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Mechanochemical active ratchet
Artem Ryabov 1,2,3 & Mykola Tasinkevych 2,3,4,5*

Self-propelled nanoparticles moving through liquids offer the possibility of creating advanced 
applications where such nanoswimmers can operate as artificial molecular-sized motors. Achieving 
control over the motion of nanoswimmers is a crucial aspect for their reliable functioning. While the 
directionality of micron-sized swimmers can be controlled with great precision, steering nano-sized 
active particles poses a real challenge. One of the reasons is the existence of large fluctuations of 
active velocity at the nanoscale. Here, we describe a mechanism that, in the presence of a ratchet 
potential, transforms these fluctuations into a net current of active nanoparticles. We demonstrate 
the effect using a generic model of self-propulsion powered by chemical reactions. The net motion 
along the easy direction of the ratchet potential arises from the coupling of chemical and mechanical 
processes and is triggered by a constant, transverse to the ratchet, force. The current magnitude 
sensitively depends on the amplitude and the periodicity of the ratchet potential and the strength of 
the transverse force. Our results highlight the importance of thermodynamically consistent modeling 
of chemical reactions in active matter at the nanoscale and suggest new ways of controlling dynamics 
in such systems.

Chemistry and physics of micron- and nano-sized self-propelled particles are rapidly growing fields exploring 
optimal designs and fundamental concepts of self-propulsion mechanisms. A current intense discussion focuses 
on a possible self-propulsion of individual catalytic macromolecules that could serve as basic components for 
artificial nanomachines1–9.

The self-propelled (active) motion of micron-sized particles is driven by a large number of chemical reactions 
and/or hydrodynamic flows in an ambient fluid. Relatively large dimensions of these objects lead to negligible 
fluctuations in the magnitude of their active velocities. This renders the particle dynamics accurately controllable 
by employing laser fields10,11, concentration gradients12–16, local heating17,18, using external magnetic fields in 
combination with suitably prepared magnetic particles19–21, or by a specific chemical patterning of surfaces22–25. 
The precise guidance is essential for several applications including targeted drug delivery16,26,27, biosensing28, 
transport of microcargoes in lab-on-chip devices29, or assembly of microstructures30–33.

In contrast, strong fluctuations are unavoidable at the nanoscale, where dimensions of active particles are 
on par with those of intracellular molecular motors like kinesins, myosins, and ribosomes34–36, and artificial 
molecular machines and pumps37–39. Active motion at these scales can be caused by a comparably small number 
of reactions and is strongly influenced by thermal noise. Large fluctuations of the magnitude and the direction of 
self-propulsion velocity hinder the development of methods to efficiently control the dynamics of nanoswimmers.

Here, we use a minimal thermodynamically consistent model of particle’s self-propulsion40–43 to demonstrate 
a novel physical mechanism for rectifying and guiding trajectories of chemical nanoswimmers. The mechanism 
benefits from the presence of strong fluctuations in the direction of self-propulsion velocity and it arises as a 
direct consequence of the main premise that the chemical reactions driving the active motion comply with the 
principle of microscopic reversibility (MR)44–47. The resulting rectification effect can be used to guide and sort 
active nanoparticles based on their propulsion mechanisms, because a corresponding reference model without 
the MR, as well as passive Brownian particles, does not exhibit this type of rectified motion.

Results and discussion
Stochastic Markovian models become thermodynamically consistent if rates of elementary transitions obey 
the local detailed balance 48. For an overdamped Brownian motion subjected to an external force F(r) and to 
thermal fluctuations represented by the zero-mean Gaussian white noise ξ(t) , the local detailed balance condi-
tion is included in the Langevin equation for the particle velocity, ṙ = µF(r)+

√
2D ξ(t) , by requiring that the 
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translational diffusion constant D is related to the mobility µ via the fluctuation-dissipation relation D = µkBT , 
T being the temperature of ambient fluid.

In addition to the force- and thermally-driven movements, the velocity of a self-propelled nanoparticle is 
influenced by its chemically-powered active dynamics. The particle center of mass position r(t) = (x(t), y(t)) 
then obeys the Langevin equation

where the first term on the right-hand side represents the active velocity of magnitude va(r, t) oriented in the 
direction of n(t) , see Fig. 1a.

The vector n(t) = (cosφ(t), sin φ(t)) , giving the orientation of the nanoparticle, performs rotational 
diffusion49, i.e., the angle φ(t) undergoes the Brownian motion

with Dr being the rotational diffusion constant and ξr(t) a zero-mean Gaussian white noise.
The speed va(r, t) corresponds to the chemically-driven particle motion in the direction of n(t) . If the kinet-

ics of the underlying reactions comply with the principle of MR, then, on the mesoscopic timescale, where an 
infinitesimal time interval dt covers many chemically-driven particle jumps, we may approximate the speed by42

Here, u is the constant mean active speed in the zero-force case ( F = 0 ), the dot · denotes the scalar product, 
and ξc(t) is a Gaussian white noise stemming from fluctuations of the number of chemical reactions per unit 
time. Positive constants Dc and µc are related by Dc = µckBT . The white noises ξα(t) in Eqs. (1)-(3) satisfy 
�ξα(t)� = 0 , and �ξα(t)ξβ(t′)� = δαβδ(t − t ′) , α,β ∈ {x, y, r, c} . A derivation of Eq. (3) starting from the meso-
scopic jump-diffusion model can be found in Ref. 42. The central assumption of this derivation is that the rates of 
motion-powering chemical reactions satisfy the local detailed balance condition. This is equivalent to assuming 
MR of the kinetics of these reactions, which means that their underlying microscopic dynamics are symmetric 
with respect to the time-reversal48. A general aim of the current work is to demonstrate the impact of individual 
terms in (3) on the dynamics of an active nanoparticle diffusing in external force fields.

According to Eq. (3), the active speed depends on the component n(t) · F(r) of the external force along 
n(t) . This term describes the mechanochemical coupling50 and allows to sculpt a free energy landscape of 
the macromolecule by the action of external forces. The coupling is utilized in various single-molecule force 
spectroscopies11,51,52, biosensing53 and underlies the ability of molecular motors to exert forces and torques38,54–58.

The force-dependence of va(r, t) is a direct consequence of MR of the self-propulsion mechanism and it has 
prominent impacts on particle dynamics42,43. We shall use this dependence to design a new method of nano-
particle guiding, which is inaccessible in systems lacking the mechanochemical coupling, like in the case of 
micron-sized particles with constant active speed, see Eq. (10) below. In particular, we report on a ratchet effect 
that occurs if the particle is subjected to the external force

(1)
dr

dt
= va(r, t)n(t)+ µF(r)+

√
2D ξ(t),

(2)φ̇(t) =
√
2Dr ξr(t),

(3)va(r, t) ≈ u+ µcn(t) · F(r)+
√
2Dc ξc(t).

(4)F(r) =
(

f� − V ′(x), f⊥
)

,

Figure 1.   Illustration of the model. (a) An active nanoparticle (blue) whose self-propelled motion with speed 
va(r, t) occurs in the direction of orientation n(t) (diagonal arrow) and is powered by chemical reactions 
(red arrow). Assuming the microscopic reversibility of the self-propulsion mechanism gives rise to the 
mechanochemical coupling term [µcn(t) · F(r)] in Eq. (3) for va(r, t) . The x- and y-component of the external 
force F(r) , Eq. (4), are represented by the horizontal and vertical arrows. (b) The periodic asymmetric potential 
V(x) given in Eq. (5) normalized by its barrier height V0 for � = 1 . (c) Sketch of a trajectory of the nanoparticle 
diffusing in the potential V(x) (dark red marks the potential minima, light orange the maxima) and subjected to 
a constant force with the amplitude f⊥ > 0 acting in the y-direction and with no constant force component in 
the x-direction ( f� = 0 ). The nonzero perpendicular bias f⊥ can induce a net particle motion along the x-axis. 
This special consequence of the mechanochemical coupling term in va(r, t) is illustrated in Fig. 2. If f‖ > 0 , the 
direction of the motion can be reversed by changing f⊥ as shown in Fig. 3.
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determined by the constant components f‖ and f⊥ , and by the derivative of the asymmetric �-periodic potential

shown in Fig. 1b. A trajectory of the particle moving in V(x) and being acted upon by f⊥ > 0 is sketched in 
Fig. 1c.

The asymmetric sawtooth-like potential V(x) is qualitatively similar to potentials used in various theoretical 
and experimental studies of ratchets59–71. A distinctive feature of the ratchet mechanism discussed below is that 
the emergent current of particles in the x-direction is induced by the transverse force f⊥ applied perpendicular 
to it in the y-direction. Although here we focus on the two-dimensional case, in an actual experiment, the force 
f⊥ can point in any direction in the yz-plane.

Assuming that the force in Eq. (4) can be accurately adjusted in an experiment, we discuss the dependence of 
the ratchet effect on f‖ , f⊥ , and V0 . The phenomenological model parameters D, Dr , Dc , and u will be kept fixed. 
All results reported below are obtained assuming � = 100 nm . To get the results, we have integrated Eqs. (1) 
and (2) numerically, see Supplementary Note 1 and 2 for technical details.

The values of the diffusion constants D and Dr were chosen having catalytically active enzymes in mind72–74. 
Thus, D was approximated by the Stokes-Einstein equation D = kBT/6πηRh , and Dr = kBT/8πηR

3
h
 valid for a 

sphere of radius Rh , η is the fluid dynamic viscosity. With Rh = 15 nm , T = 300 K , and η = 8.53× 10−4 Ns/m2 , 
which corresponds to the dynamic viscosity of water at this temperature, we find

Contrary to D and Dr , the behavior of the phenomenological parameter Dc remains poorly understood. To 
approximate its value, we have used Dc ≈ (δr)2(k+ + k−)/242, where k+ is the rate of the reaction causing the 
nanoparticle displacement δrn (at F = 0 ), and neglected the rate k− of the reversed reaction, which causes the 
displacement by −δrn . For k+ = 105 s−1 and δr = 5 nm,

We note that the very existence of the reported ratchet effect follows from the condition Dc > 0 and does not 
depend on the actual value of Dc . Equation (11) derived below will demonstrate that the ratios Dcf⊥/kBT and 
µV0/� are the two key parameters that control the occurrence and the strength of the ratchet effect. Their values 
can be changed in an experiment by adjusting the force f⊥ , the barrier height V0 , and the period �.

For the constant part of the speed (3), we have used u = 10 nm/s . The reported results, however, are insen-
sitive to the actual value of u, as we have checked several alternative values of u between 0 and 103 nm/s . The 
negligible effect of u on the translational dynamics results from the large Dr , Eq. (7), characteristic for small 
particles ( Dr ∼ 1/R3

h
 ) as compared to the slower translational motion whose speed is determined by D in (6) 

( D ∼ 1/Rh ), u and by Dc (8). This is in sharp contrast to the motion of micron-sized active particles that move 
ballistically for significant periods of time due to relatively large u and small Dr

1,75–80.
We quantify the ratchet effect in terms of the mean velocity 〈vx〉 of the particle motion in the x-direction. It 

is defined as the average

over Ntr simulated trajectories, where xi(tmax) is the final x-coordinate of the ith trajectory. We have used 
Drtmax = 103 , Ntr = 104 , and checked that increasing tmax and Ntr does not affect the displayed results.

Figure 2 shows 〈vx〉 for f� = 0 , i.e., when there is no net force in the x-direction. Symbols mark 〈vx〉 of the 
active nanoparticle with the microscopically reversible self-propulsion mechanism (MR ANP) described by 
the active speed va(r, t) in (3). Dashed lines represent 〈vx〉 of the so-called active Brownian particle (ABP) 
model76,78,79,81–93 which is a paradigmatic model for micron-sized active colloidal particles1,75–79 and is character-
ized by the constant active speed

The ABP model is formally obtained from the MR ANP model after neglecting the mechanochemical coupling 
and the noise in Eq. (3), i.e., by setting µc = Dc/kBT = 0.

The simulated mean velocities 〈vx〉 for these two models are plotted in Fig. 2 as the functions of the perpen-
dicular force f⊥ for three representative values of the barrier height V0:

(i) V0 = 1 kBT , light-blue symbols, where the barrier height is equal to the energy of thermal fluctuations. 
Thus, the asymmetric potential V(x) has only a minor influence on the dynamics and 〈vx〉 of MR ANP is vanish-
ingly small.

(ii) V0 = 6 kBT , yellow symbols. Here, thermal fluctuations can induce hopping-like transitions of particles 
over the barriers of V(x). As a result of the ratchet effect, MR ANP exhibits a nonzero mean velocity in the nega-
tive direction of the x-axis ( �vx� ≤ 0 ). There exists an optimal value of f⊥ leading to a maximal negative velocity 
of MR ANP. In the limits of small ( f⊥ → 0 ) and large ( f⊥ → ∞ ) perpendicular forces, 〈vx〉 vanishes.

(5)V(x) =
V0

2

[

sin

(

2πx

�

)

+
1

4
sin

(

4πx

�

)]

,

(6)D ≈ 1.7× 10−11 m2/s,

(7)Dr ≈ 5.7× 104 s−1.

(8)Dc ≈ 1.3× 10−12 m2/s.

(9)�vx� =
1

Ntr

Ntr
∑

i=1

xi(tmax)

tmax

(10)v(ABP)a = u.
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(iii) V0 = 10 kBT , red symbols. In this case, the barriers of V(x) are large compared to the energy of thermal 
fluctuations. The cross-well transitions of MR ANP are driven dominantly by the active velocity. The ratchet 
effect becomes the most pronounced out of the three cases.

In Fig. 2, the three dashed lines marking 〈vx〉 for the ABP model overlap and follow closely the line �vx� = 0 
for all f⊥.

These observations suggest that the ratchet effect should be caused by the force-dependence of the active 
speed (Eq. 3). Can we understand this effect qualitatively, e.g., by relating it to some of the well-understood 
ratchet mechanisms? It turns out that this is not only possible but is indeed an insightful step as it will lead to 
yet another way of control over the motion of the nanoparticle.

For the considered values of parameters, the Langevin equation for the x-coordinate of MR ANP (and for 
f� = 0 ) approximately reduces to

where the effective enhanced mobility µ̃ = µ+ µc/2 , and the enhanced diffusivity D̃ = D + Dc/2 (compared to µ 
and D), satisfy the fluctuation-dissipation relation D̃ = µ̃kBT . Indeed, due to the fast rotational diffusion, we can 
neglect u in Eq. (3) as discussed above, yielding va(r, t) cosφ ≈ µcf⊥ sin(2φ)/2− µcV

′(x) cos2φ + cosφ
√
2Dc ξc , 

for the x-component of the active velocity. Since φ is a fast process and µ ≫ µc , cos2φ can be replaced by its mean 
value, cos2 φ ≈ 1/2.The noise term is then simplified accordingly: cosφ

√
2Dc ξc =

√

2Dc cos
2φ ξc ≈

√
Dc ξc , 

and is added to the thermal noise 
√
2D ξx , which eventually leads to (11); see Supplementary Note 3 for more 

technical details and tests of validity of this approximation.
Equation (11) describes the dynamics of a basic model of a Brownian motor, the so-called overdamped tilting 

ratchet59,64,66,94,95. Discussion of the dynamics governed by Eq. (11) can provide a further physical understanding 
of the mechanism leading to the reported ratchet effect. Below, we focus on qualitative arguments and intuitive 
interpretation of the effect. For a thorough mathematical analysis of various classes of tilting ratchet models, we 
refer to Sect. 5 of the review article59.

In particular, Eq. (11) describes the dynamics of an overdamped Brownian particle diffusing in the potential 
V(x) subject to the time-dependent stochastic force (f⊥/2) sin[2φ(t)] . If the magnitude of the force becomes 
large enough, the particle may start surmounting potential barriers of V(x) located in the direction of the force. 
Because V(x) is asymmetric, shapes of the left (moderate slope) and right (steeper slope) barrier surrounding a 
given well differ and the barrier-crossing is easier in one of the two directions: in (−x)-direction in the present 
case. After surpassing multiple barriers in both directions, the asymmetry of V(x) translates into the nonzero 
mean motion in the easy (−x)-direction giving a nonzero mean velocity 〈vx〉 observed in Fig. 2.

The velocity 〈vx〉 attains its maximum for moderate values of f⊥ . If f⊥ → 0 , 〈vx〉 vanishes because a weak 
force does not affect the rate of the barrier-crossings. At large f⊥ , 〈vx〉 vanishes too: When the force is extremely 
strong, the potential barriers of V(x) have only a minor influence on the particle motion and the effect of their 
asymmetry becomes negligible. Such a release of nanoparticles from deep potential wells that is induced by a 
strong perpendicular force f⊥ can be utilized for controlling the direction of 〈vx〉 . This is demonstrated in Fig. 3 
showing a reversal of the direction of 〈vx〉 for particles subjected to a weak force f‖ > 0 acting in the x-direction.

For small and moderate f⊥ , the results shown in Fig. 3 resemble those in Fig. 2: MR ANP experiences the 
ratchet effect and moves on average with 〈vx〉 < 0 . However, at larger f⊥ , as the barriers of V(x) become less 
significant for the MR ANP dynamics, the direction of the net particle motion is reversed, and 〈vx〉 > 0 . Eventu-
ally, as f⊥ → ∞ , 〈vx〉 converges towards the solid line given by

(11)
dx

dt
≈

µcf⊥
2

sin[2φ(t)] − µ̃
dV

dx
+

√

2D̃ ξx(t),
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Figure 2.   Rectified particle motion. Net particle translation is induced by the mechanochemical coupling 
term in the active speed (3). The mean particle velocity 〈vx〉 in the x-direction is plotted as the function of the 
perpendicular force f⊥ acting in the y-direction for three values of the barrier height V0 (colors) and f� = 0 . 
Parameters D, Dr , Dc are given in Eqs. (6)–(8), � = 100 nm , and u = 10 nm/s . Symbols represent simulated 〈vx〉 
of the active nanoparticle with the microscopically reversible self-propulsion mechanism (MR ANP) illustrated 
in Fig. 1. Dashed lines show corresponding results for the active Brownian particle (ABP) model with constant 
active speed (10). The three dashed lines overlap.
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which equals to the mean velocity of an overdamped Brownian particle diffusing in a flat potential [ V(x) = 0 ] 
with the enhanced mobility µ̃ = µ+ µc/2 , cf. the mobility in Eq. (11).

Contrary to this complex behavior, 〈vx〉 in the ABP model does not depend on f⊥ and is vanishingly small 
because the ABP spends most of the time being trapped near the minima of V(x) regardless of the value of f⊥.

Finally, let us note that the magnitude of 〈vx〉 and the range of f⊥ values, where the transverse ratchet effect 
occurs, depend on the value of the phenomenological parameter µc = Dc/kBT characterising the strength of the 
mechanochemical coupling. This dependence is demonstrated in Fig. 4, where blue circles correspond to µc used 
in all other figures and obtained from the estimate (8) and red triangles (yellow squares) represent simulation 
results for µc being 5 times (10 times) larger. Hence, for stronger mechanochemical coupling, the ratchet effect 
becomes more pronounced and occurs at lower values of the transverse force f⊥.

Summary and perspectives
The principle of microscopic reversibility is fundamental for nonequilibrium statistical mechanics and thermo-
dynamics. Here, we have discussed the physical origins and fundamental properties of a novel ratchet mecha-
nism resulting from the MR of the chemically-driven self-propulsion mechanism of an active nanoparticle. The 
mechanism enables efficient control of the velocity of a nanoswimmer propelled by chemical reactions. It is based 
on an interplay of the particle translational diffusion in an asymmetric periodic potential V(x) and the modifica-
tion of its self-propulsion speed because of the mechanochemical coupling. The resulting ratchet effect manifests 
itself most strikingly by the emergent net particle motion in the easy direction of the ratchet potential, when a 
constant force f⊥ is applied to the particle in a perpendicular direction. The mean velocity 〈vx〉 of this motion 
can be controlled by adjusting the barrier heights V0 of the periodic potential and the magnitude of f⊥ . For a 

(12)�v(0)x � =
(

µ+
µc

2

)

f�,

0 50 100 150 200 250 300
-0.4

-0.3

-0.2

-0.1

0

0.1

Figure 3.   The ratchet effect and the velocity reversal. The mean nanoparticle velocity 〈vx〉 in the x-direction 
(symbols), for the case when the nanoparticle is subjected to the nonzero parallel force f� = 0.025 pN . Other 
parameters are the same as in Fig. 2. The black solid line represents the velocity (12) of a Brownian particle 
moving in a flat potential with the enhanced mobility (µ+ µc/2) . The two dashed lines marking corresponding 
results for the ABP model overlap.
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-0.5

0

Figure 4.   Impact of µc on the ratchet effect. The mean velocity 〈vx〉 of MR ANP in the x-direction for f� = 0 , 
V0 = 20 kBT , and three values of µc . Circles represent results for µc obtained from (8), triangles (squares) for 
five (ten) times times larger µc . Other parameters are the same as in Figs. 2 and 3.
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given V0 , there exists an optimal value of f⊥ , for which the mean speed |�vx�| attains a maximum. Furthermore, 
if a constant force f‖ is applied in the x-direction, the mean velocity can be reversed by changing  f⊥.

In addition to numerical results, we have shown that for the model parameters roughly corresponding to 
catalytic enzymes, the dynamics of the nanoparticle in the x-direction is equivalent to that of a Brownian tilting 
ratchet. This mapping provides an intuitive physical interpretation of the reported ratchet effect and demon-
strates that it cannot occur in active dynamics lacking the mechanochemical coupling. In the present model, this 
coupling arises as a consequence of the microscopic reversibility of the fluctuating chemical kinetics powering 
nanoparticle self-propulsion. Further exploration of such coupled thermodynamic processes at the nanoscale 
can inspire novel designs for micromanipulation techniques, where macromolecules are acted upon by exter-
nally applied electromagnetic or/and mechanical forces. Additionally, testing such effects in experiments may 
contribute toward a resolution of the long-standing question of whether active enzymes self-propel or not.
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