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Diversity of symptom phenotypes 
in SARS‑CoV‑2 community 
infections observed in multiple 
large datasets
Martyn Fyles 1,2,3, Karina‑Doris Vihta 4,5,6, Carole H Sudre 7,8, Harry Long 3, 
Rajenki Das 1, Caroline Jay 2,9, Tom Wingfield 10,11,12, Fergus Cumming 3, William Green 3, 
Pantelis Hadjipantelis 3, Joni Kirk 3, Claire J Steves 13,14, Sebastien Ourselin 7, 
Graham F Medley 15,16, Elizabeth Fearon 15,16,17,19 & Thomas House 1,2,18,19*

Variability in case severity and in the range of symptoms experienced has been apparent from the 
earliest months of the COVID‑19 pandemic. From a clinical perspective, symptom variability might 
indicate various routes/mechanisms by which infection leads to disease, with different routes requiring 
potentially different treatment approaches. For public health and control of transmission, symptoms 
in community cases were the prompt upon which action such as PCR testing and isolation was taken. 
However, interpreting symptoms presents challenges, for instance, in balancing the sensitivity and 
specificity of individual symptoms with the need to maximise case finding, whilst managing demand 
for limited resources such as testing. For both clinical and transmission control reasons, we require 
an approach that allows for the possibility of distinct symptom phenotypes, rather than assuming 
variability along a single dimension. Here we address this problem by bringing together four large 
and diverse datasets deriving from routine testing, a population‑representative household survey 
and participatory smartphone surveillance in the United Kingdom. Through the use of cutting‑edge 
unsupervised classification techniques from statistics and machine learning, we characterise symptom 
phenotypes among symptomatic SARS‑CoV‑2 PCR‑positive community cases. We first analyse each 
dataset in isolation and across age bands, before using methods that allow us to compare multiple 
datasets. While we observe separation due to the total number of symptoms experienced by cases, 
we also see a separation of symptoms into gastrointestinal, respiratory and other types, and different 
symptom co‑occurrence patterns at the extremes of age. In this way, we are able to demonstrate the 
deep structure of symptoms of COVID‑19 without usual biases due to study design. This is expected to 
have implications for the identification and management of community SARS‑CoV‑2 cases and could 
be further applied to symptom‑based management of other diseases and syndromes.
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Since the identification of the SARS-CoV-2 virus, the COVID-19 pandemic has led to over 700 million confirmed 
cases and 7 million confirmed deaths. In response to this, one of the largest ever public health responses has been 
mounted, with over 13 billion vaccine doses administered and a large variety of non-pharmaceutical interventions 
that have fundamentally changed behaviour and healthcare provision around the world since the start of  20201–3.

Understanding the clinical presentation and course of SARS-CoV-2 infection has been central for trans-
mission control, particularly in determining policy for identification of cases for isolation and tracing of their 
 contacts4,5, and for prediction of clinical outcomes. COVID-19 cases can present with symptoms from a wide 
range of categories: respiratory, systemic, cardiovascular and  gastrointestinal6, with high variability in severity 
of disease between individuals depending strongly on age, and on factors including  comorbidities7,8. In addition, 
a significant proportion of infections are estimated to remain  asymptomatic9. Analyses of symptom clustering 
patterns amongst hospitalised patients have helped to improve clinical  care10, while longitudinal clustering 
approaches contribute to early identification of cases more likely to experience severe  outcomes11, though these 
cases will be those with the more severe disease course.

Targeted population transmission control policies that do not simply require the whole population to avoid 
contact, with all the damage that this entails, require identifying infectious cases. In the absence of regular 
population-wide screening approaches, case identification requires a symptoms-based approach, and this was a 
central pillar in the UK’s COVID-19 response from May 2020 until April 2022. Over this time period, PCR testing 
was initiated when individuals from the broader population experienced at least one of; fever, new continuous 
cough or loss of taste or smell. Because PCR testing requires laboratories and associated staffing and logistical 
networks, there was a need to balance the sensitivity of symptom criteria for testing with specificity, given the 
varieties of infections and syndromes that could give rise to the relevant symptoms. Thus, the effectiveness of 
testing, contact tracing and isolation policies were dependent in part on the performance of the symptom criteria 
for testing. A number of single study analyses in the UK have sought to investigate and to improve upon these 
criteria, sequentially adding or dropping symptoms to better optimise the sensitivity and specificity trade-off12,13. 
While valuable, these approaches essentially assume a single phenotype, whereas it is possible that multiple 
phenotypes exist and, therefore, that the trade-off cannot be optimised in this manner.

Assessment of the diversity of genotypes and (endo-)phenotypes is a long-standing tool in both infectious 
diseases and chronic non-communicable diseases, which has been significantly accelerated by modern experi-
mental and theoretical  techniques14–16. In particular, such analysis often helps with the standard process of 
identifying multiple disease aetiologies with the same presentation, or vice versa, a single disease with highly 
variable outcomes. This latter distinction is particularly important for COVID-19, where different courses of 
action, including public health interventions, are taken depending on symptom  status17. Beyond the acute phase 
of the disease, consideration of different potential ‘long COVID’ phenotypes based on symptom status could 
help to identify more or less appropriate treatment approaches.

Here, to investigate the presence of distinct COVID-19 symptom phenotypes, we investigate patterns of 
symptom occurrence, co-occurrence and clustering in PCR-positive symptomatic SARS-CoV-2 cases – previously 
considered predominantly in hospitalisation data heavily skewed towards more severe  infections10,11,18 – in four 
very large community-based datasets.

Methods
Data
Population and setting
We examine identified infections for the time period May 2020 to March 2021 in the UK. Due to this data col-
lection time period, and the effects of vaccination on preventing disease, we expect the datasets to contain pre-
dominantly unvaccinated individuals. These datasets are diverse in their sampling and data collection methods 
and include (a) 1,637,965 symptomatic cases from ‘Pillar 2’ testing data from the National Health Service (NHS) 
Test and Trace system, designed to capture cases in the general population; (b) 112,925 symptomatic cases from 
the Second Generation Surveillance System (SGSS) in England’s national laboratory reporting system, which 
includes cases associated with healthcare settings among patients and healthcare staff; (c) 52,084 symptomatic 
self-reported cases from the COVID-19 Symptom Study (CSS), which uses a smartphone app associated with 
https:// COVID. joinz oe. com/ to collect daily symptom reports; and (d) 9,166 symptomatic cases from The Office 
for National Statistics COVID-19 Infection Survey (CIS), a longitudinal study of a representative sample of UK 
households.

NHS test and trace routine testing data
NHS Test and Trace data is further split into two parts: Pillar 2, cases detected in the community, usually on the 
basis of symptoms to initiate testing; and the Second Generation Surveillance System (SGSS), for people tested 
in healthcare settings. In May 2020, the UK government made PCR testing available for individuals who had one 
of the following symptoms: a new, continuous cough; fever; loss of taste or loss of smell. These tests are reported 
through Pillar 2, through which several different avenues to testing are available. Individuals can book a test 
appointment through a government website for either a drive-in or walk-through testing centre, where they self-
swab their nose and throat (under some supervision, with an adult carer conducting the swabbing for children), 
with the swab then sent to a lab for PCR testing. Alternatively, individuals can order home test kits where they 
self-swab at home and post the kit back, with the swab again sent to a lab for PCR testing. If the individual tests 
positive, their case is transferred to NHS Test and Trace who contact cases to inform them of their result and 
ask them to conduct a questionnaire including symptoms experienced. The questionnaire is conducted either 
via a web form or over the phone with a trained contact tracer. Since the end of 2020, Pillar 2 has also included 
positive cases identified using rapid antigen tests among people not experiencing one of the PCR test prompting 

https://COVID.joinzoe.com/
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symptoms. These tests also use a nasopharyngeal swab and are conducted at the home, workplace or school and, 
if positive, are requested to be followed up by a confirmatory PCR test (though policy has varied over time). 
Reported positive cases from asymptomatic testing are also followed up by NHS Test and Trace.

The Second Generation Surveillance System (SGSS) dataset includes people who test because they work in 
or have been tested in a healthcare setting as a patient. This latter group includes both those in hospital because 
of severe COVID-19 symptoms, but also those in hospital for other reasons but receiving SARS-CoV-2 testing. 
Thus they are likely, to be more severe cases in the SGSS versus Pillar 2 data, but not exclusively. Again, individuals 
are swabbed and PCR tested, with their case transferred to NHS Test and Trace if testing positive for symptom 
reporting and contact tracing.

COVID symptom study (CSS)
The CSS is a participatory surveillance study collecting data via a smartphone app. It is led by Kings College 
London and Zoe Global Ltd and was initiated in March 2020 in the United Kingdom and the United  States19. 
Individuals are asked to report daily whether they are feeling ‘physically normal’ that day and, if not, what symp-
toms they are experiencing. As well as demographic data that is collected upon sign-up, participants are also 
asked to self-report whether they have had any tests for SARS-CoV-2 infection and, if so, the date of the test and 
its result. Demographic data and data about underlying conditions are collected at first registration. Participants 
can also proxy-report for children or for others they care for (e.g elderly adults they care for).

As well as enabling individuals to self-report COVID-19 testing that they have undertaken via the UK’s 
routine testing programmes or surveillance studies, the CSS invites individuals to complete a PCR test via rou-
tine testing if they 1) have made at least one report of no symptoms in the previous week and 2) report a new 
symptom not on the list to prompt symptomatic testing (e.g sore throat). This means that we might expect the 
CSS reporting to be less dominated by the symptoms required to initiate symptom-based testing than the Pillar 
2 routine testing dataset.

ONS COVID-19 infection survey (CIS)
The CIS is a UK population-representative survey of households randomly selected continuously since April 2020 
from address lists and previous  surveys20. Households are followed longitudinally with weekly visits for the first 
month and monthly visits for 12 months from enrolment. A fieldworker attends enrolled households each visit 
for testing for household members aged 2 years and above and to conduct an interview including, among other 
topics, demographic data (reported at the first visit) and symptoms experienced over the previous 7 days. At each 
visit, participants conduct a nose and throat swab under the supervision of a fieldworker. These swabs are sent 
for PCR testing, and the result is communicated to participants. At the same time as swabbing, all participants 
are also interviewed by the fieldworker to complete a symptom questionnaire.

Data extraction and preparation
From each dataset, we extract all PCR-positive individuals and associate them with symptoms experienced 
within a time window of the test appropriate for the dataset. More detail about each dataset, data collection and 
extraction are given in the Supplementary Materials. For the i-th individual and a-th symptom, we let Xia = 1 
if the symptom is present during the time window around the positive test and Xia = 0 otherwise. For a dataset 
with n individuals measuring p symptoms, we can then construct an n× p matrix [Xia] , where the rows of this 
matrix form a set of n length-p feature vectors for individuals, {yi} , and the columns form a set of p length-n 
feature vectors for symptoms, {xa} , each of which can then be used as input for unsupervised learning algorithms. 
In addition to descriptive analysis of the data, we used three complementary approaches to looking at clustering 
and co-occurrence of symptoms.

Sample populations
The dates over which cases are collected from each study are shown in Table 1 and in total cover the period from 
April 2020 to March 2021, with the largest overlap between November 2020 and January 2021. We make no 
exclusions based on age or other characteristics.

From each dataset, we include only cases that report at least one symptom within the symptom reporting 
window around a positive test (detailed below and listed in Table 2). For NHS Test and Trace data, positive cases 
who are never reached and interviewed post-testing are not included in this dataset. The definition of ‘sympto-
matic’ necessarily varies across the datasets because there are differences in the full list of symptoms asked about. 
Symptoms that were not core dataset variables and were instead recorded by manual entry were not included. 
For each dataset, we chose to include all dataset symptoms from each study (except for ‘write-in’ symptoms), 
rather than excluding symptoms that were not common across all. This was with the intention of maximising the 
amount of symptom information available for analysis. We also extracted demographic information.

It is expected that symptom data from the same PCR-positive cases is captured across the NHS Test and Trace, 
CIS and CSS datasets. Explicit deduplication of individuals across datasets was not performed but is expected 
to have no impact on the findings.

The proportion of symptomatic cases varies significantly between datasets, reflecting their different sam-
pling. NHS Test and Trace Pillar 2 and CSS both have the highest number of symptomatic cases, which is not 
surprising given that both datasets mainly focus on symptom-initiated testing. The NHS Test and Trace SGSS 
dataset has the next highest proportion of symptomatic cases. We expect to see some asymptomatic screening 
in SGSS populations, which may explain the decrease in symptomatic cases when comparing Pillar 2 to SGSS. 
In the CIS study, we see a much smaller proportion of symptomatic cases, likely due to the sampling strategy 



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21705  | https://doi.org/10.1038/s41598-023-47488-9

www.nature.com/scientificreports/

being independent of symptoms, therefore resulting in asymptomatic and pre-symptomatic individuals testing 
positive and being included in the study.

The Pillar 2 routine testing contributed by far the largest number of cases to the study, with CIS the fewest. 
While all datasets contained a slight female majority, with CSS the largest (61.8%), there was some variability in 
the age distribution of cases (Fig. 1); Pillar 2 routine testing was the youngest, while SGSS included the oldest 
groups. This is likely to be because SGSS more heavily represents a hospitalised population. CSS and CIS are 
UK-wide, while NHS Test and Trace data contains cases testing in England.

The characteristics of the infected subpopulation relative to the general UK population have likely changed 
over time for a multitude of reasons; different levels of restrictions and lockdown across different localities, vac-
cination coverage and uptake, varying prevalence, weather, levels of outdoors mixing, incentives to ignore social 
distancing, workplace/school closures and changing availability of testing. Moreover, each study and route of 
data collection results in different samples of the infected population. The CIS is a population-based household 
sample and thus should be broadly representative (participation biases aside), those discovered through routine 
testing (NHS Test & Trace) may overrepresent a population adherent to testing guidance, those prone to more 
severe infections and the sub-populations with the highest prevalence and testing-seeking behaviour. For the 
CSS’s app-based reporting, then the sub-populations with high levels of smartphone ownership and compliance 
are likely to be over-represented.

Symptom data
Data is collected at the level of the symptoms experienced by an individual, and for the majority of datasets we 
have a binary outcome of whether an individual experienced a symptom or not. Exact symptom questions and 
lists are given in Table 2. In CSS, an individual is able to choose from several levels of fatigue: “none”, “mild” or 
“severe”. Our planned analyses are designed to work with binary data, and as a result, we map multiple levels into 
a binary outcome variable. When performing this mapping, we choose to merge levels together, with the aim 
of making the symptoms as comparable as possible to what is reported in other datasets. Datasets with a binary 
fatigue variable report 40–60% of cases, which is consistent with most cases only reporting severe fatigue; if we 
included mild fatigue then we find that close to 80% of cases report fatigue which is inconsistent with what is 
reported in the other datasets.

Symptom reporting windows
The symptom reporting window and its timing relative to the positive test varies across the datasets. For CIS, par-
ticipants are asked about symptoms in the previous 7 days prior to testing. For cases contacted and interviewed 
by NHS Test and Trace (Pillar 2 and SGSS), individuals are asked to report symptoms that they are currently 
experiencing. For CSS, individuals are prompted to report symptoms daily but for this dataset, we include all 
symptoms reported in the 14 days before and 14 days after the date a positive test is reported (note this does not 
mean that all participants report symptoms with that level of frequency).

From the time of infection, individuals usually have a few days before they become symptomatic, while test 
sensitivity also varies over the course of infection, peaking around the time or just before symptom onset. Previ-
ous studies have also found patterns in the types of symptoms that present earlier versus later in the course of 
an  infection11. Across each of the included datasets, the time in an individual’s infection at which they are tested 
on average and over which they are asked to report symptoms varies. For CIS time of testing over the course of 

Table 1.  Descriptive statistics of the population in each dataset.

Variable

Dataset

Pillar 2 SGSS CSS CIS

Data collection variables

Start date 29/11/2020 29/11/2020 11/05/2020 28/04/2020

End Data 28/03/2021 28/03/2021 11/01/2021 13/03/2021

Location of participants England England UK UK

Age variables

Mean (years) 38 48 - 43

Median (years) 37 47 40-49 45

IQR (years) 26–51 32–62 – 29–57

Sex breakdown

Male 736,906 (45.0%) 42,355 (40.3%) 23,540 (38.2%) 4,142 (45.2%)

Female 875,545 (55.0%) 62,808 (59.7%) 38,051 (61.8%) 5,024 (54.8%)

Intersex – – 3 –

N/A – – 29 –

Sample sizes

Total dataset size 1,898,273 179,550 61,623 27,903

Symptomatic cases 1,637,965 (86.3%) 112,925 (62.9%) 52,084 (84.5%) 9,166 (32.8%)

Asymptomatic cases 260,308 (13.7%) 66,625 (37.1%) 9,539 (15.5%) 18,737 (67.2%)
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Table 2.  Symptom survey questions by dataset.

Variable Dataset

Test and Trace (Pillar 2 & SGSS) CIS CSS

Symptomatic
Are you experiencing any of the following symp-
toms? Please select at least one. (cases may select 
“I have no symptoms”)

Have you had any of the following 
symptoms in the last 7 days?

Are you feeling physically normal today? (I feel 
physically normal; I do not feel physically normal)

Abdominal pain – Abdominal pain Do you have an unusual abdominal pain?

Altered consciousness Altered consciousness – –

Altered/loss of smell – – Do you have a loss of smell/taste?

Chest pain – – Are you feeling an unusual chest pain or tightness 
in your chest?

Cough A new, continuous cough Cough Do you have a persistent cough?

Delirium – – Do you have any of the following symptoms: 
confusion, disorientation, or drowsiness?

Diarrhoea Diarrhoea Diarrhoea Are you experiencing diarrhoea?

Fatigue Extreme tiredness Weakness/tiredness Are you experiencing unusual fatigue? (mild; 
severe)*

Fever High temperature or fever (higher than 38◦C) Fever Do you have a fever?

Headache Headache Headache Do you have a headache?

Hoarse voice – – Do you have an unusually hoarse voice?

Joint pain Joint pain – –

Loss of appetite Loss of appetite – Have you been skipping meals?

Loss of smell – Loss of smell –

Loss of smell or taste
Loss or change to your sense of smell or taste (you 
cannot smell or taste anything, or things smell or 
taste different to normal)

– –

Loss of taste – Loss of taste –

Muscle ache Muscle ache Muscle ache Do you have unusual strong muscle pains?

Nausea Feeling sick (nausea) – –

Nausea / vomiting – Nausea/vomiting –

Nose bleed Nose bleed – –

Rash Rash – –

Rhinitis Runny nose – –

Seizures Seizures – –

Shortness of breath – Shortness of breath

Are you experiencing unusual shortness of breath? 
(no; yes mild symptoms/ slight shortness of breath 
during ordinary activity; yes significant symptoms 
-breathing is comfortable only at rest; yes, severe 
symptoms/ breathing is difficult even at rest)**

Sneezing Sneezing – –

Sore throat Sore throat Sore throat Do you have a sore throat?

Vomiting Vomiting – –

Figure 1.  Histograms showing the age density for each dataset. (a) Pillar 2, (b) SGSS, (c) COVID Symptom 
Study, (d) COVID-19 Infection Survey.
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infection should be random over the period at which someone will test PCR-positive; for data primarily from 
symptomatic testing, it should be a few days post-symptom onset (reflecting a delay between onset and test-
ing, test result and follow-up interview with Test and Trace). For CSS, the time of testing for many will reflect 
symptomatic testing in the community and some proportion of individuals with particular symptom reporting 
patterns are asked to obtain a test through NHS Test and Trace symptomatic testing routes.

Symptom classification
To aid interpretation we classify symptoms according to their clinical characteristics. These classifications were 
made a priori in consultation with an infectious diseases clinician (TW) with experience in caring for people 
with COVID-19 and without input from observed clustering patterns. We included systemic symptoms, lower 
respiratory, upper respiratory, gastrointestinal, altered state symptoms and ‘other’ symptoms that did not fit into 
any of these categories.

Research ethics
The secondary analyses described in this paper received ethical approval from the London School of Hygiene 
and Tropical Medicine (22752). The COVID Symptom Study was approved by the Partners Human Research 
Committee (Protocol 2020P000909) and King’s College London ethics committee (REMAS ID 18,210, LRS-
19/20-18,210) and the CIS received ethical approval from the South Central Berkshire B Research Ethics Com-
mittee (20/SC/0195). All methods were performed in accordance with the relevant guidelines and regulations. 
Informed consent was obtained from all subjects and/or their legal guardian(s).

Analysis
We describe the frequency with which each symptom was reported in each dataset, categorising them using 
our symptom classification. We then perform three unsupervised learning techniques, each with a different but 
complementary aim. Our goal is to understand patterns of symptom co-occurrence and if there is any evidence 
of symptom clustering, as multiple distinct clusters would be evidence for the existence of distinct COVID-19 
symptom phenotypes.

Jaccard distance
We use a variety of methods to understand the behaviour of symptoms and the analyses are sometimes performed 
on the Jaccard distance matrix of symptoms. Letting xi be the feature vector constructed from the presence or 
absence of symptom i in cases, which has k-th element xik , the Jaccard distance between two such vectors is 
defined as

The simple interpretation of Jaccard distance is then; the proportion of cases who did not experience both 
symptoms i and j, given that they experienced at least one of symptoms i or j. In the case of missing data, the 
Jaccard distance is computed using only the subset of individuals for which there is no missing data for either 
symptoms i and j.

Hierarchical clustering
This method starts with a set of symptoms, and the feature vector for each is constructed from their presence 
or absence in individuals with a positive test and report of at least one symptom (i.e. those positive cases not 
excluded as asymptomatic). The Jaccard distance is used as an appropriate metric for such binary data. Clusters 
of symptoms are agglomeratively joined on the dendrogram produced on the basis of the maximum distance 
between cluster members (called ‘complete linkage’). Symptoms with a low shortest distance between each other 
on the final dendrogram tend to co-occur, and those with a long distance are not often both present. Clusters 
can also be identified by ‘cutting’ the dendrogram at a given distance.

Logistic PCA (LPCA)
LPCA is an extension of principal component analysis (PCA) to binary data, and reduces the dimension of the 
symptom space in a manner that preserves the maximum level of variance between individuals (rather than 
symptoms)21. The projection values of symptoms onto lower-dimensional basis are called loadings, and these 
demonstrate the directions in which individual phenotypes most commonly vary. In practice, the first com-
ponent is likely to have relatively even contributions from each of the symptoms, and will represent an overall 
severity of illness at the individual level, with subsequent components demonstrating more subtle ways in which 
symptoms can vary.

Given an n× p binary data matrix X = [Xia] ∈ {0, 1}(n×p) , our aim is to find a low dimensional representation 
of the natural parameter matrix � = [θia] , where P(Xia = 1) = logit −1(θia) . This is achieved by finding �̂k , 
a rank-k approximation of � such that the Bernoulli deviance, DBer(X; �̂k) is minimised. This is conceptually 
related to logistic regression models, as these also attempt to minimise the Bernoulli deviance. In practice, the 
minimisation is solved over U ∈ R

k×p , such that UU⊤ = I , with �̂k = UU
⊤
X . The column vectors of U  are the 

loadings onto the principal components.
As with all dimensionality reduction techniques, we need to choose the number of dimensions in our low-

dimensional approximation. We follow the recommendation of Landgraf and  Lee21, and examine the change in 

(1)DJac(xi , xj) = 1−

∑n
k=1 xikxjk∑n

k=1(xik + xjk − xikxjk)
.
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the Bernoulli deviance as we increase k. Consider a rank-0 approximation, where �̂0 = 1nµ̂
⊤ for µ̂ ∈ R

n . That 
is to say that the natural parameter matrix contains a constant value in every column. This is treated as the null 
model, to which all other models are compared.

For a model with k components, the proportion of Bernoulli deviance explained relative to the null model 
is given by

If k = p , then DBer(X; �̂k) = 0 , as the model is saturated and logit −1θ̂ia = Xia , thus resulting in P(d) = 1 . This 
means that P(k) can be interpreted similarly to standard PCA, in the sense that P(k)× 100% of the variance 
is explained by the first k components. The marginal Bernoulli deviance, M(k), is the change in the Bernoulli 
deviance explained by adding the kth component, for k ≥ 1 , defined as

When selecting the number of components in our low-dimensional representation of the data, we primarily 
focus on the marginal Bernoulli deviance and aim to find the largest k such that for k′ > k the marginal Bernoulli 
deviance decreases rapidly. We also examine the proportion of Bernoulli deviance explained - if this gets close 
to 1, then that suggests we have selected too many components and are over-fitting.

In practice, two hyperparameters need to be chosen for logistic PCA: the number of components k ∈ N , and 
m ∈ R+ which controls the magnitude of the loadings. The optimal choice of m varies depending upon k and is 
selected by leave-one-out cross-validation for a range of proposed m values.

An example of the model selection is plotted in Fig. 2. In the plotted example, we would choose k̂ = 2 , indi-
cated by the vertical dashed line. This is due to the first two components, having a significantly higher marginal 
Bernoulli deviance than all models with k > 2 components. The marginal Bernoulli deviances for models where 
k ∈ {3, . . . , 8} have small differences between successive values of k, making it hard to favour one model over the 
other. For k > 8 , the marginal Bernoulli deviance does decrease rapidly; however, at this point we have explained 
close to 100% of the Bernoulli deviance and are overfitting the model at this point. Hence, for this example we 
choose k̂ = 2.

If we select k = 2 components, then approximately 33% of the Bernoulli deviance of the saturated model is 
explained. In classic principal component analysis, ideally, the model would find a number of components that 
explains as close to 100% of the variance while not overfitting to noise. In logistic principal component analy-
sis, however, if a model explains close to 100% of the Bernoulli deviance relative to the null Model, then this is 
indicative of dramatic over-fitting. For example, the saturated model where k = d will exactly reproduce the input 
data and explains 100% of the Bernoulli deviance. The true natural parameter matrix will not explain 100% of 
the Bernoulli deviance, as it tells us about the probability of a symptom occurring; this will lead to a non-zero 
Bernoulli deviance. As such, our goal is not to explain 100% of the Bernoulli deviance, relative to the null model.

Model selection plots for the number of components k̂ can be found in the code repository for this paper 
(https:// github. com/ marty n1fyl es/ COVID Sympt omsAn alysi sPubl ic). During model selection, we found that in 

(2)P(k) = 1−
DBer(X; �̂k)

DBer(X; 1nµ̂
⊤
)
.

(3)MBer(k) := P(k)− P(k − 1) =
DBer(X; �̂k)− DBer(X; �̂k−1)

DBer(X; 1nµ̂
⊤
)

.

Figure 2.  (a) the proportion of the Bernoulli deviance explained using an LPCA model with k components. (b) 
the proportion of the Bernoulli deviance explained by adding the kth component to the model. In this example, 
we would select k = 2 as the true number of components, as indicted by the vertical dashed red line.

https://github.com/martyn1fyles/COVIDSymptomsAnalysisPublic
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the majority of cases we would definitively choose k̂ = 2 . In a small number of cases, it was ambiguous whether 
k̂ = 1 or k̂ = 2 . In these ambiguous cases, we have opted to take k̂ = 2 . Our reasons for doing so are: a priori, we 
believe at least two dimensions are necessary to capture the range of COVID-19 presentations; across all other 
datasets, we found that k̂ = 2 , which we believe increases the prior likelihood that k̂ = 2 in the ambiguous cases. 
However, due to this uncertainty, we have made available in the code repository LPCA plots where we have 
taken k̂ = 1 . Unlike in traditional PCA, LPCA components are dependent upon the total number of components 
selected, and as such PC1 for example differs depending upon the total number of components selected. This 
is why we must rerun the analysis when we take k̂ = 1 and present these results separately to results produced 
where we set k̂ = 2.

UMAP (Uniform manifold approximation and projection)
UMAP is a technique for dimension reduction of complex data based on pairwise distances between symptoms. 
In contrast to the other methods, it is designed to achieve good separation between unknown classes in the low 
dimensional space, and as such complements the other machine learning methods used above.

The specifics of the UMAP algorithm are mathematically complex, however, we will provide a brief overview 
of the algorithms’ strategy. For further details on UMAP, we refer readers to the original UMAP  paper22 and 
for practical demonstrations and visualisations we refer readers  to23,24. The first step of UMAP is to construct 
an object that describes the shape of the data in high-dimensional space. This object is, effectively, a weighted 
network where the edge weights represent the probability that two points are connected in the high dimensional 
space. Points in the high dimensional data are connected, based upon some locally defined notion of distance; 
if there are regions of the high dimensional space that are dense with points, then the algorithm requires points 
in that region to be very close when connecting them. If there are regions of the high dimensional space that 
are sparse, then larger distances are acceptable when connecting points. This locally defined notion of distance 
is important to ensure that all points in the high-dimensional space form a single connected component. Given 
this high-dimensional representation of the data, UMAP then attempts to find a network in the low-dimensional 
space that approximates the representation of the data in the high-dimensional space - this is referred to as 
an embedding and is what we later visualise. Particular attention is given to attempts to preserve the distances 
between points - but only the distances between points that are connected. By only preserving the most impor-
tant distances - those between points that are close in the high dimensional space - UMAP is able to produce 
good low dimensional representations of the high dimensional dataset, particularly when there are complex 
geometries involved.

The specifics of the UMAP algorithm result in some nuances when interpreting UMAP embeddings. Firstly, 
the embedding attempts to provide the shape of the data in the high-dimensional space. If the data is clustered 
in high dimensional space, then the data will also be clustered in the low dimensional space. However, due to 
the locally varying notion of distance, the compactness of the clusters will not be captured. In addition, if two 
points in the high-dimensional space are far away from each other, then they will not be connected, and as a 
result, UMAP will not attempt to preserve the distance between these points. As such, the exact distance between 
faraway points should not be over-interpreted. The rotation of UMAP plots is not important, only the overall 
shape of the data. Finally, UMAP is a stochastic algorithm, and there can be minor differences between runs.

To compute our embeddings, we computed the Jaccard distance matrix of symptoms and provided this as an 
input to UMAP, which we configured to embed the symptoms into a 2-dimensional Euclidean space.

For our datasets, it is also of interest to partition these into different segments of data, such as different age 
groups, and to compare how the clustering of symptoms changes across each of these segments. Performing this 
comparison is not straightforward using the base UMAP algorithm, however, as the resulting embeddings can 
preserve distances of the high dimensional data structure of each segment while looking visually distinct due to 
rotation or different layouts. To remedy this, AlignedUMAP is an extension of the base UMAP algorithm that 
attempts to solve this problem by enabling better comparisons between UMAP embeddings of different segments 
of data. Effectively, AlignedUMAP attempts to find an optimal embedding for each segment of a dataset, and 
then, as a secondary objective, to minimise the distance between embeddings of adjacent segments in the low 
dimensional space. This results in embeddings for different segments of data that can directly be compared to 
each other; we are able to see how distances in the high dimensional space change between segments.

We use AlignedUMAP to produce aligned embeddings for each dataset where we 1) partition the data into 
three large age bands of key groups (0-17 years, 18-54 years and 55 years), and 2) partition the data into 10-year 
intervals.

Additionally, we also use AlignedUMAP to align the embeddings produced by different datasets. Each dataset 
reports a different selection of symptoms, and consequently, the alignment between different datasets is based 
upon only a core group of symptoms that are shared across all datasets. By aligning the embeddings produced 
for different datasets, we facilitate easier comparison between datasets, and we can explore if datasets share a 
common underlying structure.

There are a wide number of UMAP hyperparameters that can be adjusted, and finding the optimal combina-
tion is not a solved problem to our knowledge. As part of a sensitivity analysis, we have opted to produce two 
UMAP outputs for each dataset, one configured to produce a tight clustering of symptoms, and another config-
ured to produce a loose clustering of symptoms. This is achieved by changing the number of neighbouring points 
that UMAP considers when constructing the high-dimensional representation of the data. As a result, smaller 
values of the n_neighbours parameter will configure UMAP to focus on local structures, and it may not capture 
the global structure - this produces what we refer to as a tight clustering and produces well-separated clusters. 
Setting the n_neighbours parameter to higher values will configure UMAP to focus less on the local structures 
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of the symptoms but produce a more general clustering of the data – this produces what we refer to as a loose 
clustering. Both loose and tight UMAP embedding will capture different parts of the symptom topology and pro-
duce complementary analyses. When we produce the loose UMAP embeddings that focus more upon the global 
structure of the data, we take n_neighbours = 4, and for the tight UMAP embeddings that focus more upon the 
local structure of the data, we take n_neighbours = 2. When using AlignedUMAP for the fine age strata, we align 
each segment of data with the two prior segments, and the two slice post the current segments. The numerical 
sizes of different age segments used are shown in Table 3. We discuss how other UMAP hyperparameters were 
selected in our Supplementary Materials S1.2, however, we briefly summarise that these other hyperparameters 
either had less impact on the resulting embeddings, provided that they were not set to extreme values, or could 
be reasonably selected after due consideration.

Analyses summary
We first run hierarchical clustering, LCPA and AlignedUMAP for all the included cases from each dataset. The 
UMAP Alignment is performed on common symptoms across datasets for these results, as an attempt to syn-
thesize common structures across datasets.

AlignedUMAP is then run when each dataset is stratified into 10-year intervals and then plotted in 3D space. 
Here, the alignment is performed across different age strata.

Moving on, we stratify each dataset into the different age groups (0-17 years, 18-54 years and 55 years and 
older) and rerun hierarchical clustering, LPCA and AlignedUMAP with the alignment performed within the 
dataset across the three age strata. For only three age strata, it is not necessary to plot the results in 3D space as 
was required for the results from the finer age strata. Given the large number of plots, the results from our age-
stratified findings are presented in the supplementary materials.

Pre‑hoc considerations for comparison across datasets
Because of the different sampling of positive cases and the resulting sample composition, data collection meth-
ods, and symptom questions across the datasets, we expect potential differences in findings arising from several 
causes.

Sampling
The majority of routinely detected community cases in the UK were detected via symptom-prompted tests, par-
ticularly prior to the widescale availability of rapid antigen testing for asymptomatic individuals in the Spring 
of 2021. Thus we expect Pillar 2 to over-represent individuals with at least one of cough, fever and loss of taste 
and/or smell. This bias is also likely to exist within the CSS as a majority of self-reported tests would also have 
been performed because they met the symptom criteria for routine community testing, though the study also 
invited a proportion of regular app-user participants to test based on reporting other symptoms. These biases 
are not present within the ONS study sample.

Data collection method
Across all datasets, symptoms are assessed via self-report, including fever. The experience of symptoms and 
their description is likely to vary across individuals and across demographic characteristics, such as by gender, 
ethnicity, region, and age. People are likely to report symptoms differently whether they are doing so via an in-
person interview, a weekly or bi-weekly survey or via a daily symptom tracking app, and the design of the app 
or questionnaire interface, as well as the preceding questions, will likely affect reporting. The majority of studies 
examining the efficacy of symptom self-report have focused on psychiatric disorders. These have generally found 
agreement between patient self-report and clinician assessment, although this varies from 60% to 90%25–27. In 
major depressive disorder, self-reported symptoms are more severe than clinician-assessed  symptoms25. When 
self-tracking for health and fitness purposes, BMI is systematically under-reported28. Knowledge of test status 
could also affect symptom reporting, though this will be less of an issue in the CIS dataset, where individuals will 

Table 3.  Sample sizes for each strata of the AlignedUMAP embeddings in the main paper.

Age strata Dataset

Pillar 2 SGSS CSS CIS

0-9 70,051 2,759 1,256 255

10-19 154,848 3,966 4,891 979

20-29 323,244 16,250 7,716 1,106

30-39 343,935 19,398 10,075 1,416

40-49 292,823 18,673 12,896 1,746

50-59 267,361 19,221 14,263 1,827

60-69 125,840 12,453 7,709 1,153

70-79 41,814 9,963 2,261 552

80-89 12,889 7,488 396 120

90-99 2,222 2,158 - -
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not yet have received their test results. Some studies involve reporting on behalf of others, particularly children or 
adults receiving care, and communicating the subjective experience of symptoms might be challenging in these 
cases. When reporting symptoms related to cancer treatment, a dyad (parent and child) approach to reporting 
symptoms was found to be more effective and preferable to child self-reporting or parent proxy reporting  alone29.

Phase of infection
The symptom reporting window around positive test time varies across the different datasets. There is evidence 
from previous  studies11 that some symptoms tend to appear earlier in infection while some appear later. We also 
know that people who test negative, who are not included in this dataset, report a wide range of symptoms that 
are not related to SARS-CoV-2  infection12; widening the symptom reporting window around a test date might 
include symptoms that are non-specific to the SARS-CoV-2 infection. Our approach collapses across time and 
these variations in the reporting window could affect our findings regarding symptom frequency and clustering. 
While there is no way of varying this for the routinely collected NHS Test and Trace data, we do conduct sen-
sitivity analyses to examine a wider symptom reporting window around the day of testing for the ONS dataset, 
making it more comparable to CSS. We arbitrarily define positive episodes as a new positive occurring more 
than 90 days after an index positive or after 4 consecutive negative tests and consider symptoms reported in 
[-7,+35] days around the index positive. We do not find that this wider symptom window affects our clustering 
and co-occurrence findings.

Epidemic phase
The characteristics of cases differ over the course of the epidemic, for example by age, region, socioeconomic 
characteristics or variant of SARS-CoV-2 infection, which in turn could plausibly affect the symptoms experi-
enced and the likelihood that they are reported. Some positive cases could be from single or double-vaccinated 
individuals, particularly from later time periods in Winter/Spring 2021. Similar to our AlignedUMAP embed-
dings for age-stratified data, we could also produce AlignedUMAP embeddings for time-stratified data, allowing 
us to investigate how symptom co-occurrence patterns change over time. This would be of particular interest 
as vaccination effects build, or as a new variant with a different disease profile becomes dominant. The require-
ment of such an analysis is that each time strata has a sufficient number of points such that the estimated Jaccard 
distance matrix is not subject to significant uncertainty. An initial exploration of this analysis was performed for 
Pillar 2 and SGSS datasets, by stratifying into week-long strata; however, no significant changes to the symptom 
co-occurrence patterns were observed during this time period.

Results
Hierarchical clustering
We first performed hierarchical clustering using complete  linkage30 and the Jaccard distance between symptom 
vectors as defined in Equation (1), with results shown in Fig. 3. This figure shows the matrix of such distances as 
a heatmap, with a dendrogram to its right. We read these dendrograms from right to left, with splitting points 
representing points at which the algorithm suggests a separation of symptoms into groups on the basis of their 
occurrence in infected individuals.

Of the plots, the CIS data in panel d shows the clearest signal of separation of symptoms under this analysis 
method: gastrointestinal symptoms form a separate symptom grouping, joining the rest of the hierarchy only at 
the highest level; the distinctive loss of taste and smell joins the tree at the next; and the remaining symptoms join 
individually at remaining levels. In Pillar 2 and SGSS data (Fig. 3 panels a and b) a similar pattern is observed, 
except for additional complexity associated with uncommon symptoms in ≤ 5% of positives and for Pillar 2 loss 
of smell or taste joining at a similar point on the tree to upper respiratory tract symptoms. For the CSS data in 
panel c, we see that shortness of breath and hoarse voice, symptoms not collected in other studies, appear before 
gastrointestinal symptoms join the tree.

Logistic principal component analysis
Secondly, we performed Logistic Principal Component Analysis (LPCA), an extension of Principal Component 
Analysis to binary  data21. This method is used to project the set of individual feature vectors {yi} for each dataset 
onto (in our case two) components that sequentially are as close to the original set of vectors as possible. The 
results of this analysis are shown in Fig. 4, and show quite strikingly consistent patterns across datasets, despite 
the various biases and data collection techniques employed.

The first strong signal in the data is that the first principal component involves all symptoms in the same direc-
tion, meaning that the closest one-dimensional description of community symptoms is the number of symptoms 
experienced. The second principal component, with some exceptions that vary by dataset, suggests that a source 
of variation is a negative correlation between upper respiratory tract symptoms and systemic (Pillar 2, SGSS and 
CIS) and gastrointestinal symptoms (SGSS, CIS and CSS). The overall interpretation of these results show that 
a parsimonious description of COVID-19 symptoms at the individual level can be provided by quantifying the 
total number of symptoms experienced, followed by the relative contribution of upper respiratory symptoms 
versus systemic or gastrointestinal symptoms to the total number of symptoms experienced. The contribution 
of upper respiratory versus systemic and gastrointestinal symptoms is also seen and in fact, strengthened when 
examining the age-stratified data (children 0-17 years, adults 18-54 years and elder adults aged 55 years and 
older, see Supplementary Materials).
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Uniform manifold approximation and projection
Having different symptoms identified by taking a symptom-level view of clustering as in the hierarchical analysis, 
and an individual-level view of co-occurrence as in LPCA, is explained by questions these methods address. 

Figure 4.  Logistic Principal Components Analysis (LPCA) results. For each dataset, elements of the principal 
components are visualised as vertical bar plots. Each vector is insensitive to overall multiplication by −1 . 
Symptom categories are labelled by colours. (a) Pillar 2, (b) SGSS, (c) COVID Symptom Study, (d) COVID-19 
Infection Survey.
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LPCA attempts to find a description of the overall variation of the symptoms of individuals within the dataset, 
while hierarchical clustering groups by suitably defined co-occurrence to find natural clusters of symptoms within 
the dataset. Our third main analysis method aims to provide an overall picture by considering low-dimensional 
embeddings of the data based on the structure of interactions encoded in the datasets. In particular, Uniform 
Manifold Approximation and Projection (UMAP) and associated  algorithms22,23 produces a low-dimensional 
embedding using the local structure of the data (i.e. groups of commonly co-occurring symptoms) and provided 
the intrinsic dimension of the system is not too large, and can capture some of the global structure of the data (i.e. 
the relationships between such groups of data points). The result is that symptoms which commonly co-occur 
are placed close to each other in the outputted low-dimensional embeddings. Hyperparameters are important 
for UMAP, so we performed the analysis for two different hyperparameter choices: one that focuses more on the 
global structure (shown in Fig. S2); and one that focuses less on the global structure and attempts to preserve 
more of the local structure of the data (shown in Fig. S3).

To more explicitly compare findings across datasets, we extend the UMAP analyses above by using the Aligne-
dUMAP  algorithm23. AlignedUMAP takes several different datasets as inputs and finds the optimal embedding 
for each inputted dataset, subject to the loose constraint that data points that are shared between datasets are 
placed in similar positions in the low-dimensional embeddings. These are produced through a trade-off between 
finding the optimal embedding for individual datasets, and aligning the embedding of shared symptoms across 
datasets. By aligning embeddings, we gain several useful insights, most importantly that an embedding can be 
directly compared with the others it was aligned against, allowing better assessment of similarities and differences.

We produce embeddings of each dataset that are aligned based on the core symptoms shared by all the data-
sets in our analysis: cough, diarrhoea, fatigue, fever, headache, muscle ache, and sore throat. These, shown in 
Fig. 5, allow us to explore whether datasets shared a common underlying structure of symptom co-occurrence.

Inspection of the embeddings with alignment based on the core symptoms shared by different datasets pro-
vides some evidence of a broad structure shared across all datasets. The embeddings produced can be broadly 
described by a central cluster of systemic symptoms, and cough. Lower respiratory tract symptoms are typically 
placed nearby, in particular with shortness of breath often being placed close to fatigue. The upper respiratory 
tract symptoms (sore throat, rhinitis, sneezing) are typically placed further away from gastrointestinal symptoms, 
with the exception of lost/altered smell or taste symptoms. On most plots, the gastrointestinal symptoms exist 
as a tail or are slightly separated from the main central group of systemic symptoms. The main exception to this 
is the CSS data, although we would caution against over-interpretation of this plot since, in contrast to the other 
studies, CSS has a more diverse set of symptoms, meaning that the task we have set of aligning the symptoms 
common to CSS and other datasets, at the same time as preserving relationships between those symptoms and 
ones unique to CSS, is inherently challenging. Overall, therefore, we argue that the UMAP results complement 
the LPCA analysis, which suggested that individuals separate between those who experience upper respiratory 
tract symptoms or those who experience a mixture of systemic and gastrointestinal symptoms.

As we did with hierarchical clustering and LPCA, we stratified each dataset based on age bands that repre-
sent children and adolescents, adults and elders, and produced aligned embeddings for ease of comparison (see 
Supplementary Materials). However, AlignedUMAP allows us to directly compare more embeddings than is 
possible for dendrograms or symptom loadings, as there exist explicit relationships between the embeddings. 
We perform an additional analysis where we again age-stratify each dataset into 10-year strata and produce 
aligned embeddings. These embeddings can then be visualised in 3-dimensional space to describe how patterns 
of symptom co-occurrence change as age increases, see Fig. 6, where linear interpolation has been used to con-
nect the different embeddings from each ten-year age strata. In supplementary Figures ??, we also provide 2D 
marginal plots of the embeddings. Across all datasets, we observe changes to the local structure, indicated by the 
splitting of the rope/ribbon-like structures for the youngest age strata (under 10 years old), and for the older age 
strata (around 70 years old). The changes indicate that, despite the attempt to align symptoms in adjacent embed-
dings, the symptom-co-occurrence patterns of the data have changed too substantially for that to be achieved.

This is clearest in the CIS dataset, where some gastrointestinal symptoms (diarrhoea, nausea/vomiting, 
abdominal pain) are separated out from the main body of symptoms for the youngest and older age strata. In 
Pillar 2 and SGSS, we find the formation of new clusters of symptoms, in the older age strata with a first cluster 
containing vomiting and nausea, and a second cluster containing headache, sore throat, muscle ache and joint 
pain. For the CSS dataset, separation into two main symptom clusters is observed, with one cluster containing: 
abdominal pain, muscle ache, headache, sore throat, chest pain, and cough, and with the second cluster contain-
ing loss of appetite, altered/loss of smell, diarrhoea, hoarse voice, slightly separated shortness of breath, fever, 
delirium and fatigue.

For the under-10s, the produced embeddings typically consist of small clusters of symptoms. The CIS dataset 
is the exception by again separating out gastrointestinal symptoms from the main body of symptoms. Inspec-
tion of the Jaccard distance matrices for the youngest age strata suggests that a possible explanation may be 
that fewer total symptoms are reported for young children. The observed clusters in the embeddings appear to 
consist mainly of pairs, or triplets of symptoms that do commonly co-occur, e.g. rhinitis and sneezing. However, 
the level of co-occurrence between these distinct small clusters is very small, leading to separation in the low 
dimensional embeddings.

Discussion
In summary, we have shown that considerable complexity and variation exists in COVID-19 symptoms in com-
munity infections. We find that the primary source of variation is in the number of symptoms experienced by 
a case, but conditional on this there are various ways to be ill that provide a more fine-grained description of 
phenotypes. In particular, we find evidence for the separation between upper respiratory and systemic symptoms, 
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both including commonly reported symptoms, and between upper respiratory and gastrointestinal symptoms, 
though the latter is less common overall. While the deep structure of the symptom clustering was similar across 
the middle range of age groups, we found some evidence that patterns of symptom reporting changed among 
the youngest and oldest, though further work may be required to understand whether this is due to symptom 
reporting differences, or differences in the symptoms experienced.

While there are some differences in our findings across the four datasets, this is unsurprising given their 
different case sampling designs, data collection methods, symptom reporting windows and specific symptom 
data collected. Routinely tested cases, for instance, will be selected based on the symptoms that qualify cases 
for testing (Pillar 2), leading to lower expected variation in the presence of these symptoms compared to cases 
identified via random sampling. Indeed, the broad consistency of findings across these datasets, which derive 
from routine, representative household and participatory surveillance methods respectively increases our con-
fidence that our findings are robust.

Our findings have implications for case identification and associated public health guidance in the community, 
particularly school settings, and high-risk settings such as care homes or hospitals. The existence of phenotypes 

Figure 5.  AlignedUMAP embeddings of SARS-CoV-2 symptoms. For each dataset, an optimal embedding 
of the symptoms into 2D Euclidean space is found, subject to the following loose constraint: if a symptom is 
common to all datasets, then it should be placed in roughly the same position across all datasets. This alignment 
allows for easier comparison, and investigation of shared symptom structures across all datasets. Point size 
is proportional to the proportion of cases that develop a given symptom. Symptoms that are common to all 
datasets, and are aligned between distinct datasets are plotted as triangles. For this embedding the parameters 
were chosen to capture more of the global structure of symptoms and produces less well-defined clusters. (a) 
Pillar 2, (b) SGSS, (c) COVID Symptom Study, (d) COVID-19 Infection Survey.
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Figure 6.  AlignedUMAP embeddings of SARS-CoV-2 symptoms across several datasets. Each dataset has 
been age-stratified into strata of length 10 years. For each strata, an optimal two-dimensional embedding into 
Euclidean space of the symptoms is found, subject to the loose constraint that each symptom is placed in a 
similar location in adjacent embeddings. Linear interpolation is used to connect the embedding of each strata, 
allowing for a 3-dimensional visualisation of how the co-occurrence patterns of symptoms change with age. For 
each 3D embedding, we take three images at 45 degree rotations. (a) Pillar 2, (b) SGSS, (c) COVID Symptom 
Study, (d) COVID-19 Infection Survey.
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would suggest that the one-size-fits-all symptom-based criteria for symptomatic testing like that used in the UK 
from 2020-2022 may be sub-optimal, especially in these sub-populations where multiple phenotypes are most 
likely. Differences by age could imply that symptomatic testing criteria should be tailored for different settings, 
though this would need to be balanced with what is feasible and understandable for the public. Further, it may 
be the case that the different characterisation of cases could inform clinical outcomes, for example the finding 
that cases can be described by the contribution of upper respiratory symptoms versus systemic or gastrointestinal 
symptoms to the total number of symptoms experienced. We find that the symptom clustering patterns amongst 
the oldest age groups diverged from the middle age groups, which is of potential clinical relevance given the 
strong age-related risk of severe disease.

Routinely collected datasets in this study include symptom information only from positive SARS-CoV-2 cases, 
meaning that we cannot evaluate the specificity of symptom testing criteria combinations informed by the symp-
tom co-occurrence structures we have identified here, and this limits our direct evaluation of the symptomatic 
testing policies that were employed during 2020-2022. However, studies that examined the optimal combination 
of symptoms to initiate testing of symptomatic community  cases12,13 may have been implicitly assuming the 
existence of a single phenotype - to ensure that a symptom testing criteria is optimal, the possible existence of 
multiple phenotypes and the wide spectrum of disease must be considered. Emphasis should be placed on the 
extent of symptom variation across COVID cases in communication with the public. This messaging is critical 
for the initiation of transmission control interventions, including isolation, and in helping the public to manage 
risks, including transmission to more vulnerable contacts. Given that our datasets only consist of positive SARS-
CoV-2 cases, we are unable to explore the clustering of symptoms in the “background” landscape of symptoms 
that are caused by other infections, allergies or environmental conditions. Such an analysis could further elicit 
whether there are clusters of symptoms that are well-distinguished from other background symptoms and could 
further inform optimal symptom testing criteria, however, we leave this as future work given that the majority 
of datasets analysed here do not contain data on individuals testing negative for SARS-CoV-2.

As well as optimising response with respect to symptoms upon acute infection, another key question involves 
the role of comorbidities, including chronic  conditions8. Unfortunately, information on these is not collected in 
as consistent and systematic a manner across large datasets as information on short-term symptoms. As such, 
adjustment for comorbidities is not possible without major additional data collection and/or linkage, which 
would be likely to be a fruitful direction for future research, for example, using the secure linkage methodology 
of Williamson et al.7.

With vaccination, re-infections and ongoing SARS-CoV-2 evolution, as well as the resurgence of other pre-
viously suppressed respiratory infections, understanding the variability of COVID-19 symptoms presentation 
is critical in planning community intervention for control of transmission, identification of cases potentially 
requiring greater care, and possibly understanding long term presentation of the  disease31. Beyond even the cur-
rent pandemic, the application of unsupervised learning analyses, such as this one, in conjunction with clinical, 
epidemiological and behavioural understanding is likely to yield important insights for other infectious diseases.

Data and materials availability
Datasets are too sensitive for public release, and can be accessed by researchers through secure research environ-
ments. The first of these is the Secure Anonymised Information Linkage (SAIL) Databank, with information 
for researchers wishing to access this resource at https:// saild ataba nk. com. The second of these is the Office 
for National Statistics’ Secure Research Service (SRS), with information for researchers wishing to access this 
resource at https:// www. ons. gov. uk/ about us/ whatw edo/ stati stics/ reque sting stati stics/ secur erese archs ervice.
Code and datasets that have been approved for publication are available at: https:// github. com/ marty n1fyl es/ 
COVID Sympt omsAn alysi sPubl ic.
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