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Studying highly nonlinear 
oscillators using 
the non‑perturbative methodology
Galal M. Moatimid 1, T. S. Amer 2 & A. A. Galal 3*

Due to the growing concentration in the field of the nonlinear oscillators (NOSs), the present study 
aims to use the general He’s frequency formula (HFF) to examine the analytical representations 
for particular kinds of strong NOSs. Three real‑world examples are demonstrated by a variety 
of engineering and scientific disciplines. The new approach is evidently simple and requires less 
computation than the other perturbation techniques used in this field. The new methodology that is 
termed as the non‑perturbative methodology (NPM) refers to this innovatory strategy, which merely 
transforms the nonlinear ordinary differential equation (ODE) into a linear one. The method yields 
a new frequency that is equivalent to the linear ODE as well as a new damping term that may be 
produced. A thorough explanation of the NPM is offered for the reader’s convenience. A numerical 
comparison utilizing the Mathematical Software (MS) is used to verify the theoretical results. The 
precise numeric and theoretical solutions exhibited excellent consistency. As is commonly recognized, 
when the restoration forces are in effect, all traditional perturbation procedures employ Taylor 
expansion to expand these forces and then reduce the complexity of the specified problem. This 
susceptibility no longer exists in the presence of the non‑perturbative solution (NPS). Additionally, 
with the NPM, which was not achievable with older conventional approaches, one can scrutinize 
examining the problem’s stability. The NPS is therefore a more reliable source when examining 
approximations of solutions for severe NOSs. In fact, the above two reasons create the novelty of 
the present approach. The NPS is also readily transferable for additional nonlinear issues, making it 
a useful tool in the fields of applied science and engineering, especially in the topic of the dynamical 
systems.

Abbreviations
NPM  Non-perturbative methodology
ODE  Ordinary differential equation
NPS  Non-perturbative solution
HPM  Homotopy perturbation method
HFF  He’s frequency formula
NLDEs  Nonlinear differential equations
NOSs  Nonlinear oscillators
NS  Numerical solution
MS  Mathematical software
DEs  Differential equations

Various fields use linear and nonlinear differential equations (DEs) to express numerous problems related to 
mathematics, physics, biology, chemistry, and engineering. In contrast to nonlinear DEs, which were frequently 
assumed to have approximate solutions by using several perturbation approaches, the solutions to a linear DE 
can be naturally determined utilizing a few of firmly established techniques. Furthermore, since the majority of 
vibration problems are nonlinear, the nonlinear oscillations have attracted the attention of more and more scien-
tists. Therefore, because scientific and engineering phenomena frequently take the form of nonlinear types, the 
nonlinear differential equations (NLDEs) were extremely effective in describing these phenomena. Consequently, 
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nonlinear oscillatory DEs were essential in applied mathematics, physics, and  engineering1. In multiple research 
works of literature that deal with NLDEs that appear in diverse scientific and engineering disciplines, it was 
fundamental to highlight the importance of mathematical  computations2. Many NLDEs can be numerically 
analyzed, but only a few of them can be solved directly. In order to determine the interaction between the ampli-
tude and frequency of the NOSs, numerous approximate techniques have been used in the available literature. 
The most flexible tool in analyzing nonlinear engineering problems was the perturbation approach, which was 
frequently used to compute approximate analytic solutions of  NLDEs3–5. Analytical approaches for nonlinear 
issues have garnered escalating interest among scientists and professionals in engineering due to the nonlinear 
sciences’ rapid development during the past two decades. It was developed to study the behavior of these NLDEs 
using numerical and other approximation  methods6–14. There have been a number of new techniques for finding 
analytical solutions to the NLDE recently. Therefore, many researchers developed a few novel methods. For the 
purpose of obtaining analytical responses that are relatively proximate to the precise solutions, several scientists 
have investigated a variety of novel and distinctive methodologies. The Lindstedt-Poincaré  approach15, the itera-
tive perturbation  approach16, and the homotopy perturbation method (HPM)17–21 are a few of these techniques.

In order to transform a nonlinear equation into one that is a linear one, the HFF was developed. A review 
of several recent asymptotic approach advancements applied to strongly and weakly nonlinear equations was 
 examined22. Moreover, the approximations of the solutions were valid across the whole time interval. In response 
to the limitations of the perturbation approaches, numerous adapted strategies were introduced, in combination 
of mathematical tools like the theory of variational, methodology of the homotopy, and iteration techniques. A 
quick estimation of a NOS’s periodic characteristic was crucial for engineering. The discussion of some of the 
simplest approaches for NOSs included the HFF, the max–min strategy, and the  HPM23. This frequency was 
mathematically clarified, incorporating a weighted average to enhance the accuracy of the predicted frequency. 
A severe of NOS using a straightforward and excused technique was  studied24. The simplest calculation may be 
used to promptly determine its frequency quality. The results showed that the approach yielded a response of 
an approximately accurate nature. This relationship was vital in the influence of designing a packaging system 
and a system of micro-electromechanical. It was revealed that the frequency of a nonlinear vibration system 
was fundamentally linked to its amplitude in a nonlinear manner. For NOSs with any beginning circumstances, 
this work offered a simple frequency prediction  approach25. When the results were compared to those from the 
HPM, they showed a good level of agreement. An exceedingly practical technique for gaining an immediate and 
precise understanding of the nonlinear vibration of the system characteristics was developed. The discussion of a 
rotating pendulum, periodic properties, and instability qualities followed the application of He’s frequency. The 
formula HFF was used to derive the governing NLDE of the analytical solution because there was frequently a 
perfect solution to a linear equation. The linearized equation, also known as a quasi-exact solution, represented 
an almost precise solution to the nonlinear equation. Whatever the case, solving a linear equation was simpler 
than solving a nonlinear equation. To cover the damping NOS, a developed He’s frequency was  constructed26. 
After converting the NOS to a linear damping model utilizing the conservative force of restoration, the resulting 
frequency from the odd nonlinear damping force was determined.

The existing study uses the NPM, which was recently created by El-Dib27, as a vital method to find the analyti-
cal approximation solutions to the three NLDEs. To show the effectiveness and validating accuracy of the current 
method, a comparison is made with the numerical solutions (NSs). It is obvious that, for the aforementioned 
issues, the current technique provides more accurate findings than comparable approximations. This occurs 
because of the very small absolute error when matching the NSs of the nonlinear DE and the linear one. The 
NPS has significant potential and may be used to solve other strongly nonlinear situations. In accumulation, 
the NPS resolves a number of real-world instances. These real-world instances were previously resolved using 
other established analytical techniques described in the literature. However, the current methodology yields 
best outcomes more quickly. However, with the NPS, the processes for identifying the approximate solutions 
are completely shown, and the computations using MS are even easier to perform than computations using 
other analytical techniques. In calculation, other approaches are difficult to apply or take a long time to analyze 
the solution. Regarding the adopted exclusive technique or significant results, it’s important to emphasise the 
following outcomes:

1. The employed method yields an alternative equivalent linear differential equation, which is comparable to 
the existing nonlinear one.

2. Throughout this method, the two equations are perfectly matched to each other.
3. In the situations of involving the restoring forces, all the conventional methods are commonly employing 

Taylor expansion to simplify the complexity of the problem. However, this limitation is eliminated in the 
current approach.

4. Despite of the other conventional techniques, the NPM enables us to study the stability of the problem.
5. The original strategy appears to pick a straightforward, practical, and interesting tool. It has the capability 

to be applied to analyze numerous NOS categories.

To layout the presentation of the current work, there are five sections in the paper as follows. We introduce a 
rapid description of the NPM in “Description of NPM”. In “Applications”, the NPM is used to examine the three 
real-world NLDEs. Finally, “Conclusions”  summarizes the closing observations.
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Description of NPM
The goal in this section is to replace the actual nonlinear structure with an alternative scheme that has established 
solutions that may be roughly approximated to the original  system28. In other words, it is possible to convert a 
non-linear second-order DE to a linear one in an operation that minimizes the average of the difference between 
the two systems. The averaging operator holds specific properties, it is demonstrated that the replacement can be 
achieved straightforwardly. The fundamental principle of HFF is currently used to get the NOS into a linearized 
form, which results in a linear oscillator producing a solution that encompasses the entire time span of the oscil-
lation  history29. A generalized equivalent linear system’s existence and uniqueness were previously subject to 
in-depth  analysis7. Now, the NPM can be described as follows:

Within a given NLDE, a homogeneous third degree of nonlinear forces can be abstracted as including three 
distinct components: quadratic nonlinear damping forces, odd nonlinear damping forces, and finally the restor-
ing nonlinear odd force. This implies that any NLDE can be restructured using these components, leading to 
the following exemplification:

where f (u u̇, ü) , are the odd secular terms, correspond to the Van der Pol-Rayleigh mechanism, g(u u̇, ü) , are 
the even non-secular terms, point to the quadratic nonlinearity of the Helmholtz appliance, and h(u u̇, ü) , are 
the odd secular terms, indicate cubic Duffing setup, in which they are classified as follows:

where aj , bj , cj , dj , ej (j = 1, 2, 3) are constant coefficients, and ω represents the natural frequency of the 
structure.

He’s  frequency7 has a simple structure that can be expanded upon to generate analytical expressions of the 
equivalent frequency ω2

eqv� for the damping oscillator of Helmholtz-Rayleigh-Duffing. For an easy-to-understand 
yet precise frequency-amplitude expression, the nearly equivalent linear oscillation described by Eq. (1) may be 
formulated relative to the nonlinear force of restoration ω2

eqvu , the force of damping σ u̇ , and the � inhomogene-
ity constant, as follows:

Equation (3) stands as a linear equation and can be resolved through conventional methodologies. The goal 
is to evaluate the coefficients featured in Eq. (3). Initially, assuming the loss of the damping constant σ and the 
non-homogeneous part � , the total frequency is simplified to the �2 . The below harmonic equation is then 
obtained according to Eq. (3)

Equation (4) symbolizes the linear form of the simple harmonic oscillator. Lately, this issue has been exam-
ined by  He30, utilizing the characteristics of special functions. The subsequent tentative solution is proposed as:

Keeping in mind the starting conditions: u(0) = A, and u̇(0) = 0.
Following El-Dib27, the three parameters that have arisen in Eq. (3) may be formulated as follows:

• Frequency formula
  The optimal approach for deriving the frequency formula involves employing the weighted residuals 

methodology. Employing He’s formula proves beneficial in calculating frequencies for the higher general-
ized h(u, u̇, ü) . Approximating the frequency can be achieved by utilizing the weighted residuals method as 
introduced by El-Dib27 as

• Damping formula
  The most effective method to derive the dampening formula is by using weighted residual techniques. You 

may calculate the frequency for specialized networks f (u, u̇, ...u) using He’s frequency. A preliminary estimate 
of the frequency can be considered as El-Dib27:

• Non-secular part

(1)ü+ f (u u̇, ü)+ g(u u̇, ü)+ h(u u̇, ü) = 0,

(2)

f (u, u̇, ü) = a1u̇+ b1u
2u̇+ c1uu̇

2
+ d1u̇

3
+ e1üu̇

2
,

g(u, u̇, ü) = a2u̇u+ b2u̇
2
+ c2u

2
+ d2u̇ü,

h(u, u̇, ü) = ω2u+ b3u
2u̇+ c3u

3
+ d3üu

2
,

(3)ü+ σ u̇+ ω2
eqvu = 0.

(4)ü+�2u = 0,

(5)u = A cos�t.

(6)ω2
eqv =

2π/�
∫

0

uh(u, u̇, ü)dt

/

2π/�
∫

0

u2dt.

(7)σ =
2π/�
∫

0

u̇f (u, u̇, ü)dt

/

2π/�
∫

0

u̇2dt.
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  It should be observed that the non-secular part has the quadratic formula. Therefore, the inhomogeneity 
will be computed by replacing: u → A

2
, u̇ → A�

2
, and ü → A�2

2
 . It should be noted that this is true only up 

to the quadratic power.
  To this end, the nonlinear Eq. (1) is transformed into the linear one as given in Eq. (3). One can utilize 

the normal form of Eq. (3) to estimate the stability criteria in a simpler form, where the total frequency is 
determined from the formula: �2 = ω2

eqv − σ 2/4.

Applications
In this section, we propose the analytical analysis of a few real-world NLDEs so that you can evaluate the accuracy 
of NPM. The outcomes of the numerical methods are based on the analytically derived equivalent linear DEs. One 
can conclude from the outcomes that the NPM is more accurate than the other methods of the classical perturba-
tions. Due to their critical role in understanding the complexities of several natural and physical occurrences as 
well as technological issues in numerous scientific domains, three instances are relevant for using this technique.

First problem
A given symmetrical circular solid sector body with an angle of α and a radius of R will be considered in the first 
application. These objects are frequently utilized in various physical and technical applications, such as automo-
bile spaces and various swinging mechanisms. Therefore, the following problem may be formulated as follows:

A circular sector of a homogeneous solid cylinder is considered. Its centre of gravity is located at the point C . 
Its radius is assumed to be R , its central angle to be 2α and its mass to be m . The sector is in a stationary state on 
a rough horizontal plane, as shown in Fig. 1a. It is subjected to an oscillation in the vertical plane, as illustrated in 
Fig. 1b. The motion here is under the influence of Earth’s gravitational field. The last figure represents the actual 
position, where the rotation is signified by an angle of θ in the clockwise direction.

The derivation of the primary equation of motion can be summarized as follows:
The mass moment of the indicated sector about C is evaluated as:

where S is the distance from the centre of mass C to the point O.
The kinetic energy of that sector may be written as:

where VC and θ̇ represent the velocity of the centre of gravity and the angular velocity, respectively.
The combination of Eqs. (8), (9) produce

The stored potential energy of that system may be represented as follows:

The Equation of motion describing the oscillating sector is obtained directly from the Lagrange equation as 
given below:

Substituting Eqs. (10), (11) into (12), one gets

(8)JC =
m

2
R2 −mS2; S =

2R

3

sin α

α
,

(9)T =
m

2
V2
C −

JC

2
θ̇2; V2

C = θ̇2(S2 + R2 − 2S R cos θ),

(10)T =
m

2
θ̇2
(

3

2
R2 − 2R S cos θ

)

.

(11)P = mg(R − S cos θ).

(12)
d

dt

(

dQ

dθ̇

)

−
dQ

dθ
= 0; Q = T − P.

Figure 1.  Illustrates the rotating problem of dynamic model.
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Inserting the transformation τ =
√

g/R t and the constant k = 4
9
sin α
α

 in Eq. (13), one obtains:

It’s important to mention that Eq. (14) is diverse from the equation that has been given by Amer et al.31 Actu-
ally, the variables are as they previously obtained. In contrast, the constant coefficients are completely different. 
Additionally, Ismail et al.32 are forced to expand the restoring forces by Taylor expansion, but the current NPM 
does not similar performance. Therefore, the pervious weakness will be ignored.

Based on the prior explanation of NPM, the basic equation of motion has the form:

where ψ(θ , θ ′, θ ′′) = −2kθ ′′ cos θ + kθ ′2 sin θ + k sin θ represents odd secular term, in which represents the 
cubic Duffing function.

Using analogous arguments as given throughout the previous section, the equivalent linear equation may 
be formulated as:

where the corresponding frequency is given from an equation comparable with Eq. (6).
The equivalent frequency may be determined as follows using the Mathematica Software:

where J1(A) and J2(A) are the Bessel functions.
For more convenience, it is interesting to examine the relationship involving the equivalent linear ODE that 

is obtained from the NPM and the NS of the previous Eq. (14) using the numerical calculations via Mathematica 
Software. As a consequence, the subsequent numbers for the applied settings are considered.

A comparison between the associated linear ODE equation and the NS of Eq. (15) produced by the numeri-
cal calculation is also useful. The non-perturbative equation is given by Eq. (16). The framework is shown in 
this comparison, as shown in Fig. 2, in which it is drawn in light of the prior data for an adequate sample with 
the given details. It involves the two equations as well. As can be seen, the NPS and NS are generally consistent 
with one another. Additionally, the MS shows that, up to a time of 200 units, the absolute error between the 
analytical and numerical outcomes is 0.0195. Moreover, the plotted waves behave periodic forms with the same 
number of wave, amplitudes, and wavelengths, which reveals that the obtained solutions have stable behavior 
and chaotic free. A good impact of various values of α

(

= 5π
20
, 6π
20
, 7π
20
, 8π
20

)

 on the phase plane curves in the plane 
uu′ is presented in Fig. 3. The plotted curves have a closed form, in which they are symmetric about the vertical 
and horizontal symmetry axes of these curves. The impression that can be considered is that the NPS has stable 
behavior and confirms what was previously predicted that: the solution is free from chaos.

As an extra advantage of the NPS, it enabes us to discuss the stability analysis of the given nonlinear problem 
through handlying its alternative linear equation. Therefore, the stability profile can be sketched from analyzing 
the equivalent frequency, as shown in Eq. (17). Consequently, the relationship between the equivalent frequency 
�2 and the beginning amplitude A may be drawn for various values of the angle α . Therefore, the stable and 
unstable regions are calculated when α equals 5π

20
, 6π
20
, 7π
20
, and 8π

20
 , as viewed in Fig. 4. As seen from this figure, 

(13)
(

3

2
−

4

3

sin α

α
cos θ

)

Rθ̈ +
2R

3

sin α

α
θ̇2 sin θ +

2g

3

sin α

α
sin θ = 0.

(14)θ ′′ − 2k(cos θ)θ ′′ + kθ ′2 sin θ + k sin θ = 0 ;
(

′ ≡
d

dτ

)

.

(15)θ ′′ + ψ(θ , θ ′, θ ′′) = 0,

(16)u′′ +�2u = 0,

(17)�2 =
2kJ1(A)

A− 4kJ1(A)+ 2AkJ2(A)
,

α = π/6 and A = 0.8.

Figure 2.  Displays a comparison between the NS and NPS.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20288  | https://doi.org/10.1038/s41598-023-47519-5

www.nature.com/scientificreports/

the unstable regions are improved with the rise in the value of the semi-central angle α of the considered circular 
sector. Actually, this conclusion is realized.

Second problem
The subsequent implementation, shown in Fig. 5, uses NLDEs to model the movment of a simple pendulum 
linked to a revolving solid framework was previously  displayed17.

Therefore, consider the movment of a spherical pendulum as shown in the Fig. 4. The system consists of a 
vertical rod that rotates with a stationary angular velocity, denoted by �̃ . It is connected to the lightweight rod 
MN through a smooth hinge. The weightless rod is connected to the mass m̃  at its end N . The objective now is to 
determine the equation of motion that describes the system, specifically finding the equation of motion for the 
mass m̃ . This equation has been derived in detail in the research studies. It is a NLDE of first order as given below:

Now, let us introduce another independent variable as µ =
√

g
/

r t    in Eq. (18) to obtain

(18)
r

g
β̈ + (1−� cosβ) sin β = 0; � = �̃2r/g .

(19)β ′′ + (1−� cosβ) sin β = 0; ′ ≡
d

dµ
.

Figure 3.  Presents the plots of phase plane for the NPS.

Figure 4.  Displays the stability digram with various values of α.
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As shown in the previous problem, Ismail et al.32 were forced to expand the resulted restoring forces. Again, 
given the earlier explanation of NPM, the basic governing equation may be written as follows:

where the cubic Duffing function is indicated by the odd secular elements as:

The corresponding linear equation can be written as follows using the comparable reasoning presented in 
the previous part:

where the equivalent frequency is determined by a similar equation to Eq. (6).
The Mathematica software is used to specify the corresponding frequency as  follows33:

where J1(B) and J1(2B) are the Bessel functions of different arguments.
To make things more convenient, it’s intriguing to look at the connection between the corresponding linear 

ODE that comes from the NPM and the NS of the earlier Eq. (14) using the Mathematica software. The following 
figures for the chosen settings are taken into consideration as a result:

It can be helpful to compare the corresponding linear ODE equation to the NS of the previous Eq. (19) that 
was obtained through the numerical calculation. Equation (21) contains the non-perturbative equation with fre-
quency σ . In this comparison, the framework is depicted by the drawn curves in Fig. 6. The figure was produced 
using the available information for a suitable sample. The two equations are also involved. The results are typi-
cally in agreement with each other, as can be noticed. Additionally, the Mathematica programme demonstrates 
that the absolute disparity between the analytical and numerical outcomes is 0.041 until a specific time of 200 
units. The graphed waves have a periodicity form through the investigated time interval, in which there is no 
change in the amplitudes of these waves or the corresponding wavelengths. This periodicity gives an impression 
of the steady behavior of the plotted waves. The inspection of the curves in Fig. 7 reveals that they are graphed 
in the plane yy′ which constitutes the phase plane diagrams according to the various values of the parameter 
�(= 0.8, 1, 1.3, 1.5) . It is observed that the drawn closed curves seem to be symmetric about the symmetric 
axis, which is horizontal or vertical, to yield an impression about the steady behavior of the NPS.

The link involving the comparable frequency σ 2 and the starting amplitude B may be constructed for various 
amounts of the constant � in order to explore the stability assessment.

The NPS also provides us with the opportunity to address the stability examination of the provided nonlinear 
problem by directly manipulating its substitute linear equation. Subsequently, using Eq. (22), it is possible to draw 
the stability characteristic by examining the corresponding frequency. The equivalent frequency σ 2 is thus shown 
against the initial amplitude B . Sadly, the fundamental movement’s equation as depicted in Eq. (19) only includes 
one parameter � . Based on the various values of � , the corresponding stability areas have been demonstrated 

(20)β ′′ + ϕ(β) = 0,

ϕ(β) = (1−� cosβ) sin β .

(21)y′′ + σ 2y = 0.

(22)σ 2 =
1

B
[2J1(B)−�J1(2B)],

� = 0.1 and B = 0.8.

Figure 5.  Shows a revolving simple pendulum.
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in Fig. 8, in which the various of � values depend on the parameters �̃ and r . It can be observed from the graph 
that the stable zones are improved as � rises. In other words, the stability profile enhances as both the constant 
angular frequency �̃ as well as the length of the weightless arm  MN = r are enhanced.

Third problem
The motion of a planar motion as shown in the Fig. 9 is considered. The system consists of two masses m1 and 
m2 . The first mass is moved horizontally and connected to the horizontal linear spring. The other side of that 
spring is fixed. The rod AB through a smooth hinge is connected with the first mass at A . The other end is con-
nected to the mass m2 at the point B.

The objective is to determine the movement’s equation that describes the system. This equation has been 
gotten in detail in the previous  work32. It is a NLDE of first order as given below:

(23)
(

m1 +
m2x

2

L2 − x2

)

ẍ +
m2L

2

(L2 − x2)2
ẋ2 +m2g

x√
L2 − x2

+ kx = 0.

Figure 7.  Displays the curves y − ẏ in the plane.

Figure 8.  Displays the stability digram fot the second problem.

Figure 6.  Shows an evaluation between the two solutions.
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Now, introducing an independent variable T̃ =
√

g
/

L t , x = L�  in the last equation to get:

Following further simplification as foregoing  study31, up to the third degree in u , one obtains

where
ω2
0 = k

m1
+ hg

L  is the square of the natural frequency, h = m2

m1
, ξ = hg

2L , and u = x
L.

Given the prior discussion of NPM, the fundamental regulating equation can be stated as follows:

where the odd secular characteristics as follows serve as indicators for the cubic Duffing function:

For more convenience, in the existing case, one assumes the initial solution as z = D cos�τ.
The analogous rationale described in the preceding section can be used to write the relevant linear equation 

as  follows34:

where is z a new parameter which correspond the linear ODE Eq. (28) and � stands for the equivalent frequency.
The relevant  frequency33 is specified using the Mathematica Software as follows:

It is intriguing to examine the relationship between the equivalent linear ODE that results from the NPM and 
the NS of the preceding Eq. (28) employing the MS to make everything easier. As a consequence, the following 
numbers for the selected settings have been taken into account.

Comparing the associated linear ODE problem to the preceding Eq. (28)’s NS, which was acquired by means 
of numerical computation, can be useful. The NPM equation is found in Eq. (28). Figure 10 in this comparison 
shows the structure. The figure was created using all of the data that was provided for an appropriate sample. 
There are additionally two equations involved. As can be seen, the outcomes frequently agree with one another. 
The depicted waves also exhibit periodic behaviour with the same number of waves, amplitudes, and wavelengths, 
indicating that the solutions produced have stable behaviour and chaotic-free. The Mathematica programme 
also shows that, until a certain point in time 200 units, the total disparity among the analytical and numerical 
findings is 0.01.

(24)
(

m1

m2

+
�
2

1− �2

)

z′′ +
� �

′2

(1− �2)2
+

�√
1− �2

+
kL�

m2g
= 0.

(25)(1+ hu2)ü+ huu̇2 + ω2
0u+ ξu3 = 0,

(26)ü+ φ(u, u̇, ü) = 0,

(27)φ(u, u̇, ü) = hu2ü+ Ruu̇2 + ω2
0u+ ξu3.

(28)z̈ +�2z = 0,

(29)�2 =
3αD2 + 4ω2

0

4+ 2hD2
.

ξ = 0.049, ω0 = 0.44, h = 0.01, and D = 0.1.

Figure 9.  Shows the vibrating dynamical model.
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The closed symmetric curves in Fig. 11 show the phase plane graphs of the NPS z of Eq. (28) according to the 
different values of parameter ξ(= 10, 20, 30, 40) . These curves give an induction about the stable behaviour 
of the NPS.

The relationship connecting the analogous frequency �2 and the starting amplitude D may be constructed 
for various amounts of the constants in order to discover the stability assessment. Therefore, Fig. 12 depicts the 
square of the equivalent frequency �2 versus the initial amplitude D, for various values of the parameter ξ . Kindly 
be aware that the other parameters are held fixed, where ω0 = 10 and h = 0.8 . As seen from this figure that as 
the parameter ξ increased, the unstable zones are also increased. This shows that the parameter ξ plays a role 
in destabilizing the stability configuration. Returning to the definition of the parameter α , one concludes that 
the destabilizing zone enhances with the increasing in m2 and decreases with both of the parameters m1 and L.

Figure 10.  Shows a comparison between The NS and NPS.

Figure 11.  Presents the curves z − ż in the plane.

Figure 12.  Depicts the influence of changes of the parameter ξ.
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For distinct values of the constant R , the relationship between the equivalent frequency �2 and the initial 
amplitude D can be graphed to determine the stability evaluation. Subsequently, Fig. 13 is plotted which shows 
the corresponding square of the frequency via the amplitude D . It is significant to note that the other factors 
are kept constant ω0 = 5 and ξ = 10 . This figure establishes how the stable zones grow larger as the parameter 
increases. This demonstrates how the parameter stabilises the stability organization. When one returns to the 
description of the parameter h , one comes to the conclusion that the stabilising zone expands as m2 increases 
and contracts as m1 reduces.

The correlation connecting the comparable square of the frequency �2 and the amplitude A can be con-
structed to obtain the stability evaluation for several values of the constant ω0 . The corresponding frequency is 
then plotted versus the amplitude according to the considered values of ω0 , as indicated in Fig. 14. The fact that 
the other variables remain unchanged is noteworthy, where h = 1.133 and ξ = 0.816 . This diagram shows that 
the unstable zone increases as the ω0 rises. This exemplifies the parameter ω0 , which indicates that the natural 
frequency of the system has a destabilising effect on the stability organisation. Returning to the parameter ω0 , it 
is clear that the destabilising zone grows as the stiffness of the spring rises and shrinks as it decreases.

The drawn curves in Fig. 15, represent the diagrams of phase plane for the NPS z when ω0(= 1.1, 1.3, 1.4, 1.6) . 
These curves have closed forms that are symmetric about the symmetry axes of these curves whether horizontally 
or vertically.

Conclusions
The principal objective of the current study is to utilize the fundamental He’s frequency formulation to analyze 
analytical approximation for specific types of extremely NOSs due to the increasing interest in the field of non-
linear aspects. Through the use of three real-world instances, three different technological and scientific fields 
are exemplified. The new method is obviously less computationally intensive than the different perturbation 
approaches that already used in this area. This ground-breaking method, known as the new methodology or 
NPS, merely converts the nonlinear ODE into a linear one. The approach results in a new equivalent frequency 
that is comparable to the linear ODE. To help readers, a full description is provided to illustrate the methodology 
of the NPS. Theoretical outcomes are substantiated by performing a numerical comparison that achieved by the 
Mathematica Software. The numerical and the obtained solutions both displayed outstanding consistency. All 
perturbation methodologies use Taylor expansion, as well-known, when there is the presence of forces of restora-
tion, in order to magnify these forces and thus reduce the complexity of the given problem. Under the NPS, this 

Figure 13.  Represents the impact of the parameter h.

Figure 14.  Signifies the effect of the parameter ω0.
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shortcut is no longer present. In accumulation, one may carefully investigate the problem’s stability analysis with 
the NPS, which wasn’t feasible using earlier traditional methods. Therefore, when considering approximations 
of solutions for strongly NOSs, the NPS is a more trustworthy source. The NPS is a helpful tool in the disciplines 
of applied science and engineering because it is also easily transferable for new nonlinear problems. To support 
the representative relationship, it is contrasted with a numerical methodology. Concerning the utilized distinct 
technique or significant outcomes, it is important to emphasize the following information:

1. According to the employed method, another equivalent linear differential equation that is almost identical 
to the current nonlinear equation is produced.

2. For this method to be effective, two equations must exhibit a perfect match.
3. In the presence of restoring forces, the Taylor expansion is commonly employed to alleviate the complexity 

of the given problem. This flaw is no longer present with the used method.
4. Contrary to other conventional methods, one may employ the present method to investigate the problem of 

stability analysis. Therefore, the stability analysis of all three existing problem is inspected. Several diagrams 
are plotted to depict the influence of all parameters in the phase plane containing the equivalent frequency 
versus the initial condition.

5. The distinctive approach appears to be simple, valuable, and captivating tool. It can be employed for the 
examination of numerous NOS categories.

As a progress works, other perturbed methods as shown in Refs.35–41 may be adopted.

Data availability
All data generated or analysed during this study are included in this published article.
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