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A novel multiplex biomarker 
panel for profiling human acute 
and chronic kidney disease
Logan R. Van Nynatten 1, Michael R. Miller 2, Maitray A. Patel 3, Mark Daley 3,4,5,6, 
Guido Filler 1,2,6, Sigrun Badrnya 7, Markus Miholits 7, Brian Webb 8, 
Christopher W. McIntyre 1,6 & Douglas D. Fraser 2,6,9,10,11*

Acute and chronic kidney disease continues to confer significant morbidity and mortality in the 
clinical setting. Despite high prevalence of these conditions, few validated biomarkers exist to predict 
kidney dysfunction. In this study, we utilized a novel kidney multiplex panel to measure 21 proteins 
in plasma and urine to characterize the spectrum of biomarker profiles in kidney disease. Blood and 
urine samples were obtained from age-/sex-matched healthy control subjects (HC), critically-ill COVID-
19 patients with acute kidney injury (AKI), and patients with chronic or end-stage kidney disease 
(CKD/ESKD). Biomarkers were measured with a kidney multiplex panel, and results analyzed with 
conventional statistics and machine learning. Correlations were examined between biomarkers and 
patient clinical and laboratory variables. Median AKI subject age was 65.5 (IQR 58.5–73.0) and median 
CKD/ESKD age was 65.0 (IQR 50.0–71.5). Of the CKD/ESKD patients, 76.1% were on hemodialysis, 
14.3% of patients had kidney transplant, and 9.5% had CKD without kidney replacement therapy. In 
plasma, 19 proteins were significantly different in titer between the HC versus AKI versus CKD/ESKD 
groups, while NAG and RBP4 were unchanged. TIMP-1 (PPV 1.0, NPV 1.0), best distinguished AKI 
from HC, and TFF3 (PPV 0.99, NPV 0.89) best distinguished CKD/ESKD from HC. In urine, 18 proteins 
were significantly different between groups except Calbindin, Osteopontin and TIMP-1. Osteoactivin 
(PPV 0.95, NPV 0.95) best distinguished AKI from HC, and β2-microglobulin (PPV 0.96, NPV 0.78) best 
distinguished CKD/ESKD from HC. A variety of correlations were noted between patient variables and 
either plasma or urine biomarkers. Using a novel kidney multiplex biomarker panel, together with 
conventional statistics and machine learning, we identified unique biomarker profiles in the plasma 
and urine of patients with AKI and CKD/ESKD. We demonstrated correlations between biomarker 
profiles and patient clinical variables. Our exploratory study provides biomarker data for future 
hypothesis driven research on kidney disease.

Kidney injury continues to confer significant morbidity and mortality in the clinical setting, both in acute kidney 
injury (AKI) and chronic/end-stage kidney disease (CKD/ESKD). The incidence of AKI in hospitalized subjects 
exceeds 20%1. Elderly age and underlying kidney dysfunction predispose individuals to AKI, with circulatory 
disease and infection being the most common precipitant  factors1. Moreover, AKI is independently associated 
with in-hospital mortality, length of stay, and healthcare  cost1,2. Similarly, CKD has an enormous global burden 
with a prevalence of ~ 10–15%, resulting in 1.2 million deaths  annually3. A substantial proportion of patients with 
CKD progress to ESKD, which confers a 13-fold increase in the rate of mortality, especially from cardiovascular 
 disease4,5. Despite life-saving kidney replacement therapy (continuous kidney replacement therapy [CKRT], 
hemodialysis [HD] or peritoneal dialysis [PD]), most patients experience drastically impaired quality of  life6, and 
only a small fraction of patients undergo kidney  transplantation7,8. Moreover, critically-ill patients with kidney 
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failure disproportionately experience negative outcomes. Intensive care unit (ICU) mortality is reported to be 
23% in those with AKI, and 11% in those with  ESKD9.

Despite such striking morbidity and mortality of kidney disease, there are few biomarkers to aid diagnostics 
and prognostics, especially in critically-ill  patients10. Kidney biomarkers could aid disease surveillance, as well as 
act as triggers for therapeutic  interventions11,12. Hence, the need to identify early biomarkers of kidney impair-
ment, particularly those associated with clinically relevant parameters, is important. The number of biomarkers 
(serum and urine) associated with kidney injury has steadily increased with several proteins showing strong 
associations with kidney outcomes (e.g., KIM-1. NGAL)13,14. Yet, in isolation, each of these targets provides 
imperfect information to predict outcomes in acute or chronic kidney disease, especially early in disease. Given 
the inherent complexity of kidney physiology, it is unlikely that any single biomarker in isolation will have clinical 
utility for a broad scope of patients. For example, the dynamics of solute and electrolyte transport throughout 
the nephron will be highly variable between individuals, as well as the etiology of kidney injury (whether it be a 
glomerular, tubular, interstitial or vascular insult). Identifying a panel or series of biomarkers, from both plasma 
and urine that correlate with patient clinical and biochemical parameters may have enormous power to serve as 
biomarkers for a general population.

In this study, we employed a novel kidney multiplex panel consisting of 21 biomarkers in both plasma and 
urine of healthy control subjects, patients with AKI, and patients with CKD/ESKD. Our aims were: (1) to vali-
date the novel kidney multiplex panel to detect biomarkers in plasma and urine, (2) to identify biomarkers that 
distinguish patients with AKI versus CKD/ESKD, (3) to identify rank orders and accuracies of the biomarkers 
to identify kidney disease, and (4) to assess correlations between these biomarkers with patient clinical and 
laboratory parameters.

Methods
This study was approved by the Western University Human Research Ethics Board. This study was performed in 
accordance with ethical standards of the responsible committee on human experimentation with the Helsinki 
Declaration of 1975. Informed written consent was obtained from every participant.

Age- and sex-matched healthy control subjects, AKI patients (admitted to ICU at London Health Sciences 
Center, a tertiary university hospital in London, Ontario, Canada, in the context of COVID-19 infection) and 
CKD/ESKD patients were enrolled. Kidney disease was classified based on KDIGO practice  guidelines15,16; AKI 
was defined as an increase in serum creatinine to 1.5 times baseline in the last 7 days; CKD was defined in either 
alteration in kidney structure or function for > 3 months (albuminuria > 3 mg/mmol, urine sediment abnor-
malities, electrolyte disturbance secondary to tubular disorders, structural abnormalities detected by imaging, 
kidney transplant history, eGFR < 60 mL/min/1.73  m2); and ESKD was defined as being on kidney replacement 
therapy. All AKI patients in the ICU who required kidney replacement therapy were initiated on continuous 
kidney replacement therapy (CKRT) as the modality of choice, while all patients with ESKD were on intermit-
tent hemodialysis.

Patient characteristics included age, sex, BMI, comorbidities (hypertension, diabetes, coronary artery disease, 
congestive heart failure, cancer, chronic obstructive pulmonary disease, asthma, cirrhosis, chronic kidney dis-
ease, end stage kidney disease, hemodialysis, previous kidney transplant), hematology (hemoglobin, leukocytes, 
lymphocytes, thrombocytes), serum electrolytes (sodium, potassium, chloride, bicarbonate, calcium, phosphate, 
magnesium,) biochemistry (Prothrombin Time Test (PTT) and international normalized ratio (INR), glucose, 
bilirubin, Alanine transaminase (ALT), Aspartate transaminase (AST), Alkaline phosphatase (ALP), Gamma-
glutamyl transpeptidase (GGT), lactate, C-reactive protein (CRP), ferritin, troponin I, lactate, D-Dimer, albumin, 
intact parathyroid hormone (iPTH)), and kidney function (serum urea, serum creatinine, serum cystatin C, urine 
sodium, urine creatinine, urine microalbumin/creatinine, and CKD-EPI estimated glomerular filtration rate 
[CKD-EPI  eGFR]17). Need for dialysis as well as outcome (dead or alive) was recorded. Not all clinical variables 
were similarly available for all groups. No adjustments were made for missing values.

Blood draws
Standard phlebotomy procedures were used to collect blood. Samples were obtained from central venous cath-
eters in critically-ill ICU patients, via peripheral phlebotomy for healthy subjects and CKD patients, and via 
indwelling hemodialysis catheters for those patients on hemodialysis. Samples were immediately placed on ice 
and transferred to a negative pressure hood. After centrifugation, isolated plasma was divided in 250 µL aliquots 
and frozen at − 80 °C. All samples remained frozen until use to avoid freeze–thaw cycles. Maximum phlebotomy 
volumes were not exceeded. Blood was drawn from COVID-19 patients upon admission to ICU, and in ESKD 
patients, blood was drawn prior to initiation of routine hemodialysis. Fasting was not requested, nor initiated 
prior to blood draws.

Urine collection
Urine was collected into sterile, screw-top containers. AKI patients had urine collected from indwelling uri-
nary catheters before the initiation of CKRT (all patients produced urine). CKD/ESKD patients were asked to 
provide a midstream urine sample. In both scenarios, a portion of the collected urine was sent immediately to 
the hospital laboratory for processing, and the remaining urine was aliquoted, frozen at − 80 °C and stored in a 
secured biorepository until use.

Kidney multiplex measurements
Concentrations of 21 kidney toxicity biomarkers were determined in human plasma and urine using two 
multiplexed immunoassay kits according to manufacturer’s instructions (Thermo Fisher Scientific): Human 
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ProcartaPlex™ Kidney Toxicity Panel 1 (KIM-1, Calbindin, Renin, Osteoactivin, Clusterin (APO-J), GSTA1, 
NAG, RBP4, IL-18, IP-10, EGF, MCP-1 and VEGF-A) and Human ProcartaPlex™ Kidney Toxicity Panel 2 (Uro-
modulin, TFF-3, Cystatin C, NGAL, Osteopontin, α1-microglobulin, TIMP-1 and β2-microglobulin). Briefly, 
50 µL of the Capture Bead Mix was added to each well of a 96-well flat bottom plate. After washing of capture 
beads, 25 µL of Universal Assay Buffer (1x) was added to each well, followed by 25 µL of undiluted plasma or 
urine sample (Human ProcartaPlex™ Kidney Toxicity Panel 1), 1:100 pre-dilution in Universal Assay Buffer (1x) 
(Human ProcartaPlex™ Kidney Toxicity Panel 2), prepared standards or blank. The plate was incubated at room 
temperature in the dark on a plate shaker at 600 rpm for 60 min. After incubation, the plate was washed and 
incubated with the Detection Antibody Mix (25 µL/well) for 30 min. Following a wash step to remove unbound 
antibody, 50 µL of Streptavidin-PE (SAPE) solution was added to each well and incubated for 30 min as above. 
After washing and addition of Reading Buffer, plates were processed on a compatible  Luminex® system. Both 
multiplexed immunoassay kits utilize  Luminex® xMAP™ fluorescent bead-based technology (Luminex Corp., 
12212 Technology Blvd, Austin, TX, 78727, USA) and were quantified on a Bio-Plex™ 200 system (Bio-Rad 
Laboratories, 1000 Alfred Nobel Drive, Hercules, CA, 94547, USA).

Conventional statistics
Medians (interquartile ranges [IQRs]) and frequency (%) were used to report baseline characteristics of healthy 
control subjects, AKI patients, and CKD/ESKD patients, for continuous and categorical variables, respectively 
(GraphPad Prism Version 8.4.0; San Diego, California, USA). As data were not normally distributed on Shapiro 
Wilk test, the non-parametric Mann–Whitney U test was used to compare two groups, whereas a Kruskal–Wallis 
test was used to compare three groups. Statistical significance was set at P < 0.05 following Bonferroni correction 
for multiple comparisons. Heat maps depicting Pearson correlation values between plasma and urine proteins 
with patient clinical variables were created in R (http:// www.r- proje ct. org) using the ggplot2 version 3.3.3 pack-
age. Significant correlations had R-values of ≥ 0.7 or ≤ − 0.7 for AKI and ≥ 0.4 or ≤ − 0.4 for CKD/ESKD, with a 
P-value of significance set at < 0.05. Not all data were fully available for all subgroups, as different clinical data 
were recorded.

Machine learning
A Random Forest classifier, based on decision trees, was used for each cohort comparison and determined the 
ability to classify the participants into their respective groups based on the biomarker values. The Random 
Forest was built using Scikit-Learn (Python v3.10.4, Scikit-learn v1.1.118, function = sklearn.ensemble.Random-
ForestClassifier). To reduce overfitting and maintain a conservative model, three-fold cross-validation with a 
Random Forest of 10 trees and a maximum depth of three was  used19. The biomarkers were then investigated to 
determine their importance in differentiating renal disease. As this was not to determine the predictive ability 
but to interrogate the biomarkers from a physiological perspective, a single Random Forest model with 1000 trees 
and no specified maximum depth was constructed. The Random Forest model was fit on the complete dataset 
to ensure the model incorporated the impact of all features for all samples. The biomarkers’ order of importance 
was determined by the inherent ability of Scikit-Learn Random Forest model, which uses Gini Importance.

Receiver operating characteristic (ROC) curves using logistic regression were conducted to determine the 
sensitivity and specificity of individual proteins in their respective comparison (Python v3.10.4, Scikit-learn 
v1.1.120, function = sklearn.linear_model.LogisticRegression). Area-under-the-curve (AUC) was calculated as 
an aggregate measure of biomarker performance across all possible classification  thresholds19. The F1 score was 
determined as the harmonic mean of precision and recall. A high F1 score indicated that both precision and 
recall were high. A bootstrap method of 1000 repetitions with resampling with replacement and three-fold cross-
validation was used to determine the average F1 score, positive predictive value (PPV), and negative predictive 
value (NPV), as well as to determine the average ROC curve AUC and build a 95% confidence interval. The bio-
marker data were visualized with a nonlinear dimensionality reduction on the full, reduced, and optimal datasets 
using the t-distributed stochastic nearest neighbor embedding (t-SNE) algorithm (Python v3.10.4, Scikit-learn 
v1.1.120, function = sklearn.manifold.TSNE). t-SNE assumes that the ‘optimal’ representation of the data lies on a 
manifold with complex geometry, but a low dimension, embedded in the full-dimensional space of the raw  data21.

Ethics approval and consent to participate
This study was approved by the Western University, Human Research Ethics Board (HREB): kidney patients 
(HREB #6970, renewed March 17, 2021) and volunteer healthy control subjects (HREB #16986E, renewed March 
9, 2021).

Results
Demographic, clinical and laboratory parameters for AKI (in the context of COVID-19 infection admitted to 
the ICU) and CKD/ESKD patients are depicted in Table 1. Of AKI patients, median (IQR) for MODS was 7.0 
(6.0–7.0), SOFA was 8.0 (8.0–10.5) and APACHEII was 15.0 (13.0–20.0). Median (IQR) for the AKIN score 
was 3.0 (1.5–3.0), suggesting significant AKI in critically-ill patients with COVID-19. The mean arterial pres-
sure median (IQR) upon admission to ICU was 79 (67–100) mmHg, but was recorded on vasopressors. Of the 
CKD/ESKD patients, 16 were on intermittent hemodialysis, 3 patients had kidney transplants, and 2 patients 
had CKD without receiving kidney replacement therapy. The CKD-EPI median (IQR) GFR was 52 (14–64) ml/
min indicating Stage III CKD. All healthy control subjects and CKD/ESKD patients survived the study period, 
whereas the mortality of AKI patients in the ICU was 87.5%.

Our study utilized a novel kidney multiplex panel for 21 biomarker proteins (Supplementary Table 1). 
When comparing plasma levels of biomarkers in healthy control subjects, AKI, and CKD/ESKD, all protein 
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Clinical variables Healthy control AKI (COVID-19) CKD/ESKD

n 8 8 21

Age, yr, median (IQR) 51.0 (38.5–57.5) 65.5 (58.5–73.0) 65.0 (50.0–71.5)

Sex, female: male 5:3 1:7 7:14

BMI, median (IQR) 26.4 (21.6–30.5) 29.1 (27.4–33.3) 28.3 (23.9–33.5)

MODS, median (IQR) – 7.0 (6.0–7.0) –

SOFA, median (IQR) – 8.0 (8.0–10.5) –

APACHEII, median (IQR) – 15.0 (13.0–20.0) –

AKIN, median (IQR) – 3.0 (1.5–3.0) –

Comorbidities, n (%)

 Hypertension – 4 (50.0) 18 (85.7)

 Diabetes – 4 (50.0) 8 (38.1)

 CAD – 1 (12.5) 7 (33.3)

 CHF – 0 (0) 5 (23.8)

 Cancer – 0 (0) 1 (4.7)

 COPD – 0 (0) 2 (9.5)

 Asthma – 0 (0) 0 (0)

 Cirrhosis – 0 (0) 1 (4.7)

 CKD – 0 (0) 2 (9.5)

 ESRD – 0 (0) 19 (90.5)

  IHD – – 16 (76.1)

  Transplant – – 3 (14.3)

Interventions, n (%)

 Intubation – 8 (100) –

 Vasopressors – 8 (100) –

 Antibiotics – 8 (100) –

 Steroid – 8 (100) –

 Tocilizumab – 1 (12.5) –

Haematology, median (IQR)

 Hemoglobin 139.0 (130.5–159.5) 86.0 (84.0–114.0) 116.0 (106.0–135.0)

 Leukocytes – 14.6 (11.6–20.5) 6.7 (5.5–9.2)

 Lymphocytes – 0.7 (0.6–1.8) 1.3 (0.8–2.0)

 Platelets – 237.0 (216.5–270.5) 235.0 (181.0–269.0)

Electrolytes, median (IQR)

 Sodium 140.5 (139.0–141.5) 135.0 (133.0–141.0) 139.0 (136.5–141.0)

 Potassium 3.9 (3.6–4.2) 4.3 (3.9–4.6) 4.2 (3.8–4.9)

 Chloride – 96.0 (95.0–98.5) 93.5 (91.5–95.5)

 Bicarbonate 25.0 (24.0–27.0) 24.5 (22.5–33.0) 26.0 (25.0–28.5)

 Calcium 2.3 (2.3–2.5) 2.0 (1.9–2.1) 2.4 (2.3–2.4)

 Phosphate 0.9 (0.8–1.2) 1.2 (1.0–1.7) 1.5 (1.2–1.8)

 Magnesium – 0.9 (0.8–1.1) –

 Parathyroid hormone 4.0 (3.5–4.5) – 25.6 (15.0–64.5)

Biochemistry, median (IQR)

 INR – 1.2 (1.1–1.3) –

 PTT – 28.5 (25.0–67.0) –

 Glucose – 7.0 (5.8–9.2) 5.8 (5.2–9.0)

 Bilirubin – 8.8 (6.0–13.9) –

 AST – 48.0 (40.0–79.5) –

 ALT – 36.5 (30.0–102.0) –

 ALP – 131.5 (106.5–147.5) –

 GGT – 139.0 (73.0–510.0) –

 LDH – 456.5 (351.0–648.0) –

 CRP – 131.5 (40.3–180.5) 3.8 (1.7–14.6)

 Ferritin – 1106.5 (796.5–1936.0) –

 Troponin – 61.0 (20.5–191.0) –

 Lactate – 1.5 (1.2–1.9) –

 D-Dimer – 3222.5 (2578.5–7029.5) –

Continued
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concentrations were significantly different between the three groups, except N = Acetyl-Beta-d-Glycosaminidase 
(NAG) and Retinol-binding protein 4 (RBP4) (Table 2). When comparing urine biomarker levels, all proteins 
were significantly different in titer between healthy control subjects, AKI and CKD/ESKD, except Calbindin, 
Osteopontin and TIMP metallopeptidase inhibitor 1 (TIMP-1) (Table 3). When comparing individual groups 
in two-way analyses, statistical differences were again noted (Supplementary Tables 2 and 3). Three patients had 
plasma levels of biomarkers compared pre- and post-dialysis on Week 1 and Week 14 of study, with no significant 

Table 1.  Patient demographic, clinical and laboratory data. MODS multiple organ dysfunction score, SOFA 
sequential organ failure assessment, APACHE acute physiology and chronic health evaluation, AKIN acute 
kidney injury score, LOS length of stay.

Clinical variables Healthy control AKI (COVID-19) CKD/ESKD

 Albumin – 24.5 (21.5–25.5) –

Renal function, median (IQR)

 Serum Urea 4.9 (3.9–6.3) 16.5 (12.3–24.0) 13.6 (8.4–17.1)

 Serum Creatinine 68.5 (58.5–75.5) 85.0 (70.0–241.5) 455.0 (268.5–557.0)

 Serum Cystatin-C 0.8 (0.8–0.9) – 5.1 (3.7–5.6)

 Urine Creatinine 17.5 (10.8–23.9) 4.1 (2.7–8.1) 7.9 (4.1–9.8)

 Urine Sodium 86.5 (72.0–116.5) 81.5 (29.0–109.0) 68.0 (41.5–84.0)

 Urine Microalbumin/creatinine 0.4 (0.4–1.0) 56.5 (43.0–111.0) 50.5 (11.7–308.0)

 CKD-EPI Creatinine 102.5 (86.0–107.0) – 12.0 (8.5–17.0)

 CKD-EPI Creatinine/cystatin 100.0 (93.0–104.0) – 10.0 (7.0–12.5)

 CKD-EPI Cystatin-C 89.5 (94.5–98.5) – 8.0 (7.0–11.5)

LOS, median (IQR)

 ICU – 19.5 (13.0–27.5) –

 Hospital – 19.5 (13.0–28.5) –

Outcome, n (%)

 Alive 8 (100) 1 (12.5) 21 (100)

 Dead 0 (0) 7 (87.5) 0 (0)

Table 2.  Plasma biomarker values (pg/ml). Data are indicated by median (IQR). Bold indicates statistically 
significant P values.

Protein Healthy controls (n = 8) AKI (COVID-19) (n = 8) CKD/ESKD (n = 21) P-value

KIM-1 274.5 (230.6–288.4) 742.9 (625.6–1324.1) 582.5 (278.5–789.4) 0.002

NAG 0 (0–0) 0 (0–1218.2) 0 (0–0) 0.299

Calbindin 3.6 (0–20.0) 88.9 (59.2–275.9) 37.5 (12.5–70.7) < 0.001

GSTA1 202.8 (157.4–314.9) 652.0 (505.0–718.6) 436.5 (201.8–540.7) < 0.001

Osteoactivin 195.3 (155.1–217.0) 501.5 (380.6–1217.9) 493.0 (324.3–883.5) 0.003

Renin 37.1 (27.1–59.6) 670.4 (342.9–2539.6) 137.3 (99.5–326.7) < 0.001

Clusterin 264,584 (221,595–351,445) 593,503 (448,604–709,786) 470,516 (328,132–677,194) 0.004

RBP4 77,963 (54,925–125,445) 221,824 (143,659–404,136) 203,704 (75,150–342,768) 0.083

IL-18 24.5 (19.3–29.9) 185.3 (162.3–249.4) 84.6 (39.7–109.5) < 0.001

IP-10 4.4 (3.7–5.5) 95.5 (71.8–146.2) 12.3 (7.1–16.8) < 0.001

EGF 2.1 (0.1–5.3) 19.3 (15.3–23.3) 13.3 (1.8–17.8) 0.001

MCP-1 12.0 (8.6–15.0) 227.8 (57.7–424.3) 33.3 (20.0–66.2) < 0.001

VEGF-A 35.6 (34.0–41.6) 430.4 (217.2–678.5) 673.4 (286.2–806.1) < 0.001

Uromodulin 103.0 (0–199.7) 605.6 (0–776.0) 1308.5 (674.7–1617.3) < 0.001

α1-microglobulin 775.3 (520.3–1122.8) 479.7 (294.0–914.4) 4318.6 (2782.1–5212.4) < 0.001

TFF3 3.1 (2.1–4.6) 13.8 (7.9–33.1) 55.1 (24.2–62.4) < 0.001

Osteopontin 17.8 (15.3–23.4) 308.3 (243.3–527.8) 55.9 (29.5–78.1) < 0.001

Cystatin C 207.9 (173.8–230.8) 269.86 (246.2–532.8) 563.4 (409.4–700.8) < 0.001

NGAL 73.4 (58.4–110.7) 202.6 (161.9–355.0) 359.4 (259.6–520.4) < 0.001

β2-microglobulin 913.0 (751.0–1136.7) 3700.7 (2361.7–4849.4) 4972.3 (3114.4–5763.0) < 0.001

TIMP-1 34.5 (32.4–41.5) 172.6 (130.1–278.3) 88.1 (62.9–98.3) < 0.001
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differences in titer pre- and post-dialysis (Supplementary Tables 4 and 5). The PPV and NPV for each protein 
as biomarkers for renal disease are reported in Supplementary Tables 6–9.

ROC curves were generated to identify the ability of these 21 biomarkers to differentiate either patients 
with AKI or CKD/ESKD from healthy control subjects (Tables 4 and 5). F1 statistics were calculated to verify 
biomarker precision and accuracy in differentiating kidney disease patients from healthy control subjects. In 
plasma, KIM-1, Calbindin, glutathione S-transferase alpha 1 (GSTA1), Renin, Clusterin, Interleukin 18 (IL-18), 
IP-10, Epidermal growth factor (EGF), MCP-1, VEGF-A, TFF3, Osteopontin, NGAL, β2-microglobulin and 
TIMP-1 were statistically able to differentiate AKI from healthy control subjects (Table 4). Also, plasma levels of 
Osteoactivin, Renin, IL-18, IP-10, MCP-1, VEGF-A, Uromodulin, α1-microglobulin, TFF3, Osteopontin, Cys-
tatin C, NGAL, β2-microglobulin, and TIMP-1 were statistically able to differentiate CKD/ESKD from healthy 
control subjects (Table 4).

In urine, there were fewer biomarkers that differentiated AKI and CKD/ESKD from healthy control subjects 
(Table 5). Using ROC curve analyses, biomarkers that differentiated AKI from healthy control subjects included 
GSTA1, Osteoactivin, and Renin, whereas GSTA1, Renin, RBP4, EGF, MCP-1, Uromodulin, α1-microglobulin, 
TFF3, Cystatin C, NGAL and β2-microglobulin differentiated CKD/ESKD patients from healthy control subjects.

The 21 plasma and urine biomarkers were investigated using conservative Random Forest modelling to 
determine their classification ability in distinguishing the different renal conditions. Separate Random Forest 
models were created to pairwise classify healthy control subjects, AKI patients (COVID-19), and CKD/ESKD 
patients, as well as a three-class model with all patients (Supplementary Table 10). The plasma biomarkers per-
formed well with high classification ability for all pairwise cohorts (balanced accuracy > 0.90, ROC AUC > 0.93, 
F1 Score > 0.92), as well as the three-class model (accuracy = 0.89, ROC AUC = 0.97). The urine biomarkers 
performed moderately well when used to compare healthy control subjects to CKD/ESKD patients (balanced 
accuracy = 0.83, ROC AUC = 0.94, F1 = 0.83); however, the other pairwise and three-class comparisons performed 
poorly.

Clustering analysis confirmed that the plasma and urine proteomes of healthy control subjects were distinct 
and easily separable from those patients with kidney disease as visualized on t-SNE plots (Figs. 1A,C and 2A,C). 
Interestingly, plasma obtained from four CKD/ESKD patients and their respective urine samples, shared bio-
marker signatures that visually resembled healthy control subjects (Figs. 1C and 2C); their plasma biomarker 
profiles were significantly different than the remaining 17 patients in the CKD/ESKD group (Supplementary 
Table 11). Specifically, Clusterin, VEGF-A, TIMP-1, Osteoactivin, β2-microglobulin, TFF3, Cystatin C, and 
α1-microglobulin all had significantly lower titers in the four CKD/ESKD patients who more closely resembled 
healthy control subjects. Of these four patients, none were on kidney replacement therapy and three were kid-
ney transplant recipients (the remaining patient had CKD secondary to autosomal dominant polycystic kidney 
disease).

A rank order identified which proteins were most likely to differentiate kidney disease from healthy control 
subjects. In plasma, TIMP-1, β2-microglobulin, IP-10, VEGF-A, and Renin were the top five ranked proteins 

Table 3.  Urine biomarker values (pg/ml). Data are indicated by median (IQR). Bold indicates statistically 
significant P values.

Protein Healthy control (n = 8) AKI (COVID-19) (n = 8) CKD/ESKD (n = 18) P-value

KIM-1 305.2 (276.4–1011.3) 1286.6 (466.7–3600.0) 1235.7 (652.0–3107.1) 0.047

NAG 0 (0–0) 14.0 (0.7–46.8) 1.4 (0–70.7) 0.025

Calbindin 2368.6 (1413.4–5141.2) 3688.5 (1106.4–6309.2) 1450.7 (678.0–3641.2) 0.271

GSTA1 6.6 (2.5–17.5) 132.1 (111.9–271.8) 189.5 (18.7–246.9) < 0.001

Osteoactivin 36.1 (15.7–43.3) 86.4 (60.3–320.1) 179.9 (81.7–363.1) 0.003

Renin 8.8 (1.9–21.1) 605.3 (131.6–2431.6) 65.0 (18.5–319.6) < 0.001

Clusterin 39,599 (26,401–73,940) 177,660 (24,062–506,175) 260,515 (113,239–552,746) 0.027

RBP4 2253 (939–3212) 66,742 (5055–131,315) 718,316 (14,892–718,316) < 0.001

IL-18 19.0 (10.9–29.4) 83.9 (30.0–174.7) 64.5 (33.8–95.8) 0.024

IP-10 3.0 (2.0–8.9) 55.5 (25.0–144.3) 15.4 (5.4–32.8) 0.006

EGF 6538 (4842–7408) 3951 (2956–5779) 1829 (1394–2743) < 0.001

MCP-1 152.7 (75.7–184.2) 625.1 (292.8–1538.9) 771.2 (448.9–1044.0) 0.001

VEGF-A 477.7 (149.4–689.5) 1295.4 (330.6–3004.0) 2834.9 (787.5–6492.9) 0.010

Uromodulin 44,794 (26,420–161,855) 31,602 (7414–43,024) 3485 (1792–8430) 0.001

α1-microglobulin 298.5 (202.4–350.7) 162.5 (104.0–538.2) 2482.7 (736.4–2743.4) < 0.001

TFF3 45.3 (33.3–62.0) 274.8 (84.7–304.5) 228.6 (150.9–442.5) 0.003

Osteopontin 1127 (625–1685) 1089 (293–3191) 488 (259–822) 0.107

Cystatin C 37.4 (20.7–62.2) 143.2 (27.3–2283.8) 1335.3 (96.5–1667.1) 0.013

NGAL 30.3 (14.5–54.0) 97.8 (37.0–477.4) 456.0 (263.6–570.3) 0.003

β2-microglobulin 84.5 (42.5–189.3) 3391.0 (516.5–5687.2) 13,412.0 (670.4–19,924.8) < 0.001

TIMP-1 10.6 (6.5–12.9) 12.9 (3.4–28.4) 19.9 (9.5–31.0) 0.255
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Table 4.  Plasma biomarker logistic regression ROC curve, F1, and P-value. p-value—Bonferroni Corrected 
Mann–Whitney. Bold indicates statistically significant P values.

Protein

AKI (COVID-19) versus control CKD/ESKD versus control

ROC curve AUC (95%CI) F1 P-value ROC curve AUC (95%CI) F1 P-value

KIM-1 1.00 (1.00–1.00) 1.00 0.003 0.80 (0.80–0.81) 0.80 0.282

NAG 0.60 (0.59–0.61) 0.32 1.000 0.51 (0.51–0.51) 0.84 1.000

Calbindin 0.99 (0.98–0.99) 0.90 0.026 0.77 (0.76–0.77) 0.81 0.577

GSTA1 1.00 (1.00–1.00) 0.96 0.003 0.76 (0.76–0.77) 0.80 0.666

Osteoactivin 0.91 (0.91–0.92) 0.75 0.062 0.86 (0.85–0.87) 0.89 0.026

Renin 1.00 (1.00–1.00) 0.99 0.003 0.91 (0.91–0.91) 0.88 0.006

Clusterin 0.94 (0.93–0.94) 0.66 0.039 0.83 (0.83–0.84) 0.84 0.104

RBP4 0.50 (0.48–0.52) 0.32 0.434 0.50 (0.49–0.52) 0.40 1.000

IL-18 1.00 (1.00–1.00) 0.96 0.003 0.92 (0.91–0.92) 0.89 0.015

IP-10 1.00 (1.00–1.00) 0.96 0.003 0.85 (0.84–0.86) 0.88 0.048

EGF 1.00 (1.00–1.00) 0.99 0.019 0.77 (0.77–0.78) 0.80 0.586

MCP-1 1.00 (1.00–1.00) 0.92 0.003 0.96 (0.96–0.96) 0.93 < 0.001

VEGF-A 1.00 (1.00–1.00) 0.99 0.003 0.94 (0.94–0.95) 0.93 0.001

Uromodulin 0.73 (0.72–0.74) 0.64 1.000 0.97 (0.97–0.97) 0.92 0.003

α1-microglobulin 0.64 (0.62–0.65) 0.53 1.000 0.96 (0.96–0.97) 0.92 < 0.001

TFF3 0.98 (0.98–0.99) 0.89 0.007 0.97 (0.96–0.97) 0.96 0.003

Osteopontin 1.00 (1.00–1.00) 1.00 0.003 0.92 (0.91–0.92) 0.89 0.005

Cystatin C 0.90 (0.89–0.91) 0.76 0.098 0.97 (0.97–0.97) 0.94 < 0.001

NGAL 0.95 (0.95–0.96) 0.87 0.023 0.96 (0.96–0.96) 0.95 < 0.001

β2-microglobulin 1.00 (1.00–1.00) 0.98 0.003 0.98 (0.98–0.98) 0.96 < 0.001

TIMP-1 1.00 (1.00–1.00) 1.00 0.003 0.97 (0.97–0.97) 0.93 < 0.001

Table 5.  Urine biomarker logistic regression ROC curve, F1, and P-value. p-value—Bonferroni Corrected 
Mann–Whitney. Bold indicates statistically significant P values.

Protein

AKI (COVID-19) versus control CKD/ESKD versus control

ROC curve AUC (95%CI) F1 P-value ROC curve AUC (95%CI) F1 P-value

KIM-1 0.74 (0.73–0.75) 0.58 1.000 0.81 (0.80–0.81) 0.82 0.279

NAG 0.88 (0.87–0.88) 0.78 0.096 0.73 (0.72–0.73) 0.78 0.679

Calbindin 0.52 (0.51–0.54) 0.44 1.000 0.58 (0.57–0.59) 0.79 1.000

GSTA1 1.00 (1.00–1.00) 0.95 0.020 0.92 (0.92–0.93) 0.85 0.016

Osteoactivin 1.00 (1.00–1.00) 0.93 0.003 0.86 (0.86–0.87) 0.83 0.056

Renin 0.94 (0.93–0.94) 0.86 0.039 0.88 (0.88–0.89) 0.83 0.028

Clusterin 0.71 (0.70–0.73) 0.64 1.000 0.83 (0.83–0.84) 0.82 0.132

RBP4 0.86 (0.85–0.87) 0.75 0.310 0.94 (0.93–0.94) 0.87 0.009

IL-18 0.79 (0.78–0.80) 0.65 0.796 0.79 (0.78–0.80) 0.83 0.194

IP-10 0.87 (0.86–0.88) 0.81 0.219 0.79 (0.78–0.80) 0.81 0.332

EGF 0.82 (0.81–0.83) 0.51 0.591 0.94 (0.93–0.94) 0.88 0.003

MCP-1 0.87 (0.86–0.88) 0.74 0.219 0.95 (0.95–0.95) 0.88 0.001

VEGF-A 0.59 (0.58–0.60) 0.49 1.000 0.85 (0.84–0.86) 0.82 0.070

Uromodulin 0.62 (0.61–0.64) 0.11 1.000 0.90 (0.89–0.91) 0.36 0.005

α1-microglobulin 0.49 (0.48–0.50) 0.44 1.000 0.94 (0.94–0.95) 0.89 0.009

TFF3 0.77 (0.76–0.78) 0.80 1.000 0.96 (0.95–0.96) 0.92 0.001

Osteopontin 0.49 (0.48–0.51) 0.43 1.000 0.72 (0.71–0.73) 0.82 1.000

Cystatin C 0.64 (0.63–0.65) 0.55 1.000 0.88 (0.88–0.88) 0.84 0.028

NGAL 0.76 (0.75–0.77) 0.66 1.000 0.90 (0.90–0.91) 0.88 0.012

β2-microglobulin 0.86 (0.85–0.86) 0.81 0.310 0.94 (0.93–0.94) 0.90 0.003

TIMP-1 0.49 (0.48–0.51) 0.44 1.000 0.64 (0.63–0.65) 0.78 1.000
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to distinguish AKI (Fig. 1A,B), whereas TFF3, β2-microglobulin, NGAL, Cystatin C and TIMP-1 were the top 
ranked proteins to distinguish CKD/ESKD (Fig. 1C,D). TIMP-1 and β2-microglobulin were common in their 
increased ability to differentiate either AKI or CKD/ESED from healthy control subjects.

In urine, Osteoactivin GSTA-1, Renin, IP-10, and RBP4 were the top 5 ranked proteins that differentiated 
healthy control subjects from AKI patients (Fig. 2A,B), whereas β2-microglobulin, TFF3, MCP-1, GSTA1 and 
EGF were the top proteins that differentiated healthy control subjects from those with CKD/ESKD (Fig. 2C,D). 
Only urine GSTA1 was common among both AKI and CKD/ESKD patients for differentiating kidney disease 
from healthy control subjects.

Among either urine or plasma, β2-microglobulin was the most shared biomarker that differentiated kidney 
disease from healthy control subjects (top 5 ranked proteins). NAG was consistently the lowest ranked protein in 
its ability to differentiate kidney disease from healthy control subjects. The plasma and urine biomarker profile 
of AKI as compared to CKD/ESKD patients was less distinct on t-SNE analysis, although still easily separable 
(Supplementary Fig. 1). Osteopontin, TIMP-1, IP-10, α1-microglobulin, and IL-18 were the top ranked biomark-
ers in plasma distinguishing AKI versus CKD/ESKD (Supplementary Fig. 1A,B). In urine, α1-microglobulin, 
Renin, IP-10, EGF and Uromodulin were the top 5 ranked proteins that distinguished AKI from CKD/ESKD 
subjects (Supplementary Fig. 1C,D).

Figure 1.  Plasma biomarkers accurately differentiate acute and chronic/end-stage kidney disease from healthy 
controls. In the upper section, t-SNE plots depict the separation between acute kidney injury (AKI) patients or 
chronic/end-stage (CKD/ESKD) kidney patients and healthy controls (HC). Subjects plotted in 2D following 
dimensionality reduction of their respective proteomes by t-SNE. Axes are dimensionless. The dimensionality 
reduction shows that based on plasma proteome, the two cohorts were distinct and easily separable. A) Blue 
dots represent AKI patients and green dots represent HC subjects. B) Plasma biomarkers distinguishing AKI 
patients from HC subjects in order of importance C) Pink dots represent CKD/ESKD and green dots represent 
HC subjects. Four CKD/ESKD patients visually resemble HC subjects (refer to Supplementary Table 6). D) 
Plasma biomarkers distinguishing CKD/ESRD patients from HC subjects in order of importance.
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We then compared the correlations of these 21 plasma biomarkers with clinical and laboratory parameters col-
lected from patients with AKI (Fig. 3A). A wide variety of correlations were found in AKI patients between their 
plasma biomarker concentrations and demographic, hematological, hepatic, and chemical parameters. In terms 
of kidney function, β2-microglobulin, NGAL, Cystatin C, VEGF-A, renin and Calbindin all positively correlated 
with admission serum creatinine and peak creatinine. TFF3 also positively correlated with creatinine, and KIM-1 
positively correlated with peak creatinine. Cystatin C, TFF3, VEGF-A and Renin positively correlated with serum 
urea. NGAL, cystatin C, VEGF-A, and renin positively correlated with total urine protein, and α1-microglobulin 
positively correlated with urine protein/creatinine ratio. Of all proteins, only β2-microglobulin positively cor-
related with initiation of dialysis in acute kidney disease. No significant correlations were found between the 
plasma biomarkers and either ICU or hospital length of stay. As all COVID-19 patients were on vasopressors, 
antibiotics, and steroids, and all patients were intubated, plasma correlations with these variables were forgone.

Correlation analyses were then performed between plasma biomarker levels from patients with CKD/ESKD 
and clinical and laboratory parameters (Fig. 3B). A wide variety of correlations were found in CKD/ESDR patients 
between their plasma biomarker concentrations and demographic, hematological, inflammatory, and chemi-
cal parameters. In terms of kidney function, β2-microglobulin, NGAL, Cystatin C, TFF3, α1-microglobulin, 
Uromodulin, and VEGF-A each positively correlated with creatinine and Cystatin C. TIMP-1 also positively 
correlated with Cystatin C, while β2-microglobulin and NGAL positively correlated with serum urea. TIMP-1, 

Figure 2.  Urine biomarkers accurately differentiate acute and chronic/end-stage kidney disease from healthy 
controls. In the upper section, t-SNE plots depict the separation between acute kidney injury (AKI) patients or 
chronic/end-stage (CKD/ESKD) kidney patients and healthy controls (HC). Subjects plotted in 2D following 
dimensionality reduction of their respective proteomes by t-SNE. Axes are dimensionless. The dimensionality 
reduction shows that based on urine proteome, the two cohorts were distinct and easily separable. A) Blue dots 
represent AKI patients and green dots represent HC subjects. B) Urine biomarkers distinguishing AKI patients 
from HC subjects in order of importance. C) Pink dots represent CKD/ESKD patients and green dots represent 
healthy controls. Five CKD/ESKD patients visually resembled HC subjects (refer to Supplementary Table 6). D) 
Urine biomarkers distinguishing CKD/ESRD patients from HC subjects in order of importance.
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Figure 3.  Correlations between plasma biomarker expression and acute and chronic/end-stage kidney disease patient 
parameters. Heat maps of rank-based classifying proteins reported in Fig. 1 in acute kidney injury (A) and chronic/end-
stage kidney disease (B) is illustrated (y -axis) along with patient parameters (x-axis). Only proteins that showed a significant 
correlation (P ≤ 0.05) with at least one parameter are illustrated. Significant correlations had a Pearson R-value of ≥ 0.7 
or ≤ -0.7 for AKI, ≥ 0.4 or ≤ -0.4 for CKD/ESKD, and p-value < 0.05, denoted by *. Positive correlations are depicted in red and 
negative correlations in blue. Abbreviations: BMI-body mass index; HGB-hemoglobin; PLT-platelet; Lymph-lymphocytes; 
INR-international normalized ratio; PTT-partial thromboplastin time; Bili-total bilirubin; ALT-alanine aminotransferase; 
ALP-alkaline phosphatase; GGT-gamma glutamyl transferase; LDH-lactate dehydrogenase; CRP-C reactive protein; Ferr-
ferritin; Na-sodium; K-potassium; Ca-calcium; Bicarb-bicarbonate; Cl-chloride; Creat-creatinine; P-Creat-peak creatinine; 
PO4-phosphate; Trop-troponin; Lact-lactate; Alb-albumin; Prot-protein; PTH-parathyroid hormone; Cys C-Cystatin C.
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β2-microglobulin, NGAL, Cystatin C, TFF-3, α1-microglobulin, Uromodulin, VEGF-A, EGF, Clusterin, Osteoac-
tivin and GSTA1 each negatively correlated with all kidney clearance measurements. IL-18 negatively correlated 
with CKD-EPI Creatinine and CKD-EPI Creatinine/Cystatin C clearance. KIM-1 negatively correlated with 
CKD-EPI Creatinine clearance measurement.

We then compared the correlations of these 21 urine biomarkers with clinical and laboratory parameters 
collected from patients with AKI (Fig. 4A). A wide variety of correlations were found in AKI patients between 
their plasma biomarker concentrations and demographic, hematological, hepatic, inflammatory and chemical 
parameters. From a kidney perspective, TIMP-1, NGAL, Uromodulin, and NAG each positively correlated with 
serum urea, creatinine, and peak creatinine. TFF3 positively correlated with serum urea, and VEGF-A positively 
correlated with peak creatine. β2-microglobulin negatively correlated with serum urea and creatinine. TIMP-1, 
NGAL, Cystatin C, Uromodulin, VEGF-A and NAG positively correlated with urine protein. β2-microglobulin 
negatively correlated with urine protein. TIMP-1 and TFF3 positively correlated with urine creatinine. Cystatin 
C solely positively correlated with urine protein/creatinine ratio, and Osteopontin solely negatively correlated 
with initiation of dialysis. No significant correlations were found between the urine biomarkers and either ICU or 
hospital length of stay. As all COVID-19 patients were on vasopressors, antibiotics, and steroids, and all patients 
were intubated, urine correlations with these variables were forgone.

Correlation analyses were then performed between urine biomarker levels from patients with CKD/ESKD and 
clinical and laboratory parameters (Fig. 4B). A wide variety of correlations were found in CKD/ESDR patients 
between their plasma biomarker concentrations and demographic, hematological, inflammatory, and chemical 
parameters. In terms of kidney function, TIMP-1, β2-microglobulin, NGAL, Cystatin C, VEGF-A positively 
correlated with serum creatinine and cystatin C. IP-10, RBP4 and GSTA1 also positively correlated with serum 
creatinine. TFF3, α1-microglobulin and MCP-1 positively correlated with serum Cystatin C while Uromodulin 
and EGF negatively correlated with serum cystatin C. Uromodulin and EGF also negatively correlated with serum 
creatinine. α1-microglobulin positively correlated with serum urea. β2-microglobulin, NGAL, and RBP4 each 
negatively correlated with all kidney clearance measurements. Uromodulin and EGF both positively correlated 
with all kidney clearance measurements. Cystatin C and GSTA1 negatively correlated with CKD-EPI Creatinine 
and CKD-EPI creatinine/cystatin C clearance. α1-microglobulin negatively correlated with CKD-EPI Cystatin 
C and CKD-EPI creatinine/cystatin C clearance.

As a final analysis, pairwise comparisons of the 21-biomarker profile between cohorts was achieved with 
Euclidian Distance and is shown in Supplementary Fig. 2. For both plasma and urine, healthy control subjects 
were relatively homogenous and distinct from patient cohorts.

Discussion
Our study examined the plasma and urine profiles of 21 unique kidney toxicity biomarkers in patients with 
either AKI or CKD/ESKD. We reported differences in concentrations of these proteins, as well as their ability to 
differentiate patients with kidney disease from healthy control subjects. Biomarker rank order of importance was 
established. We also reported correlations of these biomarkers with patient demographic and clinical variables, 
including hematologic, hepatic, inflammatory, and chemical parameters.

Our patient cohort suffered either AKI or CKD/ESKD as defined by KDIGO classification. Hypertension 
and diabetes were the most common comorbidities in both acute and chronic disease. In fact, 50% of AKI 
patients had hypertension and diabetes. Moreover, all AKI patients had a presumed etiology related to tissue 
hypoperfusion and hemodynamic insult in the context of critical illness, in keeping with most causes of AKI in 
ICU  patients22. With regard to CKD/ESKD, 85% had hypertension and 38% of CKD patients had diabetes; these 
findings are in keeping with major etiologies of CKD/ESKD  worldwide23. Within the CKD/ESKD cohort, 9.5% 
of patients had CKD, 90.5% of patients had ESKD, with 76.1% being on intermittent hemodialysis, and 14.3% 
having kidney transplant.

Notably, when comparing plasma levels of biomarkers in healthy control subjects, and both AKI and CKD/
ESKD patients, almost all protein concentrations differed significantly between the three groups; however, NAG 
and RBP4 were unchanged. When comparing urine biomarker levels, all proteins were significantly different 
in titer between the three cohorts, except Calbindin, Osteopontin and TIMP-1. These findings were consistent 
with reports of the 21 biomarkers having different roles in kidney  injury13. β2-microglobulin, a low molecular 
weight protein that is used to assess tubular  injury24, was among the most common highly ranked protein in 
plasma and urine that differentiated healthy control subjects from AKI and CKD/ESKD. β2-microglobulin has 
been a longstanding marker of kidney injury with increased urinary prevalence secondary to decreased tubule 
resorption post-injury13, with links to mortality in  ESKD25 and AKI  severity26.

When comparing plasma profiles of AKI versus CKD/ESKD, Osteopontin was the top ranked protein dif-
ferentiating these populations. Osteopontin largely facilitates bone mineralization and resorption, but it is also 
present in the thick ascending limb and distal  tubules27 where it mediates inflammation, angiogenesis, tubulo-
genesis, and apoptosis. Previous studies indicate that Osteopontin is elevated in AKI and CKD/ESKD, as well 
as kidney allograft  dysfunction27. Similarly, urine α1-microglobulin was highly ranked in differentiating AKI 
versus CKD/ESKD patients. α1-microglobulin is a lipocalin filtered by the glomerulus, but fully reabsorbed 
by proximal tubular cells, suggesting urinary levels indicate tubular dysfunction. Urinary α1-microglobulin in 
HIV infected women is independently associated with kidney decline and  mortality28. Together, Osteopontin 
and α1-microglobulin might serve biomarkers to characterize the different physiology underlying acute and 
chronic kidney disease.

Many biomarker levels correlated with demographic and clinical variables in both AKI and CKD/ESKD. 
Within the plasma of AKI patients, we examined correlations of biomarkers with hematologic, hepatic, inflamma-
tory, and chemical variables. For hematology, Cystatin C, TFF3, and IL-18 negatively correlated with thrombocyte 
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Figure 4.  Correlations between urine biomarker expression and acute and chronic/end-stage kidney disease patient 
parameters. Heat maps of rank-based classifying proteins reported in Fig. 2 in acute kidney disease (A) and chronic/end-stage 
kidney disease (B) are illustrated (y -axis) along with patient parameters (x-axis). Only proteins that showed a significant 
correlation (P ≤ 0.05) with at least one parameter are illustrated. Significant correlations had a Pearson R-value of ≥ 0.7 
or ≤ -0.7 for AKI, ≥ 0.4 or ≤ -0.4 for CKD/ESKD, and p-value < 0.05, denoted by *. Positive correlations are depicted in red and 
negative correlations in blue. Abbreviations: BMI-body mass index; HGB-hemoglobin; PLT-platelet; Lymph-lymphocytes; 
INR-international normalized ratio; PTT-partial thromboplastin time; Bili-total bilirubin; ALT-alanine aminotransferase; 
ALP-alkaline phosphatase; GGT-gamma glutamyl transferase; LDH-lactate dehydrogenase; CRP-C reactive protein; Ferr-
ferritin; Na-sodium; K-potassium; Ca-calcium; Bicarb-bicarbonate; Cl-chloride; Creat-creatinine; P-Creat-peak creatinine; 
PO4-phosphate; Trop-troponin; Lact-lactate; Alb-albumin; Prot-protein; PTH-parathyroid hormone; Cys C-Cystatin C.
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count. Although Cystatin C and TFF3 have weak links with thrombocyte physiology, IL-18 has been implicated 
in platelet activation and endothelial  dysfunction29. Several markers, including β2-microglobulin, Osteopontin, 
α-1-microglobulin, VEGF-A, RBP4, Clusterin and Renin, positively correlated with the coagulation variables of 
INR or PTT. Urine β2-microglobulin titer has been linked with coagulation abnormalities in hemolytic-uremic 
 syndrome30, and VEGF-A is associated with hypercoagulability in  malignancy31,32. RBP4 is associated with 
inflammation and thrombogenesis in Kawasaki’s  disease33, while renin–angiotensin–aldosterone activation is 
associated with atherothrombosis in COVID-1934.

In AKI patients, hepatic and inflammatory variables positively correlated with many plasma biomarkers. 
β2-microglobulin, NGAL and VEGF-A positively correlated with ALP and GGT, while VEGF-A, RBP4 and 
Clusterin positively correlated with ferritin. NGAL titers prognosticate survival in chronic liver  disease35, and 
isoforms of VEGF are associated with hypertension and kidney dysfunction in non-alcoholic fatty liver  disease36, 
as well as angiogenesis and  inflammation37. RBP4 induces inflammation in endothelial  cells38, and Clusterin 
may regulate inflammation via the NF-kβ  pathway39. Uromodulin negatively correlated, and IP-10 positively 
correlated, with lactate, raising the question of their roles in mediating end-organ perfusion or dysfunction in 
AKI. Previous reports suggest Uromodulin predicts progression to  ESKD40.

With electrolytes, most biomarker correlations were observed with phosphate. β2-microglobulin, NGAL, 
Cystatin C, TFF3, VEGF-A, IL-18, Renin, Calbindin and KIM-1 positively correlate with serum phosphate. Of 
these, only Calbindin has clear documentation of impacting electrolyte transport, impacting sodium-phosphate 
transport and cytoskeletal re-arrangement in experimental models of kidney tubular epithelial  cells41.

Kidney variables correlated with plasma biomarkers. NGAL, Cystatin C, VEGF-A and Renin each correlated 
with admission creatinine, peak creatinine, and proteinuria, suggesting they may be heavily involved in pathogen-
esis of AKI. NGAL is produced by kidney tubular cells in response to insult, and it facilitates kidney development, 
tubular regeneration, and predicts AKI early in  admission42. Cystatin C, is ubiquitously expressed by nucleated 
 cells43 and it is a well-established kidney biomarker. Cystatine C levels positively correlated with VEGF-A, and 
may exert a protective effect in kidney injury with VEGF inhibition promoting proteinuria, hypertension and 
kidney  injury44,45. The pathophysiology of VEGF in kidney disease is poorly elucidated, but may be related to 
endothelial cell proliferation, microvascular permeability, and matrix remodeling. VEGF is heavily expressed 
in glomerular podocytes and kidney tubular epithelial  cells46. Renin, as part of the renin–angiotensin–aldoster-
one-system, mediates glomerular pressure as well as collecting duct solute  transport47, with its blockade being 
extensively associated with improved kidney  outcomes48.

In urine of AKI patients, TIMP-1 negatively correlated with platelet count. TIMP-1 is expressed by mega-
karyocytes and platelets to mediate tissue remodeling and  angiogenesis49. With regard to hepatic function and 
inflammation, urinary Uromodulin emerged as the predominant biomarker that positively correlated with liver 
enzymes and ferritin. Decreased plasma Uromodulin is associated with kidney injury in cirrhotic  patients50, 
yet our data suggested a positive correlation between urine Uromodulin and increasing liver enzymes. Plasma 
Uromodulin induces leukocyte recruitment in tubular injury and  inflammation51, but little data exist on urinary 
uromodulin titers and inflammation.

More extensive urinary biomarker correlations were demonstrated with serum electrolytes in AKI, as com-
pared to plasma. TIMP-1 and NAG negatively correlated with sodium and bicarbonate, and positively correlated 
with phosphate. NGAL negatively correlated with sodium and bicarbonate. Uromodulin positively correlated 
with potassium and phosphate. Notably, each of these biomarkers are heavily expressed in kidney tubule cells, 
perhaps explaining their association with electrolyte  imbalance52–54.

Correlation analyses of kidney variables in AKI demonstrated that urine TIMP-1, NGAL, Uromodulin, and 
NAG positively correlated with admission urea and creatinine, peak creatinine, and urine protein, whereas the 
plasma biomarkers NGAL, Cystatin C, VEGF-A and Renin positively correlated with admission creatinine, peak 
creatinine and proteinuria. Urinary TIMP-1 predicts AKI in pediatric ICU  patients55, and urinary NAG predicts 
kidney impairment in cystic fibrosis  patients56. In contrast to our findings, urinary NGAL may be less useful 
to predict kidney injury in critically-ill septic  patients57, and a systematic review has reported decreasing urine 
Uromodulin is associated with  AKI58.

Distinct correlations were also observed in the plasma of CKD/ESKD patients. NGAL negatively correlated 
with hemoglobin, which is consistent with NGAL promoting anemia in inflammatory  states59. Uromodulin posi-
tively correlated with lymphocyte count, which is in contrast of previous studies suggesting uromodulin inhibits 
lymphocyte  proliferation60. Clusterin positively correlated with lymphocytes, with previous studies reporting 
an association between Clusterin and lymphoma  pathogenesis61. α1-microglobulin positively correlated with 
platelet and lymphocyte count; the latter consistent with α1-microglobulin being actively produced by T and B 
 cells62. Holistically, our correlations are in keeping with these biomarkers as possible regulators of blood cells in 
CKD, by inducing immune cell dysfunction and  inflammation63.

From an inflammatory perspective, plasma Renin positively correlated with CRP, and ESKD is associated 
with inflammation predisposing to malignancy and  infection63. Previous polymorphisms in the renin–angioten-
sin–aldosterone system pathway have been implicated in more rapid progression to ESKD; however, Renin itself 
has been less  implicated64,65. Renin may mediate the inflammatory milieu in kidney disease and its contribution 
to the adverse cardiovascular outcomes noted in ESKD.

EGF negatively correlated with sodium in plasma from CKD/ESKD patients. EGF stimulates sodium resorp-
tion in alveolar  epithelium66, but it has been unexplored in kidney electrolyte transport. Plasma Osteopon-
tin positively correlated with potassium, consistent with potassium channel activation in pancreatic  tissue67. 
β2-microglobulin negatively correlated with calcium. Experimental data suggest that β2-microglobulin may 
complex with calcium to facilitate amyloid deposition in  tissue68 and β2-microglobulin levels rise in  dialysis69, 
suggesting β2-microglobulin signaling as a potential target to modify the calcium dysregulation and amyloid 
deposition in ESKD. TIMP1, α1-microglobulin, Clusterin and Osteoactivin positively correlated with phosphate 
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in CKD/ESKD plasma, as compared to AKI plasma. Certainty we note the limitations of these electrolyte data, 
given electrolyte levels will vary based on pre-selected dialysate targets, as well as fluctuations that occur in 
urine concentration.

From a kidney perspective, plasma levels of β2-microglobulin, NGAL, Cystatin C, TFF3, α1-microglobulin, 
Uromodulin and VEGF-A, positively correlated with pre-dialysis creatinine, and each negatively correlated 
with calculations of kidney clearance, consistent with each of these plasma biomarkers correlating with kidney 
impairment, similar to observations in  AKI13. EGF, IL-18, Clusterin, Osteoactivin, GSTA1 and KIM-1 also 
negatively correlated with markers of clearance. Biomarker correlations with residual kidney clearance suggests 
that their associated signaling pathways may facilitate kidney recovery or preserve residual kidney function to 
improve quality of life. Pathway modulation could also help limit the cardiovascular, neurologic, and inflamma-
tory sequelae associated with morbidity and mortality in ESKD. Osteopontin, NGAL, cystatin C, TFF3, TIMP1, 
and β2-microglobulin are upregulated in AKI post kidney transplant, with Osteopontin and TIMP-1 specifically 
upregulated in reversible injury compared to irreversible  injury70.

Urine biomarkers in CKD/ESKD showed additional correlations with hematologic variables. GSTA1 posi-
tively correlated with platelets and lymphocytes, which are associations not previously reported. Moreover, 
Renin positively correlated with lymphocytes, consistent with reports of a unique lymphocyte population that 
may produce Renin to protect against infection, raising the question of whether this is an adaptive response that 
may occur in CKD/ESKD71.

Urine α1-microglobulin, MCP-1, IL-18, Clusterin and NAG positively correlated with serum CRP in CKD/
ESKD patients. α1-microglobulin has been implicated in inflammatory bowel disease and  hypertension72,73. 
MCP-1 is also known to mediate inflammation, and dysregulates glucose in acute myocardial  infarction74,75. Of 
note, MCP-1 positively correlated with serum glucose in the CKD/ESKD patients in our study. IL-18 has been 
implicated in inflammatory kidney  disease76. Clusterin deficiency has been associated with worsening kidney 
 inflammation77.

With electrolytes, many of the correlations noted with the urine biomarkers we observe remain unelucidated 
(as described above for plasma) and may be of interest for further study. Interestingly, β2-microglobulin and 
NGAL positively correlated with parathyroid hormone (PTH), which is also unreported in the literature. Given 
issues with mineral bone disease in CKD/ESKD patients, these biomarkers may yield additional insight into 
PTH regulation.

In terms of CKD/ESKD kidney function, urine TIMP-1, β2-microglobulin, NGAL, cystatin C, VEGF-A, 
IP-10, RBP4 and GSTA1 positively correlated with creatinine, whereas Uromodulin and EGF negatively correlated 
with creatinine. The significance of this is limited given that most patients in this subgroup were on dialysis. 
β2-microglobulin, NGAL, α1-microglobulin, RBP4, and GSTA1 negatively correlated with kidney clearance. 
Notably the RB4 correlation was only observed in the urine of CKD/ESKD patients, unlike the other biomarkers 
that also occurred in the plasma of CKD/ESKD patients. Moreover, with urinary biomarkers, there were positive 
correlations with kidney clearance (unlike plasma biomarkers, which only negatively correlated with kidney clear-
ance). Uromodulin and EGF positively correlated with residual kidney clearance, raising the question of protec-
tive effects and supported by reports of a negative association between urine Uromodulin and kidney  injury58. 
EGF receptor activation is associated with kidney recovery in AKI, via epithelial cell  regeneration78. Our data 
highlight the need for further investigating any kidney protective effects of EGF and Uromodulin in CKD/ESKD.

Our study has limitations. First, we recognize that not all clinical variables were similarly available or recorded 
in healthy control subjects and patients with either AKI or CKD/ESKD. Second, the number of AKI patients 
was limited, which may reduce the generalizability of the biomarkers. Third, all ESKD patients still produced 
urine in our study, suggesting results may not be generalizable to anuric ESKD patients. The utility of urinary 
biomarkers in anuric ESKD patients is questionable. Fourth, we recognize ESKD patients received dialysis, and 
hence correlations made with creatinine, electrolytes, and kidney clearance could have been impacted. However, 
several correlations in this population may still be useful to understanding physiology and adverse outcomes. 
Fifth, NAG was non-detectable in the majority of plasma samples; however, NAG is primarily located in the 
proximal tubular cells with urine levels are believed to originate exclusively in kidney. As the levels for NAG 
on the ProcartaPlex platform were below the lower limit of quantification in more than 95% of all samples 
irrespective of group, it was excluded in the final design of the Human ProcartaPlex™ Kidney Toxicity Panel 1 
(EPX060-15857-901). Sixth, we did not normalize the urinary biomarkers to urinary concentration; normali-
zation would lead to systematic bias due to conditions that characteristically have a larger impact on tubular 
function and concentrating ability. Finally, confounders not recorded, such as hypotension and volume status, 
may have impacted the biomarker profiles.

Conclusions
In conclusion, this exploratory study characterized plasma and urine biomarker profiles in acute and chronic 
kidney disease. Utilizing machine learning and conventional statistics, we present novel profiles of biomarkers 
that differentiate healthy controls from kidney disease patients. A rank order of biomarker utility is provided, as 
well as accuracies. We report novel correlations of urine and plasma biomarkers with clinical/laboratory vari-
ables. Our findings highlight the ongoing need to investigate the interplay of these biomarkers with hematologic 
profiles, hepatic function, inflammation, electrolytes, and kidney function in acute and chronic kidney disease.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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