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Surrogate‑based optimization 
design for surface texture of helical 
pair in helical hydraulic rotary 
actuator
Song Liu , Baoren Li , Runlin Gan , Yue Xu  & Gang yang *

A good surface texture design can effectively improve the tribological performance of the helical 
pair within a helical hydraulic rotary actuator(HHRA). However, the optimization design process 
can be time‑consuming due to the multiple design variables involved and the complexity of the 
mathematical model. This paper proposes a modified efficient global optimization (MEGO) method 
for solving such demanding surface texture design challenges. The MEGO utilizes a Kriging model 
with the optimized Latin hypercube sampling (OLHS) for initial sampling and the proposed modified 
expected improvement (MEI) function for sequential sampling. A comparative study of several global 
optimization algorithms with the MEGO on the surface texture design is performed. Subsequently, 
surrogate‑based optimization and parameter analysis are carried out, resulting in the identification of 
an optimal set of texture parameters. The findings reveal the superiority of the MEGO in both model 
prediction accuracy and refinement of minima. Moreover, compared to the base design, the friction 
coefficient can be reduced by up to 45.2%.

The helical hydraulic rotary actuator (HHRA), a hydraulic component encapsulating two helicalpairs within a 
cylinder, boasts several advantages, including high efficiency, light weight, compact size, and substantial torque. 
Furthermore, it is capable of outputting a large angle exceeding 360°1. As depicted in Fig. 1, the primary com-
ponents of a two-stage HHRA are a piston, a fixed nut, a shaft, and a cylinder. The piston is activated by the 
reciprocating motion through the gear meshing of the helicalpairs, precipitated by the differential pressure 
between the inlet and outlet, which in turn compels the shaft to rotate both clockwise and counterclockwise, 
thereby outputting a specific angle and torque.

Generally, the HHRA operates under conditions of low speed and heavy load. Under these circumstances, 
the lubrication regime between the helical pair predominantly falls within the mixed or boundary lubrication, 
leading to contact between rough surfaces. Such suboptimal lubrication conditions can exacerbate the friction 
and wear of the helical pair, detrimentally affecting the transmission efficiency, reliability, and service life of the 
HHRA. Consequently, the reduction of friction within the helical pair, aimed at mitigating sliding wear and 
boosting the transmission efficiency of the HHRA, is of paramount importance.

Surface texturing technology serves as a crucial tool for enhancing the lubrication conditions of friction pairs. 
As a simple, cost-effective, and efficient method for improving tribological performance, it has seen widespread 
adoption in various tribosystems. Numerous successful instances have demonstrated that surface texturing, 
including dimples and grooves, offers advantages such as secondary lubrication, wear particle accommoda-
tion, and supplementary hydrodynamic  lubrication2. When implemented in helical pairs, surface texture can 
demonstrate anti-friction properties, potentially shifting a mixed lubrication regime to a hydrodynamic one 
during specific operational periods. However, the design of an optimal surface texture is complicated by two 
principal factors. First, the consideration of a broad array of design variables is necessary. For instance, in the 
case of microscale dimples, parameters like size, distribution, and contour shape can significantly affect the load-
bearing capacity and friction coefficient of the contact surface. An improperly designed surface texture could 
undermine its tribological  properties2. Second, the mathematical model for a helical pair is more intricate than 
those for conventional planar contact pairs. While many studies assume a constant oil film thickness between 
contact surfaces for certain lubricating interfaces, such as thrust bearings, facilitating the direct establishment 
of lubrication models based on the Reynolds equation or the computational fluid dynamics (CFD) method, the 
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helical pair is subjected to mixed lubrication, necessitating the consideration of asperity contact. The helical 
shape of the oil film in a helical pair further necessitates transformation into an equivalent plane, introducing 
additional structural parameters and increasing the complexity of the mathematical model. Lastly, the oil film 
thickness between helical pairs, primarily dependent on the external load, is yet to be definitively determined 
and requires numerous iterative calculations, rendering the design procedure more time-consuming and chal-
lenging to execute.

With their independence from gradient information and ease of implementation, meta-heuristic algorithms 
have emerged as an efficacious approach to texture optimization. Wang et al.3 used a hybrid evolutionary algo-
rithm for the optimization design of texture bottom contours, demonstrating that global-optimum bottom con-
tours exhibited superior load capacity compared to regular ones. Similarly, Zhang et al.4 introduced an optimal 
design scheme for surface texture based on a genetic algorithm (GA), successfully enhancing the unidirectional 
sliding tribological performance. Their results indicated that fish and bullet shapes delivered optimal tribological 
performance. Chen et al.5 utilized a nondominated sorting genetic algorithm II (NSGA-II) to optimize the surface 
texture at the interface between the cylinder and valve plate in an axial piston pump, with simulation results 
showing that water-drop-shaped dimples displayed superior tribological behaviors and could reduce leakage 
by an average of 9.9%. Tang et al.6 employed a multi-objective hybrid evolutionary algorithm to maximize load 
carrying capacity while minimizing the friction coefficient in an axial piston pump by optimizing the surface 
texture of the slipper bearing, achieving improvements of 64.8% and 4.5% respectively after optimization. Bei 
et al.7 utilized the average Reynolds equation to solve the rough contact model and employed GA to ascertain 
the optimal texture shape. While these methods have been widely and successfully implemented, they necessi-
tate extensive calculations and iterations during the optimization process. This drawback renders them suitable 
only for the optimization of surface texture that involves short-duration simulations and a limited number of 
design variables.

Surrogate modeling methods, such as support vector regressions (SVR)8, Kriging  models9, 10, and radial 
basis functions (RBF)11, employ fast-computation surrogate models to fit time-consuming simulations, thereby 
significantly reducing the optimization process. Within the realm of engineering, there exist many success-
ful instances where the approximate method is employed to simulate expensive numerical simulations for 
model  prediction12–14, subsequently leading to the proliferation of numerous surrogate-based optimization 
 algorithms15–17. Among them, the efficient global optimization (EGO)  algorithm18 is frequently utilized due to 
its high efficiency and global optimization capability with limited sample points. The EGO is one of the most 
widely studied and applied surrogate-based optimization algorithms, with its applications primarily in aerody-
namics. Jeong, Murayama, and  Yamamoto19 introduced a novel global optimization method that combines EGO 
and genetic algorithm, suitable for aerodynamic design. Ghoreyshi, Badcock, and  Woodgate20 presented a hybrid 
sampling strategy that combines maximizing the mean square error(MAXMSE) criterion and expected improve-
ment (EI) function within the EGO framework, which was applied to the generation of aerodynamic tables for 
flight simulation. Ariyarit et al.21 demonstrated a hybrid surrogate-based optimization method premised on 
standard EGO for aerodynamic optimization, showcasing the capacity of the method to generate superior blade 
shapes with improved aerodynamic efficiency. Guzman Nieto, ElSayed, and  Walch14 introduced an EGO-based 
algorithm to effectively predict critical dynamic aeroelastic loads, with the results indicating a total time reduc-
tion of 40.79% compared to the sole use of Kriging interpolation. Despite EGO’s commendable performance in 
solving these optimization problems, its deployment in texture design necessitates further exhaustive investiga-
tion. Certain constraints limit its usefulness: EGO primarily centers around local search, potentially leading to 
convergence to a local optimum as opposed to a global one when encountering potent nonlinear  problems22. 
This focus can also result in poor model precision when sample points are limited in high-cost computation 

Figure 1.  General configuration of HHRA.
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scenarios. Thus, the development and application of a suitable surrogate-based optimization algorithm for the 
multi-variable, strongly nonlinear model of surface texture warrants further exploration.

To reduce the friction of helical pair in HHRA by reasonable surface texture design, and improve the effi-
ciency of the optimization design process, a modified efficient global optimization method, which takes into 
account the shortcomings of the standard EGO algorithm, is proposed. The first step in this method constitutes 
the construction of an initial Kriging model, with the OLHS strategy being employed to procure a set of uniform 
sample points for the establishment of the Kriging model. The second step involves the addition of new infill-
ing samples to seek the global minimum and enhance model precision with minimal expenditure; a modified 
expected-improvement sampling criterion, capable of adaptively selecting the infilling samples in accordance 
with the optimization process, is utilized as the sequential sampling approach. Following this, the mathematical 
model of the textured helical pair under the mixed lubrication regime is established, based on which the proposed 
MEGO is utilized to construct a surrogate model for the low friction coefficient design of the surface texture. To 
demonstrate the superiority of MEGO in surface texturing design, a comparative study involving several global 
optimization algorithms and the MEGO with respect to surface texture design is executed. Lastly, surrogate-based 
optimization and analysis are conducted, resulting in the identification of an optimum set of texture parameters of 
the elliptical-shape dimples. Parameter analysis is then undertaken using the global sensitivity analysis method, 
correlation analysis, and controlled variable method.

Optimization design methodology
Optimized Latin hypercube sampling
In 1979, McKay, Beckman, and  Conover23 originally proposed Latin hypercube sampling(LHS). Afterward, 
 Stein24 proposed a mathematical approach to this method, it can be expressed as an N ×M matrix Q:

where N is the number of selected points, Qi is the ith sample point, qij is the value of the jth dimension of the 
ith sample point.

LHS employs multi-dimensional stratified sampling to fill the entire design space without overlap. Despite 
this, LHS suffers from inadequate spatial uniformity, making it challenging for initial sample points to capture 
the global information of the actual model. To address this, Liefvendahl and  Stocki25 devised an optimization 
criterion function to enhance the distribution uniformity of samples. The objective function of this optimized 
Latin hypercube sampling (OLHS) criterion takes the following form:

Kriging model
The Kriging model, a renowned surrogate model based on the Gaussian process, has found widespread use across 
numerous engineering fields, particularly following its application to computer simulation by Sacks et al.26. An 
ordinary Kriging model can be articulated as follows:

where µ denotes the mean value of the Kriging prediction function, while ǫ(x) is the error term of a Gaussian 
process with zero mean and nonzero variance. The covariance of this term can be defined as:

where c
(

xi , xj
)

 is a correlation function primarily influenced by the distance between the sample points xi and 
xj , and R() denotes the symmetric correlation matrix.

While various forms can be adopted for φ
(

xi , xj
)

 , including exponential, Gaussian, cubic, and others, this 
study employs the most commonly used Gaussian form:

where num signifies the number of variables, and θk represents a correlation parameter, previously unascertained, 
that can be computed by resolving the maximum likelihood function.

The predictive value f̂  for untried sample point x within the Kriging model can be conveyed as:

The Kriging variance, also known as the mean squared error (MSE), is expressed as follows:
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in this equation, y =
[

y1, y2 . . . yn
]T , where y1, y2 . . . yn constitute the responses of the ith sample point. 

1 = [1, 1 . . . 1]T , and r =
[

c,1c,2 . . . c∗,n
]T . The estimates of µ and σ 2 , denoted by µ̂ and σ̂ 2 , are provided as follows:

Modified expected improvement function
The EI function was initially introduced as a statistical criterion for Kriging-based optimization by Jones, Schon-
lau, and  Welch18. This function leverages the Kriging model to glean statistical information from each sample 
point, guiding the selection of new infilling points and the overall search direction of the EGO algorithm.

The EI function can be expressed as follows:

where fmin signifies the minimum value of the real function. ψ(·) represents a probability density function, while 
ξ(·) symbolizes a cumulative distribution function with a standard normal distribution. The expression 
(

(

fmin − f̂ (x)
)

 indicates a potential improvement, facilitating a more localized exploitation of the search space, 
whereas s(x) reflects the uncertainty inherent in the surrogate model, which is responsible for a more globally 
explorative search, quite the opposite. Consequently, the EI function can seamlessly balance global exploration 
and local exploitation within the optimization process.

While the EI function can locate an optimal value in certain simplistic cases, the computed standard deviation 
s(x) tends to be marginally lower than the actual value, a phenomenon often referred to as “underestimation”22. 
Consequently, only points in close proximity to the current optimal solution register significant EI values, leading 
to a more detailed exploration of the adjacent region until the local uncertainty decreases sufficiently, prompting 
a more global search.

One way to utilize the EGO framework for a more accurate surrogate model and more global search in the 
early stage is to modify the EI function. Sóbester, Leary, and  Keane27 presented a weighted expected improvement 
criterion allowing for a more flexible means of balancing global and local search results. Ponweiser, Wagner, 
and  Vincze22 presented the “generalized expected improvement” (GEI) criterion, founded on the EI criterion, 
where the parameter “g” determined whether the algorithm tends to local exploitation or global exploration. 
Despite the enhanced global search capabilities of the EGO algorithm offered by these methods, they still require 
manual parameter setting. In practical applications, selecting an optimal value for sampling poses a considerable 
challenge for designers.

Given the slight underestimation of the prediction error by the EGO algorithm in Formula9, the global reach 
of the EI function can be extended by incorporating a weighting factor preceding the term s(x) . This factor 
should evolve with the iterations, as a global exploration at the onset of the EGO algorithm is preferred, while 
local exploitation is desirable in the latter  half22.

To fulfil this requirement, the smooth, stepwise increasing behaviour of the sigmoid function is leveraged, 
and a variant sigmoid  function28 is introduced and rewritten as the trend term for the weight coefficient. This 
modification enhances the global scope in the first half of the iteration, and allows the weight coefficient to 
gradually decrease with the iteration of the sample point. The formula is expressed as follows:

where niter signifies the total number of sample updates, whereas iiter represents the iiter th update.
The correlation between witer and iiter under varying values of niter is depicted in Fig. 2. It can be observed that 

witer approximates 1 in the initial third of niter and swiftly transitions from 1 to 0 in the regions spanning from 
the first third to half of niter . In essence, the global weight coefficient escalates in the first half of niter , facilitating 
a more global search. For the latter half of witer , the weight value is nearly 0, implying that the EI algorithm is 
retained, thus ensuring a more localized search in the second half of the optimization process.

Additionally, θk in Formula5 emerges as a critical parameter of the Kriging model. A larger θk value augments 
the fluctuation of the Kriging model curve, while a smaller θk value smooths the curve. Greater values of θk sug-
gest the need for a more global search, and the converse is also true. Therefore, θk serves as an excellent choice 
for a weighting regulator to adjust the weight ratio. As a vector, θk can be quantified via the introduction of the 
Euclidean norm and normalized using the arctan function.

Applying these principles, the weighting regulator wθk can be formulated as follows:

Therefore, the MEI function can written as:
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The MEI is correlated with iiter and θk , changing in accordance with updates to the Kriging model. This correlation 
facilitates a more global search during the initial stages and a more localized search near the end of an iteration, 
with the weight ratio adapting in tandem with updates to the Kriging model.

Mathematical model
Geometry and governing equations
The equivalent section of the interface of the helical pair, as depicted in Fig. 3, is derived using the method 
proposed by El-Sayed and  Khatan29. The geometric relationship between the actual model and the equivalent 
model can be expressed as follows:

where symbol ˜ represents the variables are located on the equivalent plane, θ̃m is the equivalent angle from the 
start to the end of helicoid. ri is the inside radius of nut, ro is the outside radius of screw, and K = cosα

[

sec �0

−
(

r
2
i
/r2o + tan

2
�o

)1/2
]

/(1− ri/ro) ,  e = ro
[(

ro − rj
)

/(ro − r1 cos �o/ cos �i)− 1
]

/ cosα ,  Ki = 1/K cos �i  , 
Ko = 1/K cos �o.

Figure 4 shows the cross-section of the screw tooth. Based on the equivalent model, the axial film thicknesses 
at any radius r can be written as follows:

where ha0 is the assumed axial clearance, �h is the clearance of screw and nut along the axial direction, the sub-
scripts t/b represents the oil film on the top/bottom side. �r = arctan(P/(2πr)) , where �r denotes the helix angle 
at any radius r, P denotes the screw lead. αr = arctan (tan α cos �r) , in which α is pressure angle.

Building on the findings of Yu, Wang, and  Zhou30, elliptical-shaped dimples deliver the optimal load-carrying 
capacity compared to other regular-shaped dimples such as circles, triangles, and rectangles. As a result, this 
study employs elliptical-shaped dimples as the textured structure of the helical pair. The representative section 
of the interface of the helical pair with elliptical-shaped dimples is illustrated in Fig. 5, where the dimples are 
uniformly distributed in both radial and circumferential directions.

To facilitate calculation, it is assumed that the texture is positioned within a rectangular unit of dimensions 
l × w . The parameters defining the dimples are as follows: Zc represents the number of circumferential dimples, 
Zr the number of radial dimples, and φ the orientation of the major axis of ellipse. B denotes the length of the 
texture area in the radial direction, while θt signifies the length of the texture area in the circumferential direc-
tion. The dimple depth is hd , with la and lb specifying the major and minor axes of the ellipse, respectively. The 
spacing between dimples in the radial (l) and circumferential (w) directions, the area ratio Sp , the axial ratio of 
the ellipse rt , and the texture region can be respectively expressed as follows:
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Figure 2.  Variation of witer with iiter.
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Evidence has shown that provided the Reynolds number is adequately low and the aspect ratio of the dimples 
is sufficiently large, the Reynolds equation proves  effective31, a condition applicable to our model. The assump-
tion is that the oil film represents an incompressible Newtonian and laminar flow. Consequently, the equivalent 
Reynolds  equation32 can be expressed as:

(16)

∂

∂ r̃
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Figure 3.  Equivalent section of the interface of helical pair.

Figure 4.  Cross-section of the screw tooth.
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where �r =
(

1.5− 5 sin2 �r + 5 sin4 �r
)

/
(

60 cos2 �r
)

 , in this context, r̃ and θ̃ are the coordinate directions of the 
polar coordinates õ− r̃θ̃ , situated on the equivalent plane of the helicoid. The hydrodynamic pressure is denoted 
by p, with ρ representing the oil density and η its viscosity. The rotational speed is given by ω , and znut signifies 
the axial displacement disturbances. The subscript t/b refers to the top side/bottom side.

Generally, the HHRA operates under high load and low-speed conditions, resulting in a relatively thin film 
between the helical pair, necessitating the consideration of asperity contact force. This paper employs the Green-
wood and Tripp  model33, which is widely used in asperity contact studies. By assuming a Gaussian distribution 
for the height of the micro-convex bodies on the friction surface, the asperity contact pressure can be defined as:

where E′ = E1E2/
[

E2
(

1− v21
)

+ E1
(

1− v22
)]

 , where E1 and E2 denote the elastic modulus of the two bodies in 
contact, and E′ is the composite elastic modulus. The Poisson’s ratios of the contacting bodies are represented by 
v1 and v2 . The asperity curvature radius is indicated by β , while A signifies the asperity density. The composite 
surface roughness is designated by σ , and Hσ is defined as the ratio of the mean film thickness to σ.

The statistical function Fn(u) can be written as:

where s is the correlation parameter, set at 6.80433.
Implementing the average flow  model34, the equivalent Reynolds equation that takes into account roughness 

effects can be articulated as:

where φx and φy represent the pressure flow factors along the x and y directions, as defined by Patir and  Cheng34, 

35. The contact factor is denoted by φc , while φs signifies the shear flow factor, as outlined by Wu and  Zheng36. 
The lead of the screw/nut is represented by P.

Boundary conditions
Velocity boundary
Utilizing velocity decomposition, the velocities along the top and bottom sides of the screw tooth can be deter-
mined as follows:
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Figure 5.  Equivalent section of the interface of helical pair with elliptical-shape dimples.
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where vθ̃1/θ̃2 and vz̃1/z̃2 denote the speeds in the θ̃ and z̃ directions, respectively.

Pressure boundary
The external pressure of the helical pair equals 0.1 MPa, and the pressure between the contact surface of the 
helical pair corresponds to the oil film load capacity. Besides, the minimum value of cavitation pressure is speci-
fied as 0.03  MPa5.

Cavitation boundary conditions
Owing to its high accuracy and ease of implementation, the Reynolds cavitation boundary condition has been 
effectively utilized in numerous studies investigating surface  texture4, 5, 30, 37. Therefore, the Reynolds cavitation 
boundary condition is chosen in this paper.

Calculation of friction coefficient
The expression of friction coefficient can be written as:

where, the total load capacity D is an amalgamation of the load-carrying capacity induced by hydrodynamic 
support and that induced by asperity contact. This can be calculated as follows:

The total friction force f comprises both the hydrodynamic friction force and the asperity contact friction force. 
It can be represented as:

where v denotes the linear velocity, while φf  and φfs indicate the flow factors induced by friction, as defined in 
the studies by Patir and  Cheng34, 35. The asperity contact friction coefficient is represented by µasp.

For the HHRA studied in this paper, the oil film thickness between the helical pair remains undetermined. Its 
value is primarily influenced by the external load driven by the HHRA, necessitating computation from the exter-
nal load. The comprehensive calculation procedure is depicted in the “oil film characteristics module” in Fig. 6.

The parameters used in the numerical analysis are shown in Tables 1 and 2.
The equivalent Reynolds equation that incorporates roughness effects is discretized utilizing the finite dif-

ference method (FDM). To calculate the film pressure distribution, the successive over relaxation (SOR) Gauss-
Seidel iterative method, with an over-relaxation factor at each discretized node, is employed. The over-relaxation 
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Table 1.  Geometric and operating parameters.

Geometric and operating parameters Value Unit

Inside radius of nut, ri 33 mm

Outside radius of screw, ro 40 mm

Number of teeth, Zt 19

Pressure angle, α 15 ◦

Helix angle, �r 45 ◦

Screw lead, P 114.7 mm

Designed axial clearance, ha0 0.15 mm

Length of screw engagement 30 mm

Oil density, ρ 876 kg/m3

Deaeration pressure of dissolved air, pc 0.03 MPa

Oil kinematic viscosity, η 0.04025 Pa s

Load force, F 65462 N

Rotational speed of the lead screw, ω 120 rpm
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factor is set between 1.5 and 1.837, with a chosen value of 1.6 in this study to expedite convergence. MATLAB 
R2022b software facilitates the construction and resolution of the equivalent Reynolds equation, operating on a 
computer CPU that is i7-9750h with 16 G RAM.

Grid density significantly influences the accuracy of results. While fine-meshed grids can enhance com-
putational accuracy, they also demand more computing time. Table 3 presents the computation time of this 
mathematical model at varying grid densities. Relative to the finest grid, a grid density of 120 × 720 is selected 
for texture optimization, as it offers the shortest computing time when the error is within 1%. However, as the 
computation with the 120 × 720 grid remains time-intensive, it is employed solely in the final optimization(5.2) 
and sensitivity analysis(5.3). For the comparison of algorithms (5.1), which necessitates the generation of a 
considerable number of sample points, the 40 × 240 grid is chosen. This selection is due to a greater emphasis 
on the alignment of the predicted value with the actual one, and the ability to locate the minimum value, rather 
than obtaining an accurate friction coefficient and optimal texture parameters.

Optimization process
Procedures of modified efficient global optimization
A flowchart detailing the optimization design process for the surface texture of the helical pair is provided in 
Fig. 6. A comprehensive explanation follows.

Step 1: Establish the optimization objectives, the ranges for design variables, and the objective and constraint 
functions.

Numerous studies indicate that within a certain range, the friction coefficient progressively decreases with the 
increasing textured area density. However, exceeding this range could elevate contact stress, limiting the reduc-
tion of the friction coefficient and intensifying wear. Xu et al.38 found that elliptical-shaped dimples with an area 
density of 10.6–14.1% yielded the best performance. To minimize the friction coefficient, a 14% area density was 
selected for this study. The remaining undefined geometry and distribution parameters of the elliptical-shaped 
dimples serve as the design parameters. Notably, most surface texture optimization research employs dimple 
depth and diameter as design variables for circular dimples, given their significant impact on the lubrication 
characteristics of surface texture. For a single texture unit, the area density directly correlates with the square of 
the dimple diameter. Thus, the dimple depth and diameter as design variables sufficiently encompass all neces-
sary design information. Yet, the interaction among the dimples can also influence hydrodynamic lubrication 
for multiple texture units. Consequently, the axial number and the circumferential number of the dimples are 
chosen as part of the design variables. When the area density remains constant, these numbers not only determine 
the dimple diameter but also reflect the spacing between the dimples in the radial and circumferential direction.

The remaining undefined geometry and distribution parameters of the elliptical-shaped dimples function 
as the design parameters, with their range chosen to be technologically feasible and prevent dimple overlap.

The optimization issue concerning the surface texture of the helical pair, as considered in this study, can be 
expressed mathematically as follows:

(24)











Find: x = {rt ,Zr,Zc,φ, hd}T
Min: y(x) = µcof

s.t. 1 ≤ rt ≤ 3, 2 ≤ Zr ≤ 6, 2 ≤ Zc ≤ 24,
0 ≤ φ ≤ π rad, 0 ≤ hd ≤ 20 um

Table 2.  Textured surface parameters.

Textured surface parameters Value Unit

Composite surface roughness, σ 1.6 um

Surface pattern parameter 1

Friction coefficient of asperity contact, µasp 0.08

Composite elastic modulus/, E′ 211 GPa

Dimple area density, Sp 0.14

Table 3.  Computation time for several different grid densities.

Number of grids µcof Elapsed time/s

20 × 120 0.0544 11

40 × 240 0.0634 48

80 × 480 0.0657 526

120 × 720 0.0678 1957

160 × 960 0.0682 4758

200 × 1200 0.0682 7817
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Step 2: Conduct a design space exploration and sample initial points using the design of experiment (DOE) 
method. In this study, the OLHS method mentioned above is used to obtain maximum information by uniformly 
adding sample points from the design space.

The initial number of sample points is determined by the number of variables. According to Nuchitprasittichai 
and  Cremaschi39, the initial number of sample points is typically ten times the number of variables. Consider-
ing that this study involves five design variables, an initial sample count of 50 is chosen. However, due to the 
constraints of the OLHS method, sample points are not selected at the boundary, resulting in an incomplete 
coverage of the design area. The boundary points are defined by upper and lower bounds, and with five variables 
included in this study, the total number of boundary points is 25 . As a result, an aggregate of 82 (50 + 25 ) initial 
sample points is generated.

Step 3: Conduct the numerical analysis as outlined in “Mathematical model”, using the initial sample points 
determined in Step 2.

Step 4: Use the results from Step 3 to establish the initial Kriging model, representing the mapping relation-
ships between the objective functions and the design variables.

Step 5: Execute the sequential sampling strategy, employing the MEI function to boost the accuracy of the 
Kriging model and locate the minimal values of the actual model through the addition of new sample points. 
The sequential sampling process concludes when the count of iteration steps for sequential sampling attains the 
predetermined value.

To evaluate model accuracy, 50 sample points are used to calculate the root mean square error(RMSE) value 
of the Kriging model. The stopping criterion during the sampling process is the total number of sample points 
reaching 200 times. Therefore, 118 iterations are required, given that the initial number of sample points is 82.

Step 6: The final Kriging model, constructed using both initial and sequential sampling data, serves to pre-
dict the targets, effectively replacing the need for laborious numerical analysis, and enables the procurement of 
optimal design results.

Evaluation index of surrogate‑based optimization algorithm
Predictive accuracy and optimization potential are critical factors for surrogate-based optimization algorithms. 
To appraise the accuracy of the surrogate model in quantitative terms, the introduction of three evaluation 
indices is proposed as follows:

Figure 6.  Flow chart of optimization design for the surface texture of helical pair.
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where fpredict denotes the predicted value obtained from the surrogate model, while factual refers to the actual 
value derived from numerical analysis.

The optimization potential is evaluated as follows:

where opt.predict refers to the globally optimized solution obtained from the surrogate-based optimization 
algorithm, while opt.actual denotes the actual global optimized solution.

Results and discussion
Algorithm comparison
To demonstrate the superiority of the MEGO method in surface texture design, it is compared with commonly 
used surrogate-based optimization algorithms:  EGO18, Kriging+GA16, RBF+GA15, BP+GA40, and the typical 
meta-heuristic algorithm GA.

It is worth noting that the algorithm comparison, distinct from the optimization steps outlined in 4.1, pre-
scribes a fewer number of initial sample points and a maximum limit for sample points. This arrangement is 
designed to evaluate their ability to seek optimization and fitting accuracy under the restriction of limited sample 
points. Hence, each global optimization algorithm is limited to 60 points, equivalent to 60 simulation times. 
Initially, 20 points are generated using the OLHS method, and the remaining 40 infilling points are selected by 
the MEI function for each iteration. To test the accuracy of the established surrogate model, 100 random test 
samples are generated. Given the randomness of the sampling distribution induced by DOE, each global optimi-
zation algorithm is computed 20 times for every case, and the results are averaged. The standard deviation (std) 
is employed here to gauge the stability of the optimization results. For ensuring the accuracy of the prediction 
model, MRE and MaxRE should be as minimal as possible, and a lower RMSE evaluation index signifies a more 
accurate prediction model. Figure 7 displays the test points predicted by each algorithm, and the comparative 
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Figure 7.  Prediction of test points (a) MEGO (b) EGO (c) Kriging+GA (d) RBF+GA (e) BP+GA.
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results are depicted in Table 4 and Fig. 8. Notably, GA, while capable of global optimization, lacks model predic-
tion ability, hence it is excluded from discussions about the accuracy of the prediction model. The minimum 
µcof  is 0.0433, as calculated by the Monte Carlo sampling method.

It is clearly observed that the Kriging-based optimization algorithms (MEGO, EGO, Kriging + GA) show-
case lower MRE, MaxRE, and RMSE values compared to the others (RBF + GA, BP + GA). This highlights the 
superior ability of the Kriging-based surrogate model to fit the nonlinear curve of the actual model in this case. 
Moreover, the MRE, MaxRE, and RMSE values for EGO are marginally higher than those for MEGO, signaling 
the superior prediction ability of MEGO over the standard EGO.

Regarding the optimal value, the global optimization ability is sorted according to the magnitude of (µcof )min 
as follows: MEGO > EGO > Kriging + GA > GA > BP + GA > RBF + GA. It is evident that the global optimization 
ability of MEGO surpasses that of the other models, being only 1.4% away from the optimal result. In contrast, 
EGO, Kriging + GA, RBF + GA, BP + GA, and GA are 3.0%, 15.7%, 69.1%, 43.4%, 24.2% away from the optimum 
result, respectively. This implies that MEGO can yield the optimal global solution with the fewest iterations. 
Furthermore, MEGO exhibits the smallest standard deviation among all global optimizations, indicating that 
MEGO consistently delivers the most stable optimization results.

Optimum texture parameters
Before embarking on the parameter analysis, it is crucial to confirm that the accuracy demands are fulfilled by 
the constituted Kriging model. At the same time, it must be assured that a local minimum does not stand as the 
final optimization outcome in the course of texture design optimization. To support this, the RMSE values from 
each step of the sampling process, obtained via the MEI method, together with the minimum friction coefficient 
values, are recorded in this paper. A complete visual representation is available in Fig. 9a,b.

For the friction coefficient studied in this paper, its value ranges from 0.04 to 0.09. When the RMSE value is 
less than 0.003, the established surrogate model can be considered to meet the engineering accuracy require-
ments. As discernible from Fig. 9a, the RMSE values of the Kriging model at a rotational speed less than 60 rpm 
remain below 0.003(the RMSE value is still less than 0.003) at all sample points, exhibiting no significant fluc-
tuations with the increase in iteration steps (the RMSE value is still less than 0.003). This suggests that a highly 
accurate Kriging model can already be established from the initial sample points, with no overfitting observed 
upon the addition of more sample points. Moreover, the RMSE values of the Kriging models at rotational speeds 
of 90rpm and 120rpm initially exhibit considerable fluctuations and are greater than 0.003. However, as the 
number of iteration steps increases, the RMSE values of both models gradually converge to less than 0.003 after 
about 175 sample points and remain so at the 200th step. Hence, it can be concluded that when the number of 

Table 4.  Results of the different global optimization algorithm for texture parameters.

Global 
optimization
algorithm

Initial 
Sample
strategy

Sequential 
sampling
criterion MRE MaxRE (%) RMSE Opt.predict Error(%) Std

MEGO OLHS MEI 5.3 22.9 0.0046 0.0439 1.4 0.0006

EGO OLHS EI 5.7 25.1 0.0049 0.0446 3.0 0.001

Kriging+GA OLHS – 5.2 24.7 0.0046 0.0501 15.7 0.0057

RBF+GA OLHS – 11.1 38.9 0.0085 0.0732 69.1 0.0145

BP+GA OLHS – 7.2 32.7 0.0063 0.0621 43.4 0.0083

GA – – – – – 0.0538 24.2 0.0065

Figure 8.  Comparison of the five different global optimization algorithm.
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sample points is set to 200, the Kriging model at this juncture meets the accuracy requirements. As depicted 
in Fig. 9b, no changes are observed in the minimum friction coefficient values as the number of iteration steps 
increases when the number of sample points exceeds 130. From the previous analysis of the MEI, it is recognized 
that the MEI is capable of balancing local development and global exploration. No further reductions in the fric-
tion coefficient are observed when the number of sample points increases from 130 to 200. Consequently, it can 
be inferred that the proposed algorithm has potentially located the global minimum of the friction coefficient.

The optimal texture parameters are determined using the MEGO. The base design, built on experiential 
knowledge, acts as a reference group. The optimal design, reference group, smooth surface, and corresponding 
friction coefficients at various rotational speeds are showcased in Table 5. The percentage improvement in the 
friction coefficient after optimization is illustrated in Fig. 10. The pressure distributions and texture profiles of 
the optimal design and its reference group are depicted in Figs. 11 and 12, respectively.

As indicated in Fig. 11a, rapid shifts in pressure distribution can be observed in the vicinity of the dimples. The 
peak pressure is found at the starting position of the dimples along the sliding direction, a result of the additional 
hydrodynamic pressure from the converging wedge within this region. Conversely, a diverging wedge appears at 
the terminal position of the dimples along the sliding direction, inducing a negative pressure where cavitation 
transpires due to the Reynolds boundary conditions. Given the larger area of the positive pressure zone compared 
to the negative pressure zone and the influence of Reynolds boundary conditions, the textured area can provide 
an additional hydrodynamic load-bearing capacity. However, as shown in Fig. 12a, the additional hydrodynamic 
effects are not pronounced, and load-bearing is primarily facilitated by asperity contact. This leads to a reduction 
in film thickness and subsequently a gradient descent of pressure distribution along the radial direction across 
the entire surface, attributable to varying helix angles at the corresponding radius.

Table 5 demonstrates that all optimal texture parameters contribute positively to the reduction of the fric-
tion coefficient of the helical pair, with the extent of influence being associated with rotational speed. This can 
be attributed to the significant impact of sliding movement on the aforementioned additional hydrodynamic 
load-bearing capacity, as displayed in Fig. 11a. A certain range of high rotational speed can enhance this capacity. 
Moreover, the friction coefficient of the reference group exhibits negligible sensitivity to the rotational speed, 
implying scarce production of additional hydrodynamics within the reference group. At lower rotation speeds, 
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Figure 9.  Convergence histories for various rotational speed (a) RMSE (b) Minimum friction coefficient.

Table 5.  Final optimization results at different rotational speeds.

ω/rpm Design category rt Zr Zc φ/rad hd/um (µcof )min Smooth(µcof )min

15
Optimum 3 2 4 0 3.7 0.0759

0.0795
Reference 1 6 24 0 20 0.0801

30
Optimum 3 2 6 0 4.1 0.0702

0.0805
Reference 1 6 24 0 20 0.0800

60
Optimum 3 2 6 0 4.0 0.0598

0.0819
Reference 1 6 24 0 20 0.0810

90
Optimum 3 2 6 0 5.3 0.0518

0.0833
Reference 1 6 24 0 20 0.0815

120
Optimum 3 2 6 0 4.5 0.0439

0.0847
Reference 1 6 24 0 20 0.0801
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Figure 10.  Percentage increase in friction coefficient.

Figure 11.  Optimum design of surface texture. (a) Pressure distributions. (b) Top view of texture profile.

Figure 12.  Initial design of surface texture. (a) Pressure distributions. (b) Top view of texture profile.
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such as 15 rpm, the friction coefficient can be curtailed by 4.5% using optimal texture parameters, while it 
experiences a 0.7% increase in the reference group. Although the impact on the friction coefficient is minimal 
in both cases, it reveals that the effectiveness of texture design in enhancing hydrodynamic lubrication is limited 
at very low rotation speeds. Consequently, both optimal and initially designed texture parameters yield similar 
outcomes, suggesting that the surface texture design of the helical pair could better serve as a secondary lubrica-
tion and wear particle accommodation mechanism rather than providing additional hydrodynamic lubrication.

At higher rotation speeds, the optimal texture design significantly curtails the friction coefficient, which stands 
at 0.0439 at 120 rpm. Compared to an untextured helical pair, the friction coefficient is reduced by 48.2% in 
the optimal texture design, while the reference group only achieves a 5.4% reduction. This translates to a 45.2% 
improvement in friction coefficient post-optimization, indicating that the friction coefficient is highly sensitive 
to texture parameters. A well-structured surface texture facilitates the generation of additional hydrodynamic 
lubrication at relatively high speeds.

Beyond 30 rpm, the optimal texture parameters remain almost unchanged and could be chosen as the opti-
mal design for the helical pair, considering the limited influence of surface texture on friction coefficient at 
extremely low speeds. The optimal texture parameters are as follows: The number of radial dimples Zr is 2, the 
number of circumferential dimples Zc is 6, the dimple depth hd is 4-5.5 um, the axial ratio of the ellipse rt is 3, 
and the orientation of the major axis φ is 0 ◦ . The geometric characteristics of the optimal texture parameters 
can be summarized as follows: a relatively small number of dimples in the radial and circumferential direction, 
implying larger dimple diameter and spacing, an appropriate dimple depth, a relatively flat ellipse shape, and an 
elliptical dimple shape with its major axis parallel to the sliding direction. These characteristics greatly enhance 
the hydrodynamic effect and significantly reduce the friction coefficient. The geometric characteristics of the 
optimal results align well with the study conducted by Yousfi et al.41, corroborated by experimental results. This 
is also evidenced by Fig. 11a, where compared to the reference group’s relatively large number of deep, circular 
dimples shown in Fig. 12a, the smaller number of shallow, elliptical dimples with a sliding direction parallel 
to the major axis creates a larger converging wedge, thus generating more additional hydrodynamic pressure.

Effects of multiple parameters on friction coefficient
Given that a rotational speed of 120 rpm is a typical operating condition for the HHRA, and the most notable fric-
tion reduction effect is achieved at this speed following texture optimization, all subsequent parameter analyses 
will be conducted at 120 rpm. Moreover, the final values for the correlation parameter θk in the Kriging model, 
after iterations, are [0.0625, 0.0210, 4.0000, 2.6918, 0.7430].

Understanding the impact of each design variable on the optimization target is crucial. To intuitively and 
quantitively estimate the influence of each parameter on the friction coefficient, a popular global sensitivity analy-
sis method, Sobol’s  method42, is utilized based on the built surrogate model. Figure 13a depicts the results where 
the bar lengths represent the total order sensitivity index and the first order sensitivity index, signifying the level 
of importance in affecting the friction coefficient. While the first order sensitivity index quantitively illustrates 
the significance of each variable, the total order sensitivity index conveys not just the effect of each variable on 
the target but also the interrelations among all design variables. As depicted in Fig. 13a, the first order sensitivity 
indices for the optimum axial ratio of the ellipse rt , the number of radial dimples Zr , the number of circumferen-
tial dimples Zc , the dimple depth hd , and the orientation of the major axis of the ellipse φ are 0.006, 0.012, 0.024, 
0.808 and 0.028, respectively. Corresponding total order sensitivity indices are 0.017, 0.022, 0.097, 0.919, and 
0.115. The markedly higher first order sensitivity indices of the dimple depth demonstrate its major contribution 
to the friction coefficient of the helical pair under these conditions. The negligible difference between the first 
order and total order sensitivity of hd suggests that, with constant area density, the effects of interactions between 
hd and other parameters on the friction coefficient are minimal and largely mutually independent, underscor-
ing the pivotal role of dimple depth in lubricating film formation. With increased dimple depth, both the local 
additional hydrodynamic pressure and lubricating film thickness decrease, leading to enhanced micro-contact 
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Figure 13.  Analysis of sensitivity and correlation. (a) Sensitivity index. (b) Correlation index.
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of asperities between the contact surfaces and subsequently, a rise in friction coefficient, and vice versa. Apart 
from dimple depth, the first order sensitivity indices of other parameters are quite marginal. However, the total 
order sensitivity indices of these parameters significantly surpass their first order counterparts, particularly for 
Zc and φ , where total order sensitivity indices are approximately four times their first order sensitivity indices. 
This indicates that interactions among parameters, excluding dimple depth, have a greater influence on the fric-
tion coefficient than individual parameters. In essence, individually modulating parameters apart from dimple 
depth may not significantly alter the friction coefficient. However, adjusting these parameters in unison could 
considerably affect the friction coefficient. Therefore, it is crucial to judiciously match parameter relationships 
to positively impact friction reduction.

While the aforementioned sensitivity analysis can assist in understanding the degree to which each design 
variable of the texture structure impacts the friction coefficient, it does not reflect the relationship of the friction 
coefficient with variations in the design variables. In addition, the accuracy of the sensitivity analysis, which is 
based on a surrogate model, necessitates further verification. Therefore, this study employs the Spearman rank-
order  correlation43 to further investigate the relationship between the design variables and the objective function, 
and simultaneously verify the accuracy of the sensitivity analysis. Figure 13b exhibits the correlation coefficients 
of each design variable. It is found that the friction coefficient positively correlates with Zr and hd , and negatively 
correlates with rt , Zc , and φ . The correlation coefficient value of hd is greater than 0.8, indicating a strong positive 
correlation between the friction coefficient and the dimple depth. Consequently, a reasonable reduction in the 
dimple depth can effectively lower the minimum pressure. The absolute values of the correlation coefficients of 
the remaining design variables do not exceed 0.5. Therefore, it can be inferred that there is a lack of tight connec-
tion between the friction coefficient and the design variables, excluding hd . This is consistent with the conclusion 
derived from the sensitivity analysis, further verifying its accuracy. The aforementioned correlation analysis and 
sensitivity analysis offer an effective method for exploring the internal relationships of the coupled parameters.

Figure 14 presents the contour plots of the friction coefficient, where each subplot reveals the influence of 
two design variables on the friction coefficient while the remaining variables are held at their median values, 
derived from the averages of the respective upper and lower boundaries. The contour plots related to hd exhibit 

Figure 14.  Multiple plots of friction coefficient with respect to design variables.
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the maximum friction coefficient difference of 0.0223, surpassing that of other design variables. This suggests that 
hd adjustments can significantly alter the friction coefficient, establishing its pronounced influence. Conversely, 
other design variables individually exert a lesser effect compared to hd , particularly for Zc and rt . This pattern 
aligns with the results in Fig. 13a. Moreover, in contour plots associated with hd , the minimum friction coefficient 
value consistently appears near the first quintile of the hd range, approximately 4 mm. These parameters align 
with the optimal results from 5.2. The large gradient around this value shows that minor hd adjustments in this 
region can noticeably change the friction coefficient. In contrast, within the posterior two-thirds of the range, 
the small gradient signifies a lack of sensitivity of the friction coefficient to fluctuations in hd . This indicates 
that with other design variables fixed, the friction coefficient markedly decreases to the trough and then slowly 
ascends with an increase in hd . Additionally, in the φ − Zc contour plot, the maximum friction coefficient dif-
ference is 0.0160, whereas the remaining plots unrelated to hd do not exceed 0.008. This suggests the significant 
influence of the combined effect of φ and Zc on the friction coefficient. The variables φ and Zc directly determine 
the circumferential distance between the dimples, significantly impacting the hydrodynamic effects. Increasing 
Zc and adjusting φ to favor the sliding direction reduces this distance, causing the additional hydrodynamic 
load capacity generated by each adjacent dimple to interact, thereby affecting the overall friction coefficient. In 
contrast, opposite adjustments to Zc and φ will increase the distance, reducing the interaction impact, which is 
directly reflected in the friction coefficient change. This principle is consistent with the results in Fig. 13a, where 
the total order sensitivity indices of φ and Zc are approximately four times their first order sensitivity indices.

From the above analysis, it is apparent that the friction coefficient is mainly influenced by the independent 
effect of hd , as well as the combined effect of φ and Zc . To further explore whether the combined effect of φ and 
Zc on the friction coefficient changes with variations in hd , other design variables are set to intermediate values. 
Figure 15 respectively illustrate the trend of friction coefficient changes with φ and Zc at different dimple depths 
hd . It can be observed that all surfaces exhibit a “saddle shape”, i.e., they bulge at the sides and middle in the Zc 
direction and are concave at the sides and bulge in the middle along the φ direction. The consistency across all 

Figure 15.  Relationship of µcof with variations in Zc and φ at different hd . (a) hd = 5 um (b) hd = 10 um (c) 
hd = 15 um (d) hd = 20 um.
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surfaces also suggests that the combined effect of φ and Zc is minimally influenced by hd . Furthermore, within 
all surfaces, the friction coefficient generally escalates with the increase of hd , which is in agreement with the 
previous analysis.

Conclusion
This paper introduces a modified efficient global optimization method predicated on the Kriging model, devised 
to optimize the surface texture of the helical pair in HHRA. Initially, a surrogate model was constructed by inte-
grating the lubrication model of the helical pair with MEGO. Subsequently, to affirm the efficacy of the proposed 
MEGO in surface texture design, a comparative analysis involving MEGO and multiple prevalent global optimiza-
tion algorithms was undertaken. Ultimately, surrogate-based optimization and analysis were executed with the 
goal of minimizing the friction coefficient. Based on the analyses and results, the ensuing conclusions are made:

(1) Upon comparing various evaluation indices of the global optimization algorithms, the MEGO, in contrast 
to the EGO, Kriging + GA, BP + GA, and RBF +GA, demonstrates admirable proficiency in predicting the friction 
coefficient and optimizing texture parameters. This suggests that the MEGO can procure the optimal solution 
more rapidly while sustaining prediction accuracy.

(2) The dimple depth exerts the most substantial influence on the friction coefficient of the textured helical 
pair when the area density remains unchanged. Furthermore, the design parameters, excluding the dimple depth, 
interact mutually, exerting a more pronounced effect on the friction coefficient than any individual parameter, 
particularly in terms of the interaction between the orientation of the major axes of elliptical dimples and the 
number of circumferential dimples.

(3) Optimal texture parameters imply that large-sized, relatively flat elliptical texture features, with an appro-
priate dimple depth and the major axis oriented along the sliding direction, result in the most substantial reduc-
tion of the friction coefficient in the mixed lubrication regime.

(4) With the optimal texture parameters, the friction coefficient can be curtailed by as much as 45.2% com-
pared with the initial design, underscoring the effectiveness of the proposed method in the surface texture 
optimization design process for superior tribological performance.

Data availibility
The optimization process in this paper is based on the MATLAB. All necessary details are included in the paper 
and the other non-confidential solution files relevant to the present study can be obtained by contacting the 
corresponding author.
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