changes are 
due to decreases in pulmonary function often associated with weakened respiratory musculature, weakening of 
laryngeal musculature and neuromuscular changes in facial muscles associated with  articulation41. The clearest 
age-related change is in voice pitch, with  F0 decreasing in both males and females until around 50 years of age, 
after which it increases in  males37. A recent study in 500 native French speakers ranging in age from 20 to 93 
addressed age and sex related changes in  speech39. Overall, chronological age alone was found to only moderately 
explain the variance in analyzed speech features, although age was the best predictor of  F0 standard deviation 
in both sexes. The study also replicated earlier  work37,40 reporting increases in jitter, shimmer and  F0 standard 
deviation beginning in middle age, and the increase in mean pitch in males older than 75  years39. In our study 
population, PwPD were on average 18.7 years older than HC, with the age range of the entire study population 
between 48 and 67. This age range does include participants in whom age-related changes in vocal features are 
beginning. However, including age as a covariate in a generalized linear regression model still detected a sig-
nificant difference (p-value = 0.02) in mean  F0 between PwPD and HC. The independent variables in the model 
(acoustic signal features) also did not show any significant correlation with age. This suggests that in our cohort 
age differences between PwPD and HC did not influence our results.

In our dataset, some of the measured features and patterns observed in spectrogram images were gender-
related. However, the classification results indicate that the inter-group differences between PwPD and HC were 
larger than the intra-group variability due to sex, age, and individual voice characteristics within each group. 
Without this, such a high classification rate would not have been achievable.

Limitations
One of the limitations of our CNN with transfer learning approach is the difficulty in determining the features 
or specific regions in spectrogram images that contribute to the high classification accuracy. In contrast, acous-
tic signal and spectral features have clear and meaningful interpretations associated with the speech excitation 
source (vocal folds) or tunning in the vocal cavity. Another limitation was that HC participants in the study 
self-reported whether they had a previous speech, neurologic, or psychiatric disorder and were not examined by 
a neurologist as were the PwPD. Applicability is also posed as a current limitation as our model is saved directly 
on a computer and is not publicly accessible.

Conclusion
Our results show the reliability of telephone-collected voice samples, and the superiority of the proposed CNN 
with transfer-learning approach against the representative conventional approaches for the task detecting patho-
logic speech associated with Parkinson’s disease using phone-captured voice recordings of the sustained vowel 
/a/ under uncontrolled settings. The proposed CNN approach also shows smaller variability in classification 
performance when different subsets of voice recordings are used in training and testing phases. This successful 
novel application shows the potential of the proposed approach and the feasibility of using low-quality recordings 
for clinical applications. Additional development and validation of this approach may potentially enable remote 
monitoring of PwPD, including in rural, medically underserved communities.
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Methods
Subjects and data collection
Voice samples for 50 PwPD and 50 HC were collected using previously  published16 methods of collection and 
analysis. Briefly, participants were asked to sustain vocalization of the vowel /a/ for approximately 3 s aloud while 
leaving a digital voicemail. Voice was digitized using 16-bit codeword representation at 8 kHz sampling frequency.

Data pre‑processing
The resultant wav files were imported into Audacity® to remove background noise. Recorded waveforms were 
filtered using floor and ceiling values of 75 decibels (dB) and 300 dB respectively for males, and 100 dB and 
600 dB for females. All speech signals were rescaled to the range [− 1,1]. Intervals of silence at the beginning 
and end of the sustained vowel sound were trimmed using a threshold level on short-time energy within a slid-
ing window (100 samples or 12.5 ms in width). Any recording shorter than 1.5 s after trimming silent parts was 
omitted from the analysis. This yielded 41 HC and 40 PwPD recordings.

Acoustic signal features
Parselmouth43 a Python interface to  Praat44 was used to extract traditionally studied signal features associated 
with phonation in sustained vowels such as f mean and standard deviation of fundamental frequency (F0), for-
mant frequencies, harmonics to noise ratio (HNR), jitter, and shimmer. The fundamental frequency is defined 
as the approximate frequency of the periodic voiced speech signal, and it measures the oscillation rate of the 
vocal folds. HNR is defined as the ratio of periodic and non-periodic components of the speech segment, jit-
ter describes the fundamental frequency variation over time, and shimmer describes the variation in signal 
amplitudes over time. Formant frequencies represent spectral maxima that results from the acoustic resonance 
of the vocal tract. Mean and standard deviations of the first four formants (f1, f2, f3, and f4) were estimated and 
included in feature vectors. The features were estimated over the duration of the sustained ‘Ah’ sound. In total, 
23 standard features were included in the analysis.

Spectral features
Speech was analyzed in short segments within a sliding window of 32 ms (256 samples) with 50% overlap 
between steps. Speech signal in each segment was fitted to a linear time-invariant autoregressive model of order 
p = 10 using R package gsignal45 where 10 coefficients are sufficient to estimate the spectral envelope of a speech 
signal sampled at 8 kHz. The generated Yule-Walker system of linear equations was solved using the Levinson-
Durbin  algorithm46 to estimate the Linear Prediction Coding (LPC) coefficients ( a1, ..., a10 ). A byproduct of the 
Levinson-Durbin algorithm is the vector of partial correlation coefficients ( c1, ..., c10 ) which was converted to 
the Log-Area Ratio (LAR) feature vector using the transformation:

Recursive calculations were performed to calculate the Cepstral Coefficients (Cep) and Mel-Frequency Cep-
stral Coefficients (MFCC) using R package tuneR47. Cepstral analysis deconvolves the glottal excitation signal 
and the vocal tract model’s impulse response in speech  signal48. Mel-scale considers the frequency resolution of 
the human ear (perception) which is approximately linear below 1 kHz and logarithmic above 1 kHz. Cepstral 
and MFCC have generally shown good performance in speech analysis applications, including the ability to 
detect slight misplacements in articulators in  PD49. The mean and variance vectors for each of the four types of 
coefficients (LPC, LAR, Cep, and MFCC) were calculated and used as feature vectors with logistic regression 
and random forest classifiers to assess the classification performance.

Statistical machine learning classifiers
Logistic regression and random forest classifiers were used to assess the classification performance of acoustic 
signal and spectral feature vectors. The coefficients included in the logistic regression model were selected based 
on the Akaike information criterion (AIC) from the R package MASS50 and the model was trained using the R 
package caret51. The random forest model was built using Breiman’s  algorithm52 as implemented in the R package 
randomForest53 (number of trees = 1000, number of variables randomly sampled as candidates at each split = 6, 
minimum size of terminal nodes = 5). The dataset was split into 70% training and 30% testing parts. The training 
part was subjected to threefold cross-validation to estimate the final model, and independent testing was per-
formed using the 30% testing part. To obtain a more robust estimate of performance, the random split into train-
ing and testing parts was repeated 100 times, and the Area Under the ROC Curve (AUC) was estimated in each 
iteration. Feature importance was assessed using the mean decrease gini metric estimated by the RF classifier.

Spectrograms
We created an equal number of spectrogram images of the sustained vowel /a/ in both groups (40 PwPD and 40 
HC samples) for the classification with CNN task. All recordings were at least 1.5 s in length and to make the 
images directly comparable, all recordings were trimmed such that only 1.5 s is considered. Spectrogram data 
were generated using function specgram from R package signal with 32 ms sliding window, 50% overlap rate, 
and 1024 fast Fourier transform (FFT) size. Spectrogram images show the distribution of signal energy across 
time and frequency axes using color intensities. The color scale represents normalized energy using 10  log10(|S|/
max(|S|)), where S represents the complex numbers at the output of the FFT (Fig. 2). Images were created using 
function imagep from R package oce54 and saved in jpg file format with 600 pixels in both width and height, and 

gk = log

(

1− ck

1+ ck

)

, 1 ≤ k ≤ p
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24-bit color depth. Both colored and grayscale spectrogram images were created to see if the color choice has 
any effect on classification performance.

Convolutional neural network (CNN)
A convolutional neural network is a deep learning algorithm that learns image features of relevance to the prob-
lem it is designed to solve by the application of a chain of digital filters, the parameters of which are learned. We 
chose the 48 layer Inception v3 CNN  architecture55 pretrained on the ImageNet database because it has been 
shown to adapt successfully to medical imaging problems through transfer learning with high  accuracy56,57. 
The pretrained model already extracts features that enable it to solve image classification problems. Our data 
set is used to refocus that ability to the specific problem of classifying spectrograms into HC and PwPD classes.

We analyzed spectrogram images of the sustained vowel /a/ in 40 PwPD and 41 HC samples for the clas-
sification task. Images were normalized to the range [0,1] and reformatted to 600 × 600 pixels. The samples were 
randomly split into 70% training and 30% testing parts. The random split into training and testing parts was 
repeated 100 times, and the AUC was estimated in each iteration (Fig. 1). Image augmentation was not applied. 
The original classification stage of the Inception model was replaced with four custom layers: batch normaliza-
tion, dense, dropout, and a final dense layer to create a multi-layer perceptron classifier stage. Batch normaliza-
tion standardizes data in between layers instead of in the raw data, which allows for run time to decrease. Dense 
layers execute matrix–vector multiplication when receiving input from all of the neurons in previous layers. The 
dropout layer prevents the models from overfitting. The model was compiled with the Adam optimizer, a learning 
rate of 0.001, epoch count of 10, and batch size of 4. Each run saved a model checkpoint as a ‘.h5’ file and printed 
the respective AUC. All 100 AUC were imported into an Excel sheet and the mean was calculated—the model 
achieved a 0.97 AUC for colored spectrograms and a 0.96 AUC for grayscale spectrograms.

Data availability
Participant demographics and voice recordings are available from figshare as “Voice Samples for Patients with 
Parkinson’s Disease and Healthy controls”, https:// doi. org/ 10. 6084/ m9. figsh are. 23849 127. Institutional IRB and 
regulatory affairs decisions equate the spectrogram images created from these files to a voice print which is 
protected health information and cannot be publicly shared. Figure 2 is a non-computable illustration of these 
data and publication is permitted by the same institutional authorities.
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