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Sparse convolutional neural 
network for high‑resolution skull 
shape completion and shape 
super‑resolution
Jianning Li 1*, Christina Gsaxner 2, Antonio Pepe 2, Dieter Schmalstieg 2, Jens Kleesiek 1 & 
Jan Egger 1,2*

Traditional convolutional neural network (CNN) methods rely on dense tensors, which makes them 
suboptimal for spatially sparse data. In this paper, we propose a CNN model based on sparse tensors 
for efficient processing of high-resolution shapes represented as binary voxel occupancy grids. In 
contrast to a dense CNN that takes the entire voxel grid as input, a sparse CNN processes only on 
the non-empty voxels, thus reducing the memory and computation overhead caused by the sparse 
input data. We evaluate our method on two clinically relevant skull reconstruction tasks: (1) given a 
defective skull, reconstruct the complete skull (i.e., skull shape completion), and (2) given a coarse 
skull, reconstruct a high-resolution skull with fine geometric details (shape super-resolution). Our 
method outperforms its dense CNN-based counterparts in the skull reconstruction task quantitatively 
and qualitatively, while requiring substantially less memory for training and inference. We observed 
that, on the 3D skull data, the overall memory consumption of the sparse CNN grows approximately 
linearly during inference with respect to the image resolutions. During training, the memory usage 
remains clearly below increases in image resolution—an ×8 increase in voxel number leads to less than 
×4 increase in memory requirements. Our study demonstrates the effectiveness of using a sparse CNN 
for skull reconstruction tasks, and our findings can be applied to other spatially sparse problems. We 
prove this by additional experimental results on other sparse medical datasets, like the aorta and the 
heart. Project page at https://​github.​com/​Jiann​ingli/​Spars​eCNN.

One of the challenges of transferring recent advances in 3D shape analysis to the medical field is that the 3D 
objects in typical benchmark datasets are of small to moderate sizes. Thus, memory efficiency is often not a 
primary concern. When applied to medical images, these algorithms often exceed available memory, even on a 
high-end GPU with many Gigabytes of memory. For example, the 3D models (e.g., chairs, cars, airplanes, etc.) 
in ShapeNet collection typically consist of a few thousand points, while a typical high-resolution 3D CT scan 
yields millions of points when converted to a point cloud representation1.

An obvious opportunity to address the memory issues lies in exploiting spatial sparsity of the 3D data. Some 
medical data sets, such as the skull, are inherently sparse, with voxel occupancy rates as low as 10%. Since only 
non-empty voxels carry geometric information of the 3D shape, a sparse convolutional neural network (CNN)2–5 
can save both memory and computational effort.

In our work, we construct a sparse CNN using the Minkowski Engine5, which was originally designed for 
spatio-temporal tensors of 4D and up. We demonstrate how to apply the same principles to sparse, binary volu-
metric data. To that aim, we evaluate our sparse CNN on two skull reconstruction tasks: skull shape completion 
and skull shape super-resolution. With sparse CNN, the skull images can be processed in their original resolution 
( 512× 512× Z , where Z is the number of axial slices in a head CT scan) with moderate memory requirement. 
Results show the superiority of sparse CNN over conventional dense CNN in terms of both runtime performance 
and memory requirements on sparse data.

This paper is an extension of our submission6 to the AutoImplant 2021 challenge (https://​autoi​mplan​t2021.​
grand-​chall​enge.​org/). Reference6 first demonstrated that it is feasible to use sparse CNN in skull reconstruction 
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tasks and empirically analysed its advantages over regular CNN. Compared to Ref.6, the major improvements 
of this work are summarized as follows:

•	 Only the edges of the skulls were used in Ref.6, as the available GPU memory is rather low (6 GB), resulting 
in suboptimal skull reconstructions. In this work, we can use the whole dense skulls thanks to the extended 
GPU capacity (12 GB).

•	 The superiority claim of sparse CNN in Ref.6 is substantiated by experimental evidence in our work by 
comparing the sparse CNN with its dense counterparts regarding reconstruction accuracy and computation 
efficiency (e.g., memory usage, training speed).

•	 Besides shape completion, we show in this work that the proposed sparse CNN can also be used for shape 
super-resolution for a variety of binary voxel grids representations besides the skulls.

•	 We show that the sparse CNN can be used as an integral component in medical image segmentation tasks 
to further refine the binary segmentation masks initially produced by a dense CNN-based segmentation 
network.

Related work
Shape completion
 Shape completion refers to the process of restoring the missing regions of an object represented as point clouds7, 
meshes8 or voxel grids9–11. Due to the regularity of voxel grids, using voxel grids for completion takes the advan-
tage of existing and well-established CNN architectures, such as auto-encoders, which are designed to process 
images. However, an object that is originally acquired in point clouds has to be voxelized to a high-resolution 
voxel grid in order to preserve its geometric details. Nevertheless, the use of a voxel grid in learning-based 
approaches is expensive, as memory requirements grow cubically with respect to resolution, often resulting in 
coarse reconstructions. The work of Han et al.9 and Dai et al.10 addressed the memory issues of voxel grid com-
pletion by reconstructing high resolution voxel grids in a two-step, coarse-to-fine fashion. Other studies work 
around the memory issue by using only very coarse voxel grids (e.g., 24× 54× 24 ) for completion11.

Compared to voxel grids, point clouds are much more light-weight and efficient representations in 3D. Yuan 
et al.7 proposed a deep learning framework that performs shape completion directly on raw point clouds data 
without voxelization. However, since point clouds are unstructured and objects of the same size differ in their 
number of points, deep learning has to deal with irregular memory access12,13. These CNN methods for shape 
completion generally used the auto-encoder architecture and its variants.

To further address the memory issues and improve the reconstruction quality, recent arts in learning-based 
3D reconstruction propose to represent 3D shapes as implicit functions, such that 3D reconstruction/completion 
can be learnt directly in the function space14–16. Since implicit functions of 3D shapes are not reliant on a specific 
resolution, 3D shapes can be extracted from the learned implicit functions at arbitrary resolutions, achieving 
reconstructions in a continuous space. Aside from the memory issues, ill-posedness is another actively studied 
problem in shape completion, considering that there could exist multiple feasible reconstructions given one 
incomplete observation. Recent arts propose a shape completion framework based on autoregressive models (e.g., 
image transformer17) that learn a distribution of completions, from which multiple feasible completions respect-
ing the input can be sampled. In Ref.18, the authors exploit the advantages of both implicit 3D representations 
and image transformer to learn high-resolution and varied shape reconstructions from partial observations. In 
this paper, we focus on solving the memory issues while learning a deterministic mapping between a defective 
and a complete skull, both represented as a binary voxel grid.

Skull shape completion and clinical applications
 Skull shape completion has important applications in craniofacial implant design1,19,20. The skull images are 
segmented as binary voxel grids from high-resolution CT scans, typically at a resolution of 512× 512× Z . In 
CNN applications, the size of such skull images significantly exceeds the memory capacity of a standard desktop 
GPU. Previous methods either downsample21 or resample22,23 the skull images to a smaller, intermediate size, 
or use a patch-wise training and inference strategy1. Li et al.24 proposed a two-step, coarse-to-fine framework 
that generates high-resolution implants with reduced memory usage. All these methods are far from optimal, 
as downsampling or resampling inevitably results in image quality degradation and, consequently, deformation 
of the skull shape. The two-step method proposed by Li et al.24 is not end-to-end trainable in its original form. 
The patch-based approach requires a tailored training strategy to make sure that the CNN captures the overall 
shape distribution of the human skull1. Besides, it was reported in Ref.1 that the reconstructed high-resolution 
skulls would appear patchy due to the incongruency around the borders of the individual patches. Furthermore, 
Refs.24,25 also showed that a network would be more likely to learn the overall shape distributions of the skulls 
when given an entire skull as input after downsampling, compared to given only a portion (e.g., a bounding box24 
or a patch25) of the skull. The full-image context helps increase a network’s robustness against defect patterns and 
generalizability. On this account, an ideal CNN for skull reconstruction should take the entire high-resolution 
skull images as input and output the reconstructed skulls or implants in their original resolutions.

Data spatial sparsity and sparse CNN
 In a recent approach25, the authors adopted a hash table to exploit the sparse and binary structure of the skull 
images to reduce the reconstruction time and memory consumption. Instead of the entire skull volume, the 
method reconstructs only the non-zero voxels and stores them as bit-strings, so that each voxel occupies only one 
bit of memory. This is a non-CNN approach and requires that voxel coordinates are stored during reconstruction 
to maintain the spatial relationship among the reconstructed voxels.
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In this paper, we propose to take the advantage of such spatial sparsity of the skull data to reduce memory 
consumption using only sparse convolutions. Note that by “sparse CNN” we mean a CNN architecture made 
for sparse input data (like the skull) and not a compressed CNN with sparse (e.g., mostly zero) parameters26–29. 
This makes our approach conceptually similar to methods which apply a CNN to 3D shapes at high resolutions, 
such as Riegler et al.3 and Wang et al.2. Both used an octree representation for 3D shapes and proposed octree-
based convolutions. Graham et al.4,30 and Choy et al.5 proposed sparse convolutions defined on the non-empty 
points in an object. During execution, features are extracted only from these non-empty locations, such that the 
zero-valued background does not take up memory and computation resources.

Data generation
We used two public skull datasets in our study, namely, the MRI skull dataset from the Human Connectome 
Project (HCP, https://​human​conne​ctome.​org/​study/​hcp-​young-​adult/​docum​ent/​1200-​subje​cts-​data-​relea​se/) 
and the CT skull dataset from Task 3 of the AutoImplant 2021 challenge.

MRI dataset
 The HCP dataset originally contains 1113 structural MRI scans, and 200 of them were selected in our study 
(100 for training and 100 for evaluation). The BrainSuite (http://​brain​suite.​org/) software was used to extract 
the skull surfaces from the scans31. Note that the program extracts only the interior and exterior skull surfaces 
as can be seen from Fig. 1b. The skull meshes were further voxelized to binary grid representations at various 
resolutions: 303 , 603 , 903 and 1203 ( Fig. 1a).

CT dataset
 In CT scans, bone structures can be distinguished based on gray values, and therefore the skulls can simply be 
extracted using thresholding, resulting in binary voxel grids of resolution 512× 512× Z (for all CT images, the 
X, Y resolutions are both 512, while the Z resolution varies across scans). The dataset contains 100 skulls for 
training and 100 for evaluation (the 10 out-of-distribution test cases are not included here). We also created the 
multi-resolution representation of the CT skulls at 64× 64× (Z/8) , 128× 128× (Z/4) and 256× 256× (Z/2) , 
as illustrated in Fig. 1a.

For both datasets, a portion of the skull bone (around the cranium area) was removed to simulate the surgical 
procedure of craniotomy for the experiments on skull shape completion (Fig. 1c). Figure 2 shows a comparison of 
the memory occupancy between the original skull voxel grids and the non-zero voxels, for the MRI (Fig. 2a) and 
CT dataset (Fig. 2b) dataset at various resolutions specified above. Note that the plots use the number of voxels 
to represent the overall memory occupancy directly, as each voxel occupies a constant space. The MRI dataset 
was stored as int8 and the CT dataset was stored as int32. The plots show that the memory usage of the original 
skull data grows cubically with respect to image resolutions, while for the valid voxels, memory usage exhibits 
approximate linear growth in comparison. Intuitively, a sparse CNN relying only on the valid voxels would be 
more efficient in terms of memory and computation than a dense CNN that takes the entire voxel grids as input.

Methods
We use the Minkowski Engine proposed by Choy et al.5 as the backbone of a sparse CNN. Minkowski Engine is 
originally designed as a general-purpose tool for the analysis of 4D spatio-temporal data and uses sparse tensors 
as the basic data structure. A sparse tensor F is a generalized representation of a sparse matrix in which most 
of the points are empty (zero). A third order sparse tensor can be expressed as:

Figure 1.   Illustration of the binarized MRI (first row) and CT (second row) skull dataset. (a) the MRI and 
CT skulls at different resolutions. (b) midsagittal views of an MRI and CT skull. (c) MRI and CT skulls with 
synthetic defects.

https://humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release/
http://brainsuite.org/
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where C is the coordinate matrix (row-wise concatenation of coordinates) of the non-empty points and fi ∈ R
NF is 

the non-empty value at coordinate (xi , yi , zi) . NF is the number of channels at this point. F =
{

f1, f2, ..., fi , fi+1...
}

 
is the feature vector. Sparse CNN relies only on C and F  for feature computation. In our study, we use sparse 
CNN specifically on sparse binary volumes of static data, i.e., the skull images, which are typical examples of 
sparse tensors, since the majority of voxels in a skull image are zero. The input of the sparse CNN consists of a 
coordinate matrix Cin and the associated feature vectors Fin:

Here, N is the number of non-zero voxels in a skull image. Note that the coordinates we used in our study refer to 
voxel grid coordinates (e.g., from [0, 0, 0] to [512, 512, Z]) instead of the world coordinates of point clouds. Since 
the skull data are binary, and the number of channels per voxel is one ( NF = 1 ), the feature vector has a format 
of Fin ∈ R

N×1 , and the elements in Fin are all 1. For three-dimensional voxel grid coordinates, Cin ∈ Z
N×3 . A 

general data pre-processing step for using the sparse CNN is to format the input and ground truth skull images 
according to Eq. (2).

Similar to existing CNN methods for shape completion, we use an auto-encoder architecture for the task, 
but we replaced the conventional dense convolutional layers with sparse convolutional layers5. Table 1 shows 

(1)F (xi , yi , zi) =

{

fi , (xi , yi , zi) ∈ C

0, otherwise

(2)Cin =







x1 y1 z1
x2 y2 z2
... ... ...

xN yN zN






,Fin =







1

1

...

1







Figure 2.   Memory occupancy (as shown in the vertical axis, which is represented as the total number of 
relevant voxels) of the MRI (a) and CT (b) skull datasets at different resolutions (as shown in the horizontal 
axis, which is represented as the number of voxels in the sagittal, coronal and/or axial image dimensions). For 
the original skull data, the memory occupancy was down-scaled by a factor of ten and five for the MRI and CT 
dataset, respectively, for the plots. For the CT dataset (b), the axial dimension differs for different CT images. 
The plots in black and green depict the mean, (mean-min) and (max-mean) of the number of voxels.
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the configuration of each layer in the sparse CNN used for experiments. ch is a list of the channel numbers for 
each layer. As the number of output channels ( Cout ) in each layer is no longer constant 1 as in the input skull 
image, we use F i

in ∈ R
Cout
i−1 as a general notation for the output (i.e., the feature vector) of the intermediate layer 

i. The convolution operation at a coordinate D ∈ Z
3 in the sparse CNN can therefore be defined similar to that 

of the traditional dense CNN:

where wi ∈ R
Cout
i ×Cout

i−1 and bi is the weight matrix and bias of intermediate layer i. D′ ∈ Z
3 is the corresponding 

coordinate in layer i + 1 mapped from D. Note that, unlike a traditional dense CNN that operates on regular voxel 
grids sequentially, a sparse CNN requires specifying a coordinate mapping in order to know how D is mapped to 
D′ , as the non-zero voxels can be distributed arbitrarily, and, by extracting only the non-zero voxels, the spatial 
context within an image is lost. For such coordinate mapping, Minkowski Engine uses a pair of voxel indices from 
the input and ground truth images to memorize the mapping relationship as in a regular voxel grid, leading to 
coordinates-related computation overhead, comparable to Li et al.25. In Minkowski Engine, the coordinates and 
the voxel indices were stored in a hash table (the hash function used is FNV64-1A), where the coordinates were 
used as hash keys to retrieve the original voxel indices of the associated elements in a feature vector. Even if the 
hash table is not directly involved in feature computation, they determine how an element from the input feature 
vector is mapped to an element computed according to Eq. (3) in the output feature vector.

Shape completion
For skull shape completion, the input is a defective skull and the output (ground truth) is the complete skull. It 
can be divided into two sub-tasks: reconstructing the original defective skull 

{

Cin,Fin

}

 and restoring the missing 
skull bone (i.e., the implant) 

{

Cimp,Fimp

}

:

where

M is a variable denoting the number of non-zero voxels in the generated set of coordinates Cimp . Fimp ∈ R
M×1 , 

and the elements in Fimp are all 1. Obviously, M can be different for different skull instances considering the 
varaitions of skulls and defects. According to Eq. (4), the sparse CNN needs to generate new sets of coordinates 
Cimp at which the values are non-zero, for the skull shape completion task ( M  = 0 such that Cin ⊂ Cscout ). The 
generative sparse tensor decoder in Table 1 are composed of generative transposed convolutional layers32 that 
are capable of generating new non-zero points absent in the input. Given a sparse tensor F as input, the output 
of a transposed convolution F ′ can be written as:

(3)F
i+1
in (D′) =

∑

wi
F

i
in(D)+ bi ,

(4)C
sc
out =

[

Cin
Cimp

]

,F
sc
out =

[

Fin

Fimp

]

(5)Cimp =







xN+1 yN+1 zN+1

xN+2 yN+2 zN+2

... ... ...

xN+M yN+M zN+M






,Fimp =







1

1

...

1







Table 1.   Configuration (number of input channels Cin , output channels Cout and kernel size Ks) of each layer 
in the encoder and decoder of the sparse CNN.  The generative transposed convolutional layers are marked 
bold. Layers with stride 2 are marked with *.

Encoder Decoder

C
in

C
out Ks C

in
C
out Ks

1 ch[0] 3 *ch[6] ch[5] 4

ch[0] ch[1] 2 ch[5] ch[5] 3

ch[1] ch[1] 3 *ch[5] ch[4] 2

ch[1] ch[2] 2 ch[4] ch[4] 3

ch[2] ch[2] 3 *ch[4] ch[3] 2

ch[2] ch[3] 2 ch[3] ch[3] 3

ch[3] ch[3] 3 *ch[3] ch[2] 2

ch[3] ch[4] 2 ch[2] ch[2] 3

ch[4] ch[4] 3 *ch[2] ch[1] 2

ch[4] ch[5] 2 ch[1] ch[1] 3

ch[5] ch[5] 3 *ch[1] ch[0] 2

ch[5] ch[6] 2 ch[0] ch[0] 3

ch[6] ch[6] 3 ch[0] 1 1

– – – Sigmoid



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:20229  | https://doi.org/10.1038/s41598-023-47437-6

www.nature.com/scientificreports/

where (x, y, z) ∈ C′ and (i, j, k) ∈ C . W is the kernel weight. C and C′ are the input and output coordinate matrix 
respectively, and they have the following relationship:

⊗ denotes outer-product. A point generated by a transposed convolution (x, y, z) has the following constraint 
with the input coordinate i, j and k according to Eq. (6):

We can see from Eqs. (6), (7) and (8) that using a kernel size greater than two would expand the span (e.g., 
[−Ks,Ks] ) of the input coordinates, allowing a transposed convolution to dynamically generate new non-zero 
points for generative tasks like shape completion. In our specific task, the generative sparse tensor decoder in 
Table 1 is trained to generate M new points, while maintaining the original input coordinates.

Each transposed convolution layer in Table 1 is followed by a pruning layer that prunes out undesirable new 
points, which is essential for maintaining a low memory and computation cost during the generative process. 
During training, the ground truth masks teach the network when to keep or prune a point. During inference, the 
ground truth masks are unavailable. The network prunes a point if its feature value is lower than a pre-defined 
threshold τ . In our network, we choose τ = 0.

Shape super‑resolution
Skull shape super-resolution refers to the process of transforming a (completed) coarse binary skull shape to 
its smooth high-resolution representation with fine geometric details. The input is the completed skull at a low 
resolution Za , and the output is the same completed skull at a higher resolution Zb , a < b . Note that for the 
skull super-resolution task, the coarse and high-resolution skull (i.e., the ground truth) have to be in the same 
coordinate system for the coordinate mapping in the sparse CNN to work properly, meaning that the coarse 
skull image needs to be up-scaled to the same size as the target high-resolution image, i.e., a = b . The network 
would fail to converge when, for example, the input is of resolution 64× 64× (Z/8) , while the ground truth is 
of resolution 256× 256× (Z/2) . By a = b we do not mean that the input and the ground truth have the same 
resolution from the perspective of image quality. Rather, we mean that the input is interpolated to the same size 
as the ground truth. The up-scaled input still appears blurry and coarse, and lacks geometric details.

According to Ref.25, the difference between a (up-scaled) coarse skull voxel grid and a high-resolution voxel 
grid is simply the arrangement patterns of the zero and non-zero voxels, and, by rearranging the voxels, a coarse 
skull shape can be upgraded to the high-resolution representation. The total number of non-zero voxels between 
the two types of skulls shows no statistical differences. Therefore, we use the following to represent the ground 
truth coordinate matrix Csrout and feature vector F sr

out for the super-resolution task:

If we assume that an up-scaled coarse skull and the ground truth each possesses Nsr (a variable) non-zero points 
and they share N0 (a variable) common points ( N0 < Nsr ), then Nsr − N0 non-zero points in the input need to 
be pruned while Nsr − N0 new non-zero points need to be generated in new coordinates. Therefore, the sparse 
CNN specified in Table 1 is still applicable to the super-resolution task.

Memory usage and computation complexity
The memory consumption of a neural network comes primarily from the following sources during training 
time: (1) input and ground truth image batches, (2) the output of the intermediate layers (forward pass), (3) 
network parameters, (4) memory usage from back-propagation (errors and gradients at each parameter) and 
(5) optimizers. In test time, the parameters of the network, input image batches and intermediate layers’ output 
are the main sources of memory usage. In our study, we compare the memory consumption of sparse and dense 
CNN when the networks have the same configurations (Table 1) and number of parameters Nparam . For both 
dense and sparse CNN configurations, Nparam can be estimated as:

The number of bias in layer i is the same as the number of output channels of the layer Couti  . Assuming that the 
parameters are stored as float32 (32-bit), sparse and dense CNN consume the same amount of memory in storing 
these parameters. However, the input and ground truth for a dense CNN are the original voxel grids, while, for 
a sparse CNN, only the valid non-zero voxels are required, and thus a sparse CNN consumes significantly less 
memory than dense CNN in loading the input and ground truth image batches, as shown in Fig. 2. Similarly, 

(6)F
′[x, y, z] =

∑

i,j,k∈N (x,y,z)

W[x − i, y − j, z − k]F [i, j, k]

(7)C
′ = C ⊗ [−

Ks − 1

2
, ...,

Ks − 1

2
]3
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2
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2
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2

}
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,F
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(10)Nparam =
∑

i

C
out
i × C

in
i × Ks3 + C

out
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the size of the output Nf i corresponding to intermediate layers i is linear to the feature dimension of the (i − 1)th 
layer Nf i−1 and is calculated as:

where p and s are the padding and stride size, respectively. According to Eq. (11), the memory consumption of 
the intermediate layers’ output is also linear to the input image size (Fig. 2).

The memory consumption related to back-propagation and optimizer is tricky to calculate. In our study, we 
estimate the overall GPU memory usage during training using the nvidia-smi command provided by NVIDIA. 
We query the system GPU memory usage at 50-millisecond intervals for Ntrain training iterations ( Ntrain is the 
number of training samples, and the batch size was set to 1) and take the average of all the queried values as the 
final amount of memory consumed for training, considering that the number of non-zero voxels are different for 
each training sample. The static memory occupancy that is not caused by training the network was subtracted 
from the measurement. For inference, we used the same method except that the measurement was taken when 
the network loaded the trained parameters and was run on the test set.

Floating points operations (FLOPS) is commonly used to measure computational complexity of a CNN. The 
FLOPS consumed in CNN layer i is the product of Nf i , Ks and Couti × Cini  . Given the same network configurations 
( Couti  , Cini  , Ks), the FLOPS are linear to Nf i and thus to the input image size (Fig. 2). The sparse CNN therefore 
is significantly faster than a dense CNN in both training and inference time under the same configurations.

Experiments and results
We trained the sparse CNN (Table 1) for two tasks: The first task is skull shape completion on the CT and 
MRI skull dataset at different resolutions ( 303 , 603 , 903 and 1203 for the MRI dataset and 642 × (Z/8) , 
1282 × (Z/4) , 2562 × (Z/2) and 5122 × Z for the CT dataset). For the CT dataset, ch is set to ch1 = [8, 8, 
16, 16, 32, 32, 64] (0.435M parameters), for the MRI dataset, ch is set to ch2 = [22, 32, 32, 128, 156, 256, 
388] (about 18.14M parameters). The second task is skull shape super-resolution on the CT skull dataset on 
different scales: 642 × (Z/8) → 1282 × (Z/4) , 642 × (Z/8) → 2562 × (Z/2) , 642 × (Z/8) → 5122 × Z and 
1282 × (Z/4) → 2562 × (Z/2) . It is important to emphasize that, for the CT data, the multi-resolution skull 
representations are created by downsampling the original skulls (represented as voxel grids) from 5122 × Z to 
lower resolutions, whereas for the MRI data, the skulls (represented as meshes) are voxelized to voxel grids at 
different resolutions. For comparison, we also trained a standard dense CNN with the same configuration as the 
sparse CNN for the shape completion task on the CT dataset. For both tasks, we used Dice similarity coefficient 
(DSC) and reconstruction error (RE), i.e., the percentage of misclassified voxels, to evaluate the predictions. The 
sparse CNN was trained using a binary cross-entropy loss Lbce:

and the dense CNN was trained using a Dice loss Ldice for the background ( i = 0 ) and the target ( i = 1):

σ is a sigmoid non-linearity. y and y′ denote the predictions and the ground truth, respectively. ◦ denotes element-
wise multiplication between two matrices. Dice loss is the ideal choice for measuring the differences between 
two masks. Note that, in skull reconstruction tasks, Dice loss is the de facto loss function for dense CNNs, which 
output masks19. However, a sparse CNN outputs 3D points (e.g., coordinates of voxels grids or point clouds) and 
cross-entropy loss is the de facto choice.

Table 2 shows the quantitative evaluation results (mean DSC and RE) for the shape completion task. In 
Table 2, we also reported a performance comparison of the sparse CNN with different numbers of parameters 
(i.e., ch1, ch2) at resolutions 642 × (Z/8) and 1282 × (Z/4) . Results indicate that increasing the model complexity 
of the sparse CNN would also lead to increased prediction accuracy, a phenomenon well observed in traditional 
dense CNN models. It is worth noting that, by using a sparse CNN, we are able to train on the CT skull images 
at their full resolutions ( 5122 × Z ) and the results are promising with over 0.99 DSC and less than 0.12% recon-
struction error (e.g., in a 5122 × 256 image, only 76772 voxels are misclassified on average). Learning at full 
resolutions is advantageous compared to learning from downsampled data, where the quality of the input and 
ground truth is inevitably compromised. It is worth mentioning that the sparse CNN tends to achieve higher 
DSC at higher resolutions according to the results, and that the highest DSC is achieved at the full resolution 
( 5122 × Z ) using a more lightweight network (ch1). In contrast, GPU memory restrictions made training on the 
5122 × Z image resolution using a dense CNN unsuccessful. Furthermore, the quantitative results of the dense 
CNN were significantly worse than the sparse CNN, as can be seen in Table 2. Note that the shape completion 
results in Table 2 are not directly comparable to the AutoImplant challenge results for three reasons: (1) For a fair 
comparison, the dense CNN used the same vanilla network configuration as the sparse CNN, while the challenge 
submissions used more complex (and different) dense network architectures combined with tailored pre- and 
post-processing (e.g., data augmentation) to achieve the results19. (2) Table 2 reported the results at resolutions 
642 × (Z/8) , 1282 × (Z/4) and 2562 × (Z/2) for the dense CNN, while the challenge reported the results at 
resolution 5122 × Z , i.e., the challenge submissions up-scaled the coarse output (the resolution of which differs 
for different submissions) to 5122 × Z before calculating the metrics against the ground truth. (3) The results 
reported in Table 2 apply to the skulls while the challenge results apply to the implants obtained by taking the 

(11)Nf i =
1

s
(Nf i−1 + 2p− Ks),

(12)Lbce = y′ · logσ(y)+ (1− y′) · log(1− σ(y)),

(13)Ldice = −2

1
∑

i=0

∑

yi ◦ y′i
∑

yi ◦ yi +
∑

y′i ◦ y′i
,
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difference between the reconstructed and ground truth skulls19. Note that, we force the dense CNN to follow a 
architecture specifically designed for sparse CNNs (Table 1), rather than the other way around, which might lead 
to a unfair ‘competition’ between the two. Therefore, Table 2 is solely to show a comparison of sparse and dense 
CNN under one vanilla setting, and the results produced in this specific setting are not generalizable to other 
dense CNNs in general. To provide an external comparison for the proposed sparse CNN, we refer to25, in which 
a dense network with over 82M parameters was trained on the same CT dataset for skull shape completion. DSC 
from three variants of the method was reported: 0.7547 for interpolation, 0.7529 for voxel rearrangement and 
0.8587 for patch-based training and inference. Quantitatively, the sparse CNN with only 0.435M parameters 
performs significantly better (DSC of 0.9903). Figures 3 and 4 show the DSC and RE distributions over the test 
sets on the MRI and CT skull datasets, respectively. To provide a quantitative comparison between the sparse 
CNN and top-ranked dense CNNs from the AutoImplant challenge35, we first extracted the implants by sub-
tracting the defective input from the completed skulls reconstructed by the sparse CNN at resolution 5122 × Z , 
and then calculated DSC, border DSC (bDSC), and 95th percentile Hausdorff Distance (HD95) against the 
original ground truth implants from the challenge. The results are reported in Table 3. It is worth highlighting 
that the sparse CNN surpassed the best performing dense CNN33 from the challenge in terms of border DSC - an 
important indicator of the clinical applicability of the implants35, despite being significantly more lightweight. A 
quantitative comparison with our previous work6 is also given in Table 3. Note that6 and our current work used 
the same sparse CNN configurations but different formats of the training data. In Ref.6, only the boundary of 
the skulls were used for training due to hardware limitations, while the current work used the original full skull 
voxel grids. Nevertheless, our previous work6 still achieved comparable bDSC to the state-of-the-art dense CNNs 
without resorting to complex post-processing and intensive data augmentation as in Ref.33.

Figure 3.   DSC (left) and RE (right, %) for the sparse CNN on the MRI dataset at different resolutions ( 303 , 603 , 
903 , 1203 ) for the shape completion task. Horizontal axis corresponds to the image resolutions.

Figure 4.   DSC (top) and RE (bottom, %) for the sparse CNN on the CT dataset at different resolutions for 
the shape completion task. Horizontal axis corresponds to the image resolutions. a: 642 × (Z/8) (ch1) b: 
642 × (Z/8) (ch2) c: 1282 × (Z/4) (ch1) d: 1282 × (Z/4) (ch2) e: 2562 × (Z/2) f: 5122 × Z.
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Figure 5 shows a comparison of the estimated memory consumption of dense and sparse CNN at different 
image resolutions during training and inference, as well as a comparison of memory consumption of sparse CNN 
with different batch sizes at image resolution 642 × (Z/8) during training. Tables 4 and 5 report the estimated 
memory usage (in GB). With each increase in the image resolution, the image size increases cubically ( ×8 ). 
During training, the memory consumption of the sparse CNN increases in an approximately linear manner 
when the image resolution is no more than 2562 × (Z/2) . At 5122 × Z resolution, the memory usage quadruples 

Table 2.   Quantitative results—DSC and RE for the skull shape completion task on the MRI and CT datasets 
at different resolutions.  The second row shows the image resolutions at which DSC (third row) and RE (%, last 
row) are calculated. Significant values are in bold.

MRI CT (sparse) CT (dense)

30 60 90 120 64(ch1) 64(ch2) 128 (ch1) 128 (ch2) 256 512 64 128 256

0.8794 0.9915 0.9920 0.9879 0.9798 0.9859 0.9876 0.9892 0.9876 0.9903 0.4801 0.4928 0.6069

2.5593 0.1324 0.1333 0.1095 0.2237 0.1561 0.1423 0.1229 0.1443 0.1144 7.9719 6.0845 4.8014

Table 3.   Quantitative Comparison Between the Sparse CNN and the Top-ranked Dense CNNs from the 
AutoImplant Challenge Regarding Implant Generation at Resolution 5122 × Z , in terms of DSC, border DSC 
(bDSC), and 95th percentile Hausdorff Distance (HD95). Significant values are in bold.

Methods \ metrics DSC bDSC HD95

sparse CNN (current work) 0.8837 0.9566 4.105

sparse CNN6 0.8544 0.9463 2.6457

Wodzinski et al.33 0.9336 0.9530 1.4761

Mahdi et al.34 0.9154 0.9512 1.6848

Figure 5.   Memory consumption during training and inference for the sparse and dense CNN at different 
resolutions (left). Memory consumption of sparse CNN with different batch sizes at resolution 64 (right).

Table 4.   Comparison of estimated memory consumption (the second to last row in GB) during training and 
inference between the sparse and dense CNN at different image resolutions (the first row). Significant values 
are in bold.

cat. \ Is 64 128 256 512

Sparse train 1.5119 1.6256 2.7341 11.3049

Sparse test 1.4519 1.5097 1.8905 2.7993

Dense train 1.6543 1.9043 4.8145 –

Dense test 1.6699 1.8184 2.6934 –
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( ×4 ). For the dense CNN, the memory usage demonstrates non-linear growth. During inference, the memory 
usage of the sparse CNN increases linearly at all resolutions, and the memory consumption of the sparse CNN 
increases linearly with respect to batch size. Furthermore, the sparse CNN with ch2 channels possesses over 40 
times the parameters than with ch1 channels, whereas the memory increases by less than two times. We take 
this as indication that, for a sparse CNN, raising the model complexity to improve the prediction accuracy does 
not cause dramatic increases in memory usage. Figures 6 and 7 show the qualitative completion results on the 
MRI and CT datasets at different resolutions.

We use the average GPU execution time per skull image to portray the runtime speed of the sparse CNN. For 
training, we measure the duration of training for 100 iterations and compute the average time per iteration. For 
inference, we measure the time it takes to run on the entire test set (100 images). Batch size is set to one in both 
cases. We experimented on the CT data using the shape completion model (ch1). At resolution 642 × (Z/8) , 
1282 × (Z/4) and 2562 × (Z/2) , the training/inference time (s) per image is roughly 0.28/0.22, 0.32/0.30 and 
0.71/0.54, excluding data loading. We can see that both training and inference time increases linearly with respect 
to resolutions. Note that the time measured the same way for the dense CNN is not directly comparable to that 

Table 5.   Sparse CNN memory consumption (the second and third row in GB) with different batch sizes (the 
first row) at resolution 642 × (Z/8) during training.

ch \batch 2 3 4 5 6 7 8 9 10 16 32

ch1 1.5119 1.5494 1.5780 1.6164 1.6557 1.6867 1.7151 1.7950 1.8459 2.1180 3.8395

ch2 1.9071 – 2.0054 – – – 2.3729 2.3232 2.5116 – –

Figure 6.   Examples of skull shape completion results with sparse CNN on the MRI skull dataset at different 
resolutions. The first to third column in each example shows the input defective skull grids, the predictions and 
the ground truth, respectively.
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of the sparse CNN, as the variable i.e., the amount of computational resources they occupy in runtime, can not 
be controlled during measurement.

Keep in mind that, for the sparse CNN, the time and memory growth reported above is not strictly linear, 
especially during training at high resolutions. The memory and time overhead includes space and computation 
reserved for voxel coordinates, coordinate mapping and other implementation-related costs.

Table 6 shows the quantitative evaluation results for the super-resolution task. In Table 6, → represents 
super-resolution using the sparse CNN, and ⇒ represents up-scaling using interpolation. Figure 8 shows the 
DSC and RE distributions. We can see that super-resolution with a sparse CNN outperforms interpolation-
based up-scaling. Besides, super-resolution directly from the lowest-resolution to the highest resolution (i.e., 
642 × (Z/8) → 5122 × Z ) yields the worst results, and the sparse CNN shows better performance at smaller 

Figure 7.   Shape completion results with sparse CNN on the CT skull dataset at different resolutions. The first 
to third column in each example shows the input defective skull grids, the predictions and the ground truth, 
respectively.

Table 6.   Quantitative results - DSC and RE for the skull shape super-resolution task on the CT dataset.  The 
first row shows the initial (the number at the left hand side of an arrow) and target (the number at the right 
hand side of an arrow) resolutions. The second and last row show the DSC and RE (%), respectively. → denotes 
super-resolution and denotes ⇒ ) interpolation. Significant values are in bold.

64→128 64⇒128 64→256 64 ⇒256 64→512 64 ⇒ 512 128 → 256 128 ⇒ 256 Completion

0.8750 0.8359 0.8779 0.8359 0.6640 0.6402 0.9372 0.9146 0.9876

1.3821 1.8685 1.3589 1.8942 3.7850 4.2358 0.7187 0.9867 0.1443
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resolution gaps. Table 6 compares super-resolution and shape completion at resolution 2562 × (Z/2) . The results 
suggest that sparse CNN might be better at the completion task.

The qualitative results in Fig. 9 further demonstrate the advantages of super-resolution using a sparse CNN. 
We can see that the missing geometric details in and around the craniofacial area of the coarse skulls can be 
effectively recovered in the final super-resolution output.

Discussion, conclusions and future work
In this paper, we have presented a comprehensive evaluation of sparse CNN architectures in two skull reconstruc-
tion tasks: skull shape completion and skull shape super-resolution. Results show that a sparse CNN significantly 
outperforms a traditional dense CNN with respect to speed, quality and memory efficiency on sparse data. Unlike 
existing dense CNN-based approaches that often compromise accuracy for memory (or vice versa), sparse CNNs 
are inherently designed for spatially sparse data and are therefore exempt from the accuracy-memory tradeoff, 
achieving both high accuracy and computation efficiency (e.g., lower memory usage) on the skull reconstruc-
tion task. Employing dense CNNs rather than the more advantageous sparse CNNs in early deep learning-based 
skull reconstruction studies19,31 is not out of suitability but convenience, since existing dense CNNs can be 
straightforwardly applied to voxel grid data as discussed in Section II. One of the limitations of current sparse 
CNN frameworks, such as the Minkowski Engine used in our study, is that the voxel coordinates as well as the 
associated coordinate management tools need to be created and stored to memorize the spatial relationship of 
the non-zero voxels during convolutions, causing computation overhead in comparison to dense CNN. Another 
limitation is that, if not initialized properly, the generative transposed convolutional layers might generate a large 
amount of points and cause false out-of-memory errors during training. Therefore, one future direction worth 
investigating is to regularize the generative layers or to use shape priors on the output to prevent the network 
from generating random amount of points. Additionally, the sparse CNN failed on the out-of-distribution test 
set of the AutoImplant Challenge, meaning that the network was overfitting to skull defect patterns and lacking 
generalizability, even if given a full-image context during training. We presume that the network would fail on 
real craniotomy skulls as well, since craniotomy defects tend to be more irregular than the synthetic defects used 
in our shape completion experiments. We have yet to decide on the cause of the failure, and future efforts on 
this issue are still required. In the Supplementary Material, we provided additional experiments and results on 
other spatially sparse medical images, such as the heart, aortic vessels, trachea and esophagus, in a segmentation 
task. The results indicate that, with moderate increase of computation and memory, the quality of the initial 
segmentation masks from a dense CNN can be substantially improved using the proposed sparse CNN model.

Figure 8.   DSC (top) and RE (bottom, %) for the super-resolution task on the CT dataset. Horizontal axis 
corresponds to the image resolutions. a: 642 × (Z/8) → 1282 × (Z/4) b: 642 × (Z/8) → 2562 × (Z/2) 
c: 642 × (Z/8) → 5122 × Z d: 642 × (Z/8) ⇒ 1282 × (Z/4) e: 642 × (Z/8) ⇒ 2562 × (Z/2) f: 
642 × (Z/8) ⇒ 5122 × Z g: 1282 × (Z/4) → 2562 × (Z/2) h: 1282 × (Z/4) ⇒ 2562 × (Z/2) i: shape 
completion at 256. The dash-lined boxes contain the zoomed-in boxplots.



13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20229  | https://doi.org/10.1038/s41598-023-47437-6

www.nature.com/scientificreports/

Data availability
The datasets generated and/or analysed during the current study are available in the Figshare repository https://​
doi.​org/​10.​6084/​m9.​figsh​are.​14161​307.​v1.
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