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Robust in‑vehicle heartbeat 
detection using multimodal signal 
fusion
Joana M. Warnecke 1,2*, Joan Lasenby 2 & Thomas M. Deserno 1

A medical check‑up during driving enables the early detection of diseases. Heartbeat irregularities 
indicate possible cardiovascular diseases, which can be determined with continuous health 
monitoring. Therefore, we develop a redundant sensor system based on electrocardiography (ECG) 
and photoplethysmography (PPG) sensors attached to the steering wheel, a red, green, and blue 
(RGB) camera behind the steering wheel. For the video, we integrate the face recognition engine 
SeetaFace to detect landmarks of face segments continuously. Based on the green channel, we derive 
colour changes and, subsequently, the heartbeat. We record the ECG, PPG, video, and reference 
ECG with body electrodes of 19 volunteers during different driving scenarios, each lasting 15 min: 
city, highway, and countryside. We combine early, signal‑based late, and sensor‑based late fusion 
with a hybrid convolutional neural network (CNN) and integrated majority voting to deliver the 
final heartbeats that we compare to the reference ECG. Based on the measured and the reference 
heartbeat positions, the usable time was 51.75%, 58.62%, and 55.96% for the driving scenarios city, 
highway, and countryside, respectively, with the hybrid algorithm and combination of ECG and 
PPG. In conclusion, the findings suggest that approximately half the driving time can be utilised for 
in‑vehicle heartbeat monitoring.

According to the World Health Organization, cardiovascular diseases cause 32% of global deaths, which are 17.9 
million deaths per  year1. Stroke and heart attacks are responsible for 85% of these  deaths1. Atrial fibrillation is 
a risk factor for both  stroke2 and heart  failure3, and often yields an abnormally fast and irregular  heartbeat4. 
Continuous monitoring of heartbeats enables early detection, improves therapeutic outcomes, and decreases 
the mortality  rate5. In Western countries, people spend about 35 min per day driving a  vehicle6. This time 
could be used for a medical check-up – without any additional burden on behaviour change or time – and 
continuous monitoring can be integrated into our daily  life7. So far, commercial in-vehicle systems for health-
related monitoring focus on the tiredness tracking of the driver. For instance, they track the eyes and movements 
of the steering wheel or the pedals, as well as car-to-lane  distances8–10.

However, it is also possible to monitor individual health in a medical  sense7. Several publications have focused 
on heartbeat detection during  driving11–14. In our previous work, we conducted a review to identify relevant 
sensors for in-vehicle health  monitoring15. In 2010, Vavrinsky et al. integrated one-lead electrocardiogram 
(ECG), galvanic skin response, and temperature sensors into each side of the steering  wheel12. In the same year, 
Lazaro et al. applied radar from the seat backrest for heart and respiratory rate  detection13. In 2011, Walter 
et al. integrated capacitive ECG and ballistocardiography (BCG) into the seat  belt14. In 2012, Gomez-Clapers 
& Casanella attached electrodes for ECG to the steering wheel to derive the heart  rate16. In 2015, Kuo et al. 
introduced image-based photoplethysmography (iPPG) for drivers’ heart rate  detection17. More recently, we 
developed ECG electrodes integrated into the steering  wheel18. We replaced the previous copper  electrodes19 
with printed and flexible electrodes to improve the SNR. To prevent any impact on driving behavior, our flexible 
and thin polyurethane electrodes exactly fit the three-dimensional (3D) shape of the steering  wheel18. However, 
the quality of health monitoring based on a single sensor is  insufficient11. Redundant sensor systems have been 
used in  aerospace20 and autonomous  driving21. They can guard against the fact that one defective sensor may 
yield wrong assumptions and could cause severe adverse events.

In a redundant sensor system, a fusion of the sensor data is needed. Münzner et al.22 compared three 
convolutional neural network (CNN)-based approaches: early, signal-based late, and sensor-based late 
fusion. The early fusion merges data in the convolutional layer. This layer extracts important signal features. 
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Sensor-based late fusion merges the input data in the dense layer. The dense layer classifies the signal into 
binary classes. The signal-based late fusion includes two CNNs per signal, which increases the number of 
features and the computing time. Tejedor et al. reviewed signal fusion in the biomedical domain, in particular, 
for reliable heart rate  detection23. They highlight the CNN-based information fusion from Chandra et al.24. 
This algorithm can be applied to noisy data. Furthermore, we focused on the development of a redundant 
sensor system in a driving simulator, which was composed of ECG, PPG, BCG, and iPPG  sensors19.

We use the sensor system as well as the data fusion algorithm. Based on our previous results, we select the 
sensors with the best performance, which are ECG, PPG, and iPPG. We record the data with 19 subjects under 
real driving conditions. Furthermore, we develop fusion approaches and determine the performance gain on the 
reliability of heartbeat detection. Altogether, we want to answer the research questions: (1) Which driving time is 
utilisable to detect the heartbeat robustly and accurately in the vehicle?, (2) What is the most reliable combination 
of sensors, and (3) How does the heartbeat detection performance vary between different driving scenarios?.

Methods
Ground truth
We obtain the ground truth with an ECG sensor (BiosignalPlux Explorer, Plux Wireless Biosignals, Lisbon, 
Portugal) connected to three adhesive electrodes, which we attach to the usual positions on the  chest25. We make 
a test recording to ensure the electrodes are in the correct position. The R-waves are detected by the simultaneous 
truth and performance level estimation (STAPLE) algorithm from Kashif et al.26. The STAPLE algorithm includes 
nine state-of-the-art algorithms: Pan and  Tompkins27,  Chernenko28, Arzeno et al.29, Manikandan et al.30, Lentini 
et al.31, Sartor et al.32, Liu et al.33, Arteaga-Falconi et al.34, and Khamis et al.35. STAPLE determines the positions 
of the R-waves based on a majority vote. We implement and execute our algorithms using a script-based math 
package (MATLAB version R2021a, The MathWorks, Natick, United States).

Experimental design
We record data from N = 19 volunteering subjects driving a vehicle with an automatic gear shift (VW Tiguan 2.0 
4M RL, Volkswagen AG, Wolfsburg, Germany). The volunteers from diverse ethnicities differ in gender (female: 
n = 6 and male: n = 13 ), age (20-67 years), height (164-195 cm), weight (63-120 kg), having a beard ( n = 4) , 
and wearing glasses ( n = 8 ). For volunteers with long hair ( n = 7 ), the outer segment of the forehead is covered. 
We record 15 min for each scenario city, highway, and countryside in Braunschweig (Lower Saxony, Germany).

To ensure comparable recordings, all volunteers drove the same route. The city requires many start and stop 
maneuvers. The first part of the highway is bumpy. In addition, a construction zone causes traffic jams, and a 
long tunnel degrades the light for camera recording. The countryside route leads along rural roads and smaller 
villages and has a railroad crossing.
Sensor system
We use steering wheel-based contact ECG and PPG sensors and RGB camera for iPPG in front of the driver 
behind the steering wheel as redundant recording systems. We select an ECG sensor (BiosignalPlux Explorer, 
Plux Wireless Biosignals, Lisbon, Portugal) and a PPG sensor with two integrated LEDs for the red and infrared 
spectrum (BiosignalPlux Explorer, Plux Wireless Biosignals, Lisbon, Portugal). We positioned the PPG sensor 
on the steering wheel’s right side at the level of the index finger. A channel hub (BiosignalPlux Explorer, Plux 
Wireless Biosignals, Lisbon, Portugal) connects the ECG and PPG sensors and sends the recorded data via 
Bluetooth to a single-board computer (Raspberry Pi, Raspberry Pi Foundation, Cambridge, United Kingdom). 
The sampling rate for ECG and PPG is 500 Hz. The red, green, and blue (RGB) camera (Raspberry Pi Foundation, 
Cambridge, United Kingdom) has a wired connection to the single-board computer (Fig. 1). It records 10 frames 
per second (FPS) with 720 by 1280 pixels. For time synchronization, we develop a Python script on the single-
board computer with an integrated counter that assigns the same ascending number to each sample at the same 
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Figure 1.  Left-hand side: Schematic diagram of the sensor system. Right-hand side: In-cabin sensor system 
during the scenario city.
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point in time. The subjects in Figs. 1 and 2 signed an informed consent and agreed to the publication of the 
image in an online open-access journal.

Ethics approval
We record all data based on the Helsinki Declaration. The study design was approved by the ethics committee 
(Internal process number: D_2022-13) of the TU Braunschweig (Lower Saxony, Germany)36. Informed consent 
was obtained from participants.

Signal pre‑processing
Face recognition and face segmentation
We use the face recognition engine Seetaface (version  SeetaFace237) to detect landmarks on the driver’s face. As 
a first step, it applies a funnel-structured cascade schema for face detection. Second, it cascades several stacked 
auto-encoder networks for landmark detection and inherits a modified AlexNet for face  composition38. We 
extract the cheeks as a region of interest (ROI) based on the landmarks. According to Kamshilin et al.39, we extract 
the green channel and detect color changes caused by the systolic and asystolic blood flow (Fig. 2). We select 
the right and left cheeks as ROI because more capillaries are in these ROIs compared to the forehead, leading to 
better results than other  regions40,41. Moreover, hair and beard, as well as glasses, may cover the skin in the ROI 
(Fig. 2). Varying illumination further impacts the signal  quality17.

Implementation for statistical analysis
We generated the ground truth with the STAPLE algorithm from Kashif et al.26 that is implemented in MATLAB 
(version R2021a, The MathWorks, Natick, United States) and uses the MATLAB Signal Processing Toolbox. We 
extracted the facial landmarks with  SeetaFace237, which uses packages from OpenCV (version 4.5) and CMake 
(version 3.16). For the fusion approach, we used the libraries TensorFlow (version 2.3.1) and Keras (version 2.4.3) 
with Python (version 3.8.5) as the programming language. The evaluation is made with Numpy (version 1.19.0).

Input data
The input contains the ECG (steering wheel) and PPG signals, as well as the green channel of the RGB video. 
According to Chandra et al. 24, we (i) up-sampled the data to 500 Hz, (ii) applied median filtering of size 100 
samples, and (iii) normalized the amplitudes to the range of [−1, 1] . The signal quality changes over time due to 
the movements of the driver and vehicle, which are caused by normal driving activities (Figs. 3, 4). This leads to 
baseline wander, noise, and artifacts (Fig. 4).

However, the recordings of the reference ECG have a high signal-to-noise ratio (SNR), which is used as a 
ground truth. The arbitrary unit (au) represents the unit for PPG and iPPG (Figs. 3, 4). As suggested by Chandra 
et al.24, we split the signal into snippets of 501 overlapping samples. The overlap is 490 and 500 for generating 
training and testing snippets, respectively. To create more training data, the overlap for the training data is 
reduced. We use leave-one-subject-out cross-validation: one subject is used as a test set, and the remaining as a 
training set, which is repeated 19 times, and the results are averaged.

Figure 2.  Recording during the driving scenario highway (top) and city (bottom). Left: Landmark detection 
with SeetaFace. Middle: Applied face segments. Right: Face segments for cheek. Figure 2 is generated with 
MATLAB (MATLAB version R2021a, The MathWorks, Natick, United States).
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Signal fusion
Our hybrid signal fusion approach has a CNN structure and determines the signal segments containing a 
 heartbeat19. The model parameters are matched for driving scenarios. It includes (i) early fusion, (ii) signal-based 
late fusion, and (iii) sensor-based late fusion. The voting function finally determines the heartbeats’  positions19.

The input layer is the first layer, and the inputs are ECG, PPG, and iPPG (Figs. 3 and 4). The convolutional 
layer extracts features from the signals and generates a feature map. In line with Chandra et al.24, we use two filters 
with a kernel size of 20 for each sensor signal in the convolutional layer. To prevent over-fitting, the dropout layer 
has a dropout rate of 0.5. The pooling layer minimises unnecessary information with the function MaxPooling1D, 
and the pool size is 2. The dense layer binary classifies snippets: no heartbeat (class 0) and heartbeat (class 1). We 
choose the sigmoid as an activation function and an Adam optimizer with a learning rate of 0.001. The output 
layer generates a vector Ŷ  of multiple labels that are either 0 or 1. The voting function is independent of the CNN 
and processes Ŷ  for the final decision based on a majority vote. Thereby, j represents the number of a snippet, 
and s stands for the signal. The output vector  is19:

We compute training and testing on the high-performance computer Phoenix at TU  Braunschweig42.
Early fusion and signal-based late fusion have a single integrated CNN (Fig. 5). In the context of signal-based 

late fusion, both CNNs receive identical input data for each signal. In contrast to sensor-based fusion, it extracts 
much more parameters.

(1)Ŷ =
{

ŷ1j + ŷ2j + ..+ ŷnj
}

∀j = [1, s]

Figure 3.  Recorded signals from subject 0001 during the scenario highway from second 1 to 10. Figures 3 and 4 
are created with MATLAB (MATLAB version R2021a, The MathWorks, Natick, United States).

Figure 4.  Recorded signals from subject 0001 during the scenario highway from second 100 to 110.
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In the early fusion approach, the convolutional layer extracts features from input signals, such as the R-wave 
in the ECG or the systolic peak in the PPG. These features are subsequently aggregated within a feature map, 
which is further processed in a dropout layer. In contrast, sensor-based fusion yields a larger number of extracted 
parameters in comparison to signal-based late fusion. The visualisation shows the hybrid fusion with the input of 
three signals. The input layer contains one or two signals for the performance comparison. The voting function 
operates independently of the CNN and evaluates the output vector Ŷ  to make the final decision regarding the 
presence of heartbeats in a given segment. This decision is based on a majority vote, where if more than two 
sensor fusion approaches yield a label Ŷ = 1 it is inferred that the segment contains a heartbeat (class 1), else 
not (class 0)19.

Evaluation
For evaluation, we follow the approach of Chandra et al.24. Moreover, we chose this approach because it reflects 
the relation between false-positive (FP), false-negative (FN), and true-positive (TP).

Accordingly, TP, FN, and FP determine whether an R-wave was correctly detected, missed, or a spurious spike 
was mistaken for an R-wave. Due to the high number of true negatives, specificity is not used. We calculate an 
overall performance:

that uses the positive predictive value

and the sensitivity

We compare P between the different signal pairs and also the fusion of all three signals in the three scenarios 
city, highway, and countryside.

Results
Performance of a single signal
The PPG signal achieves the highest performance ( Pmax = 57.25% ) with early fusion. This means that 57.25% of 
the recording time, the heartbeat position matches the ground truth (Table 1). In total, PPG delivers the highest 
score three times for a specific signal fusion approach. MeanP denotes the mean performance for a signal fusion 
approach. The signal-based late approach has highest MeanP (MeanP = 50.54%).

(2)P =
PPV+ S

2
,

(3)PPV =
TP

TP+ FP
,

(4)S =
TP

TP+ FN
.
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Figure 5.  Hybrid fusion approach for three signals.
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Performance of two signals
The early fusion of PPG+iPPG has the highest performance P = 55.79% (Table 2). Overall scenarios, the tables 
show that the ECG+PPG combination achieves the highest performance two times. In comparison, the sensor 
pair ECG+iPPG and PPG+iPPG only achieves the highest score once. The hybrid algorithm has the highest 
MeanP (MeanP = 52.61%).

Table 1.  Performance of one signal for all scenarios. Significant values are in [bold].

Approach ECG (%) PPG (%) iPPG (%) MeanP (%)

Early Fusion 44.33 57.25 48.50 50.02

Signal-based late fusion 49.98 51.27 50.38 50.54

Sensor-based late fusion 50.10 49.41 45.35 48.29

Hybrid algorithm 48.10 52.09 47.71 49.30

Table 2.  Performance of two signals for all scenarios. Significant values are in [bold].

Approach ECG+PPG (%) ECG+iPPG (%) PPG+iPPG (%) MeanP (%)

Early Fusion 54.09 47.36 55.79 52.41

Signal-based late fusion 53.43 52.89 48.13 51.48

Sensor-based late fusion 49.95 50.90 50.33 50.40

Hybrid algorithm 55.44 51.82 50.57 52.61

Table 3.  Performance of three signals during driving. Significant values are in [bold].

Approach City (%) Highway (%) Countryside (%) MeanP (%)

Early fusion (ECG+PPG+iPPG) 47.90 48.52 36.64 44.35

Signal-based late fusion (ECG+PPG+iPPG) 53.41 51.57 47.16 50.71

Sensor-based late fusion (ECG+PPG+iPPG) 57.23 57.50 42.00 52.24

Hybrid algorithm (ECG+PPG+iPPG) 49.49 54.62 33.95 46.02
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Figure 6.  Performance of ECG+PPG for different driving scenarios. Figure 6 is based on the MATLAB package 
from Allen et al.43 (MATLAB version R2021a, The MathWorks, Natick, United States).
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Performance of three signals
The sensor-based late fusion approach achieves the highest performance twice with the scenarios city 
( P = 57.23% ) and highway ( P = 57.50% ) (Table 3). The signal-based late fusion has the highest performance 
for the countryside ( P = 47.16% ). The sensor-based late fusion approach has the second-ranked performance in 
the countryside ( P = 42.00% ). Therefore, this approach yields the best performance. With the sensor-based late 
fusion approach, the correct heartbeat is detected on average for 52.24% of the driving time. Early fusion yields 
the lowest score twice: city ( P = 47.90% ) and highway ( P = 48.52% ). The scenario highway has the highest score 
( P = 57.50% ), followed by city ( P = 57.23% ) and countryside ( P = 47.16%).

Best performance with ECG and PPG and hybrid fusion
The distribution plot shows the performance differences during the different driving scenarios (Fig. 6). The hybrid 
fusion approach delivers, on average, the best performance with the ECG and PPG sensor ( MeanP = 55.44% ) 
(Table 4). The sensor-based late fusion and early fusion have the lowest performance (Table 4). This is 3.2% higher 
than with the sensor-based late fusion with ECG+PPG+iPPG.

Discussion
A big challenge of continuous in-vehicle health monitoring is the poor signal quality due to the movements of 
the car and the  driver14, (partly abrupt) changes in the  illumination44, characteristics such as skin  color45, hair 
and beard cuts, and physiological parameters: humans with a lower R-wave amplitude yield lower performance. 
Our sensor system is composed of ECG, PPG, and iPPG on and behind the steering wheel. For ECG, we printed 
polyurethane electrodes exactly in the 3D shape of the steering  wheel18. Comparing the sensor pairs identifies 
the best-performing sensor, and the selection of sensor pairs increases the resource efficiency.

The novelty of our work is the data collection and analysis of biomedical data under real driving conditions. 
Moreover, we use a multimodal fusion method, which is already applied to other use cases, such as wearable 
IoT  sensors46. Previous publications for in-vehicle health monitoring mostly focus on the analysis of a single 
 sensor11,14,17. For instance, in 2018, Leicht et al. evaluated the capacitive ECG in a driving  simulator47. Although 
Walter et al. measured the cECG and BCG during driving, they reported the technical implementation rather 
than the fusion of signals or the portion of usable driving  time14. Contrarily, we compared the R peak positions 
between the ground truth and the steering wheel ECG, and we determined the correct heartbeat in 45.62% of the 
driving  time18. However, the hybrid signal fusion of three signals outperforms our previous results for heartbeat 
detection under real driving conditions.

Furthermore, we integrated face recognition based on 81 landmarks, which changes with every movement, 
to detect the face segments. The performance of the iPPG is worse than the performance of the ECG and PPG 
sensors. This leads to a better performance of two instead of three sensors. However, a redundant system still 
improves performance and enables continuous monitoring during driving.

The current sensor system can still be improved by additional PPG sensors, which are placed on the steering 
wheel. Additional PPG sensors could be placed around the steering wheel to increase the possibility of recording 
a signal with a good SNR. The recording of the iPPG signal is often disturbed by strong sunshine. Also, it is 
possible to optimize the structure of the signal fusion model. Further research could investigate the difference 
with respect to the performance with adjusted model parameters by increasing the number of convolutional 
layers, for  instance48. Furthermore, a lower or varying learning rate of the Adam optimizer could improve the 
 results49. There is also an option to use another activation function, e.g., rectified linear unit (ReLU) or leaky 
ReLU  function50.

Majority voting and averaging are two common techniques used in signal fusion, and their effectiveness 
depends on the specific context and characteristics of the signals being fused. We selected majority voting due 
to its robustness against outliers and noisy data points, which are less likely to influence the final decision as 
the majority overrules them. Majority voting is especially valuable in situations where discrete or categorical 
decisions are required, such as in classification tasks or binary decision-making.

The redundant system also has some limitations. We excluded the BCG sensor because the pretest in the car 
showed that the SNR was low. For the pre-test, we placed the sensor at the backrest to measure ballistic forces 
generated by the heart. Additionally, more testers are needed with different skin colors and melanin levels because 
these factors have an impact on video-based heartbeat  detection51. Another important integration is the detection 
of respiratory rate and temperature. This would enable the detection of a wider variety of diseases. For future 
work, we will integrate movement detection using depth cameras, as suggested by Fu et al.52. Furthermore, the 
redundant system can be extended by phonocardiography, which records acoustic signals during a cardiac cycle. 
Such sensors may be integrated into the seat belt to rest on top of the heart.

Table 4.  Performance overview of ECG and PPG. Significant values are in [bold].

Approach City (%) Highway (%) Countryside (%) MeanP (%)

Early Fusion (ECG+PPG) 55.18 56.08 51.00 50.02

Signal-based late fusion (ECG+PPG) 42.89 58.39 59.02 53.43

Sensor-based late fusion (ECG+PPG) 54.78 47.95 47.13 49.95

Hybrid algorithm (ECG+PPG) 51.75 58.62 55.96 55.44
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To detect heartbeat arrhythmia, it is important to analyse a longer signal segment with a high SNR. The signal 
visualisation in Fig. 3 shows that the recorded signal contains such signal lengths. The number of longer segments 
with a high SNR will be lower than predicted, with approximately 55% of usable driving time. To identify such 
longer segments, an artifact  index53 is needed, which includes CAN-BUS  data54, such as the acceleration of the 
steering wheel and the car.

We will publish a research paper focusing on respiratory rate detection during driving, an essential vital sign 
for monitoring the driver’s health and detecting respiratory diseases. The study involves 15 healthy subjects and 
follows the same experimental design as this  paper55. We present our findings in two separate papers due to the 
complexity of the sensor system, pre-processing, and CNN-based training parameters, which exceed a single 
journal paper’s scope.

Conclusion
In summary, we developed a redundant sensor system and signal fusion approaches to detect heartbeats while 
driving. Moreover, we want to answer the research question of the usable driving time for heartbeat detection: 
The hybrid algorithm and sensor pair ECG and PPG deliver on average the best results highway ( P = 58.62% ), 
countryside ( P = 55.96% ), and city ( P = 51.75%).

As a take-home message, we can potentially use over half of our drive time for continuous monitoring with the 
ECG and PPG sensor and a low variance between the different driving scenarios. This provides the possibility to 
detect symptoms of cardiovascular diseases at an earlier stage in comparison to conventional methods. With the 
publicly available data, it is possible to reproduce the results and apply further algorithms to detect the correct 
heartbeat position.

Data availability
Due to the inability to derive the identity of the subject from the ECG, PPG, and iPPG signals, we published the 
data anonymously in the TU Braunschweig library under CC BY 4.0 (link: https:// doi. org/ 10. 24355/ dbbs. 084- 
20220 71506 57-0, accessed on November 16th, 2023). The dataset contains reference ECG, steering wheel ECG, 
and PPG (.csv format), RGB channels for face segment cheek (.mat format), and subject information (subject 
ID, age, height, weight, gender, and known diseases). All test persons signed a consent form and agreed on the 
publication of these anonymous data.
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