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Reparameterized multiobjective 
control of BCG immunotherapy
Rongting Yue 1,2* & Abhishek Dutta 1,2

Bladder cancer is a cancerous disease that mainly affects elder men and women. The immunotherapy 
that uses Bacillus of Calmette and Guerin (BCG) effectively treats bladder cancer by stimulating the 
immune response of patients. The therapeutic performance of BCG relies on drug dosing, and the 
design of an optimal BCG regimen is an open question. In this study, we propose the reparameterized 
multiobjective control (RMC) approach for seeking an optimal drug dosing regimen and apply it to 
the design of BCG treatment. This approach utilizes constrained optimization based on a nonlinear 
bladder cancer model with impulsive drug instillation. We compare the performance of RMC with 
Koopman model predictive control (MPC) and validate the efficacy of optimal BCG dosing regimens 
through numerical simulations, demonstrating the efficient elimination of cancerous cells. The 
proposed control framework holds the potential for generalization to other model-based treatment 
designs.

Cancer is a significant global public health concern and a leading cause of mortality. Bladder cancer, a subtype 
of cancer, accounts for approximately 7.6% of cancer-related deaths in men and 2.2% in women, based on the 
5-year average annual percent change (2015)1. The high mortality rate associated with bladder cancer necessitates 
the development of highly effective treatment regimens. Chemotherapy and immunotherapy are two commonly 
recommended approaches for different stages of bladder cancer due to their efficacy2,3. While chemotherapy 
directly targets and kills cancer cells, immunotherapy enhances the body’s immune system to combat neoplastic 
diseases. One widely used immunotherapy for early-stage bladder cancer is Bacillus Calmette–Guérin (BCG). 
BCG is highly effective, with a success rate of approximately 90%. It involves the instillation of live BCG into 
the affected area to activate lymphocytes and stimulate an antitumor response from the immune system4. The 
regulation of T lymphocytes, such as CD4+ and CD8+, plays a crucial role in cancer immunotherapy by direct-
ing antigen-specific cytotoxicity5. Following instillation, BCG attaches to urothelial cells and is internalized by 
bladder cancer cells. The cancer cells release cytokines and regulate molecules such as MHC II and ICAM-1 to 
present processed antigens, thereby activating cytotoxic T-cells. This immune response mediates the cytotoxicity 
of immune cells, leading to the elimination of cancer cells4.

BCG treatment regimens have been studied for decades. Though BCG is therapeutically effective for bladder 
cancer, the dosing regimen of BCG is dedicated and needs to be designed carefully to ensure its efficacy. On the 
one hand, high doses of drugs result in the fast elimination of cancerous cells, while high drug toxicity and severe 
side effects may cause undesired harmful effects to patients. On the other hand, low drug doses will result in a 
great loss in therapeutic efficacy. In bladder cancer treatment, a high dose of BCG could lower the efficacy of 
cytokines induction and lead to the termination of treatment due to severe side effects, including BCG sepsis6. 
The clinical characteristics of different BCG can be found in a literature search7. Thus, there are constraints on 
drug doses due to patients’ health conditions, and how to design the optimal doses and duration for patients in 
different cancerous stages is an open question. Designing optimal dosing regimens for BCG treatment is chal-
lenging due to constraints and nonlinearity in the treatment model.

Control theory is essential for effective disease management strategies, ensuring precise control of treatment 
interventions. Control theory focuses on dynamic systems and aims to regulate their behavior to align the sys-
tem’s state with a desired reference8. A control system employs sensors for system state measurement, actuators 
for control inputs, and a controller to compute these inputs based on feedback and reference, ensuring desired 
outcomes are achieved9. This incorporation of measurements enables precise regulation of system dynamics. 
In systems pharmacology, nonlinear dynamics govern the intricate relationships between drug dosages, patient 
responses, and disease progression, which can be captured by nonlinear dynamic models10. Measurement-driven 
feedback control adapts in real-time to system variations, enhancing the precise control of disease treatment. 
Nevertheless, achieving optimal treatment outcomes is contingent on devising optimal dosing regimens based 
on nonlinear drug response and disease progression.
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Various control strategies are available for determining dosing schemes for disease treatments. Feedback 
control has been pivotal in diverse contexts, from stabilizing the COVID-19 pandemic through vaccination 
strategies11, to precise management of neuromuscular blocking agent concentrations during anesthesia via 
Proportional-Integral-Derivative (PID) control12. Lyapunov stability-based controllers can be used to stabilize 
COVID-19 infections by controlling the number of tests in regulating quarantine strategies13. Optimal control 
strategies like the Linear Quadratic Regulator have found application in linear systems, albeit with a need for 
preliminary linearization when dealing with nonlinear models14. Multi-objective optimal control has been used 
to optimize drug rescheduling, balancing doses, efficacy, and toxicities as seen in the case of remdesivir15. Model 
predictive control (MPC) has been used for addressing constraints in drug dosing optimization problems, such 
as optimizing chemotherapy dosing in cancer treatment16. A comprehensive exploration of diverse drug dosing 
strategies is available in10.

MPC predicts state variable changes in a plant model and iteratively calculates control laws using finite-
horizon optimization17. While MPC can handle nonlinear control problems, the nonlinearity in the dynamic 
model introduces challenges in terms of non-convex optimization and convergence/stability of the algorithm18. 
Nonlinear MPC works directly on nonlinear models, but a quadratic positive semi-definite stage cost is necessary 
to ensure closed-loop stability19. Linearization techniques are usually applied to obtain linear models. The 
Koopman operator has gained attention for its ability to approximate nonlinear models effectively20–22. By 
approximating the nonlinear dynamics of the original plant model using the linear evolution of observables, 
the Koopman operator transforms the non-convex optimization problem in MPC for a nonlinear model into a 
convex quadratic programming problem23.

Besides, the optimal dosing schemes can be designed by reparameterizing the control process, which 
handles nonlinear relationships between variables in the model24. Also, reparameterization allows simultaneous 
optimization of multiple control objectives in control design by effectively incorporating various performance 
criteria, cost functions, or constraints25,26. This capability facilitates trade-off analysis and the design of control 
strategies that achieve a balance between conflicting objectives. Additionally, a reparameterized control 
framework allows the control strategies to be generalized to similar control problems with minimal modifications, 
streamlining the control design process and enhancing scalability. In this study, we propose the reparameterized 
multiobjective control (RMC) as a constrained open-loop optimal control strategy and apply it to the BCG 
treatment model for optimizing the dosing scheme. RMC provides a framework for optimal impulsive dosing 
strategies for the nonlinear treatment models with constraints. We also use Koopman MPC to compare the drug 
dosing scheme.

Materials and methods
Nonlinear bladder cancer model
In this study, a bladder cancer model27,28 is employed, as depicted in Fig. 1. The model considers the impact of 
BCG vaccines on various populations, including uninfected tumor cells, infected tumor cells, and effector T cells. 
The administration of BCG vaccines to the tumor site converts uninfected tumor cells into infected tumor cells, 
which are subsequently targeted and eliminated by the effector cells.

Consider a general dynamic system with impulsive input:

where X(t) ∈ R
ns is the state vector that contains ns state variables, fX : Rns → R

ns is a function of dynamics 
of X(t), t is the time index and t+ refers to the time instant after t, Bin ∈ R

ns is the input coefficient vector, uin(t) 
is the input, and τk ( k = 1, 2, ... ) is the time instant that the impulsive input is applied to the model. We use the 
BCG treatment model in the form of nonlinear differential equations (in Eq. 2 from27 with impulsive inputs) that 
govern the concentrations of four states: BCG concentration (B) measured in units of 1× 106 colony-forming 
units (c.f.u), activated immune system cell population (E) measured in units of 1× 106 cells, infected tumor cell 
population ( Ti ) measured in units of 1× 106 cells, and uninfected tumor cell population ( Tu ) measured in units 
of 1× 106 cells.

where µ1 and µ2 are the decay rates of BCG and effector cells, respectively. p1 − p5 are the rates of transitions 
between cells. α is the infected tumor stimulation rate. β is the inverse of tumor carrying capacity. r is the tumor 
growth rate and u is the BCG dose. BCG is instilled into the tumor site, and optimal scheduling of dose u(t) 
is measured in units of 1× 106 colony-forming units (c.f.u), is to be designed to eliminate Tu . Then we have 
X(t) = [B(t),E(t),Ti(t),Tu(t)]

T and Bin = [1, 0, 0, 0] based on (1). Specifically, we have B(t+) = B(t)+ u(t) for 
t = τk ( k = 1, 2, ... ), where τk is the time instant that BCG is given. The description and numerical values of the 
parameters can be found in Table 127,28.

The origins and sources of these parameters are referenced from28 and are elaborated as follows: µ1 was esti-
mated through experimental work involving the cultivation of the Mycobacterium avium strain based on the 

(1)
Ẋ(t) = fX(X(t)), t �= τk

X(t+) = X(t)+ Binuin(t), t = τk , k = 1, 2, ...

(2)

Ḃ(t)= −µ1B(t)− p1E(t)B(t)− p2B(t)Tu(t)

Ė(t) = −µ2E(t)+ αTi(t)+ p4E(t)B(t)− p5E(t)Ti(t)

Ṫi(t) = −p3E(t)Ti(t)+ p2B(t)Tu(t)

Ṫu(t) = −p2B(t)Tu(t)+ r(1− βTu(t))Tu(t)
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experimental data in29; r was derived from a median growth rate determined through an in vivo study37, where 
a logistic model for tumor growth was fitted to mammographic measurements from breast cancer patients using 
the least squares solution; β was computed under the assumption of a cylindrical tumor shape with a depth of 
3 cell layers. A maximal diameter of 6.4 cm (reported by36) is employed in the calculations; µ2 , p3 , and p5 were 
estimated in30 by fitting experimental data of chimeric mice with Bcl-1 lymphoma in their spleen31 in the sense 
of nonlinear least squares, using the Hooke–Jeeves optimization method; p1 was obtained in32 as the max killing 
rate of bacteria by activated macrophages that can serve as Antigen Presenting Cells, based on experiments on 
Mycobacterium bovis BCG Substrains in33; α was characterized as the maximum Th1/Th2 cell recruitment rate 
in32 based on experiments about lymphocyte recruitment facilitated by Interleukin-8 in the inflammatory process 
in38; p2 was informed by34 and35 based on the internalization of BCG by incubating human bladder cancerous 
cell lines like T2434 and the adhesion and internalization of BCG and effector cells35. Furthermore, p2 and its 
numerical values are also reported in39 and supported by clinical trial data40. The source for p4 is not identified 
as informed by28. However, sensitivity analysis showed that p4 minimally influences the output settling time, 
which will be shown later.

The model is discretized using the fourth order-Runge Kutta method, and the resulting discrete model has a 
state vector X(k) = [B(k),E(k),Ti(k),Tu(k)]

T at time k with the output yk = y(k) = Tu(k) and input u(k). The 
objective of this study is to optimize the scheduling of the dose u to eliminate the uninfected tumor cells Tu . The 
BCG vaccine is administered at the tumor site using the dose u. The observed output of the immunotherapy 
model is assumed to be the population of uninfected tumor cells Tu . If the system is observable, estimators can 
be used to obtain the values of other states. Based on guidelines from the Food and Drug Administration, each 
vial of the BCG vaccine contains 1 to 8 ×108 c.f.u, which is approximately 50 mg (wet weight). A previous study 
on BCG doses7 suggests that the weekly dose ranges from 40 to 120 mg. Standard doses are typically 80 or 120 
mg, which have shown better efficacy than lower doses (one-third to two-thirds of the standard dose). The treat-
ment duration varies from 6 to 12 weeks. The scaling of the cell population is 1× 106 cells for the dimensionless 
cell population values.

Table 1.   List of all parameters in the BCG treatment model27,28.

Parameter Description Units Source value Dimensionless estimate Source

µ1 The rate of BCG decay day−1 0.1 1 29

µ2 The rate of effector cells decay day−1 0.041 0.41 30,31

p1 The rate of BCG killed by APC cell−1day−1 1.25× 10
−7 1.25 32,33

p2 Infection rate of tumor cells by BCG cell−1day−1 0.285× 10
−7 0.285 34,35

p3 Destruction rate by effector cells cell−1day−1 1.1× 10
−7 1.1 30,31

p4 Immune response activation rate cell−1day−1 0.12× 10
−7 0.12 Not found

p5 Effector cells deactivation rate cell−1day−1
0.345× 10

−9 0.003 30,31

α Infected tumor stimulation rate day−1 0.052 0.52 32

β Inverse of tumor carrying capacity cell−1
1.1× 10

−8 0.011 36

r Tumor growth rate day−1 0.0032 0.032 37

Figure 1.   BCG treatment model for bladder cancer. BCG is instilled into tumor sites to bring uninfected tumor 
cells Tu to infected tumor cells Ti that will be eliminated by effector T cells E. Figure is adapted from27 and is 
created with BioRender.com.
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Reparameterized multiobjective control
Denote the sampling time as �t and a unit dose of BCG as d (unit: 1 ×106 c.f.u). The time interval (or gap) 
between two consecutive doses is g (unit: days). The total number of treatments for the dosing scheme is N. 
Then the cumulative drug doses can be formulated as d · N . The cumulative uninfected tumor cell population 
is 
∑kt

k=0 Tu(k) ·�t , which is in the form of the area of the uninfected tumor cell population across time. The 
control objective is to design an optimal BCG dosing scheme to eliminate tumor cells when considering BCG 
cost. Thus, the objective function to be minimized comprises the cumulative population of uninfected tumor 
cells and cumulative BCG vaccines whose diagram is visualized in Fig. 2(a).

The terminal constraint on Tu(kt) is set to tumor-free condition Tu = 0 at the end of the treatment (i.e., 
k = kt ), which is fixed as the maximal treatment period, i.e., kt = max(g) ·max(N) = 100 . This constraint 
is relaxed with penalty weight wt . Besides, as the number of treatments has to be a positive integer within the 
boundary, a hard constraint N ∈ Z

+ is applied. To enhance the constraint’s flexibility, we introduce relaxation 
through penalty terms in the objective function, controlled by penalty parameters. Specifically, we add the 
residual N − round(N) as a penalty term weighted by wN in the cost function. Furthermore, in the cost function, 
we normalize Tu in both the stage cost and terminal cost using the maximal Tu within the 100-day time horizon 
in the absence of BCG vaccines (i.e., u = 0).

The objective function is shown as follows

where s(k) is a step function of time index k which is used to shape the input signals, as BCG vaccines are given 
to patients impulsively. The nonlinear model process f (x(k), u(k)) is the function of state vector x(k) (which 
contains Tu(k) ) and input u(k). The penalty weight, denoted as � , is employed to fine-tune the relative significance 
of two factors: cumulative tumor cells and drug concentration. A higher value of � signifies a greater emphasis 
on administering fewer BCG vaccines, thereby permitting more cancerous cells to persist in patients throughout 
the treatment process. On the other hand, a lower value of � prompts the controller to prioritize tumor elimina-
tion, even if it requires a relatively larger quantity of BCG vaccines to achieve this objective. As proposed by28, 
the dosage constraint applies to a single treatment. The parameter g is derived from the current weekly dosing 
scheme of BCG treatment, as outlined by the FDA. To provide a more flexible timeframe, the range of g has been 
slightly expanded from 5 to 10 days. Moreover, based on FDA guidelines, a weekly treatment scheme typically 
comprises a total of six treatments, spanning over 42 days. To accommodate this expanded range, we define the 
period as ranging from min(g) ·min(N) to max(g) ·max(N).

(3)

min{d,N ,g}

(

kt
∑

k=0

Tu(k) ·�t

)

· w1 + � · d · N + wN |N − round(N)| + wt · Tu(kt)

subject to: x(k + 1) = f (x(k), u(k))

u(k) =
N−1
∑

n=0
d · [s(k − ng/�t)− s(k − ng/�t − 1)]

2.2 ≤ d ≤ 6.4
5 ≤ g ≤ 10
3 ≤ N ≤ 10
Tu(kt) = Tkt

Figure 2.   (a) Diagram of the objective function in RMC. The multiobjective control designs the drug dosing 
scheme that minimizes the cumulative uninfected tumor cell population and the cumulative drug dosages. d 
is the dosage of a single treatment, and g is the gap between two consecutive treatments. x(g) is the state vector 
that contains uninfected tumor cell population Tu(g) at time g. (b) The flowchart of PSO algorithm (adapted 
from41). pbest and gbest are the individual and global optimum values of the particles.
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The optimal parameter set that minimizes the objective function is to be searched by optimization algorithms. 
We first employ Particle Swarm Optimization (PSO)42. PSO iteratively updates the position Pi(k) ∈ R

3 and veloc-
ity Vi(k) ∈ R

3 of each particle i using the following update equations:

where the inertia weight constant w ∈ [0, 1] retains a portion of the particle’s previous search direction and 
speed. The constants c1 and c2 assign weights to the impact of individual particles and all particles, respectively. 
The random numbers r1 and r2 are sampled from a standard uniform distribution U[0, 1] and help prevent 
premature convergence. pibest is the best position of particle i, and gbest is the best position of all particles. The 
term (pibest − Pi(k)) guides the particle back to its best position encountered so far, while (gbest − Pi(k)) brings 
the particle back towards the overall best position found among all particles. The flowchart of PSO is visualized 
in Fig. 2(b)41.

In addition, we employ two other metaheuristic optimization techniques (Ant Colony Optimization (ACO)43 
and Simulated Annealing44) to compare their cost-associated optimal solutions to PSO using the same initial 
point and evaluate changes in the minimum cost function value and optimal dosing schemes. Simulated 
annealing probabilistically explores solution spaces by making random moves, guided by a probability parameter 
P44. Denote �c as the difference in cost between the new and old solutions. If a move reduces cost ( �c < 0 ), it’s 
accepted with certainty ( P = 1 ), while if it increases cost ( �c > 0 ), it’s accepted with a decreasing probability 
( P = e−

�c
T  ). The temperature T decreases geometrically over time ( T(t + 1) = T(t) · Cr ). In ACO algorithm, 

Ant k selects an edge connecting vertices x and y using probability pkxy defined as 
(ραxy)(η

β
xy)

∑

z∈allowedy
(ραxy)(η

β
xy)

 . Here, ρxy 

represents pheromone on edge xy, and ηxy indicates move attractiveness, with α and β controlling their influence. 
Pheromone is updated as ρxy ← (1− ǫ)ρxy +

∑m
k �ρk

xy , where ǫ is pheromone evaporation rate, m is the total 
ants, and �ρk

xy is pheromone deposited by ant k, equal to Q/Lk if it traverses edge xy.

Koopman model predictive control
We employ the Koopman MPC method23 on the BCG treatment model, incorporating impulsive control 
inputs. This approach, previously implemented in our study45, is utilized to design an optimal dosing scheme 
and serves as a basis of comparison against RMC. To capture the model’s nonlinear behaviors, we employ 
Koopman linearization46. This method utilizes a finite subset of the infinite-dimensional Koopman operator ( κ ), 
mapping observable variables into a higher-dimensional space with new basis functions. This enables a linear 
transformation among observables46,47.

The extended state Zk ∈ R
N  is formed by combining observables and control inputs. Its dimension-

ality is given by N = ny(nd + 2)+ (nd + 1)nu
23, where nd is the number of delay units, ny (set as 1) is the 

number of outputs, and nu is the number of inputs. With time series data spanning yk to yk+nt for out-
puts and uk to uk+nt−1 for inputs over a total simulation time nt , the extended state at time step k is 
expressed as Zk = [yk+nt−1, . . . , yk , uk+nt−2, . . . , uk]

T  . The one-step-ahead extended state is denoted as 
Zk+1 = [yk+nt , . . . , yk+1, uk+nt−1, . . . , uk+1]

T . The dynamics of Z(k) are described by the Koopman operator κ : 
(κφ)(Zk) = φ(f (Zk)) . Here, the function f : RN → R

N captures the dynamic behaviors of Zk , and φ : RN → K 
maps the lifted function space to Koopman space. In the infinite-dimensional space, the Koopman operator has a 
spectrum κφ =

∑∞
i=1 �imiei , where �i represents Koopman eigenvalues, mi ∈ K are weights, and ei are Koopman 

eigenfunctions48. We use Extended Dynamic Mode Decomposition48 to approximate the Koopman operator. 
This involves lifting system observables over Radial Basis Functions (RBFs) to enhance accuracy. Specifically, 
thin plate splines RBFs B(Zk ,C) ∈ R

Nrbf  are used as suggested in48 due to the irregular nature of the Koopman 
spectral analysis, where Nrbf  represents the number of RBFs. The lifted state Zlift(k) ∈ R

(N+Nrbf ) is obtained by 
stacking Zk and B(Zk ,C) as follows: Zlift(k) = [Zk ,B(Zk ,C)]

T . The linear evolution from Zlift(k) to Zlift(k + 1) 
with input U(k) is obtained, given by Zlift(k + 1) = AliftZlift(k)+ BliftU(k) , where Alift is the state transition 
matrix ( Alift ∈ R

(N+Nrbf )×(N+Nrbf ) ) and Blift is the input matrix ( Blift ∈ R
(N+Nrbf )×nu ). The Frobenius norm of the 

difference between the observables and the states generated by the finite-dimensional Koopman-linearized model 
is minimized using the least-squares solution, i.e., � (κφ)(Zlift(k))− [Alift ,Blift ][Zlift(k),U(k)]T �F , where � · �F 
denotes the Frobenius norm. Furthermore, a projection from the Koopman space to the original space is desired. 
This is accomplished by using Clift ∈ R

(N+Nrbf ) to predict X̂(k) in the function space of X(k) from the function 
space of Zlift(k) , where X̂(k) = CliftZlift(k) . The matrix Clift is obtained by minimizing � X(k)− CliftZlift(k) �F . 
By stacking Zlift(k) and U(k), the least-squares solution is obtained as shown in Eq. (6).

where † is pseudo-inverse operatoration. Time series data comprising observables and inputs are obtained by 
simulating the model using random initial states and input sequences that satisfy the specified constraints. The 
process of Koopman linearization is summarized in Fig. 3a. Next, we adopt the MPC algorithm17 for the design. 

(4)Pi(k + 1) =Pi(k)+ Vi(k + 1)

(5)Vi(k + 1) =wVi(k)+ c1r1(p
i
best − Pi(k))+ c2r2(gbest − Pi(k))

(6)
[

Alift Blift
Clift 0

]

=

[

Zlift(k + 1)
X(k)

] [

Zlift(k)
U(k)

]†
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We use notations Ac = Alift , Bc = Blift , and Cc = Clift from Eq. (6) and denote the initial condition X(k) = Xk . 
The optimization problem in MPC at time k can be formulated as follows

where yr(k + j) ∈ R is the set point on reference trajectory yr(k + j) = Tu(0)e
−(k+i)·�t that decays exponentially 

from its initial value to the terminal value Xkt after 6 weeks. We only use the terminal constraint on Tu . The 
control input sequence at time k, denoted as u(k) := {u(k + j)}

Hp−1
j=0  , represents control actions over a prediction 

horizon. Control inputs beyond the control horizon ( Hu ≤ j ≤ Hp − 1 ) are set to zero. A single treatment’s 
minimum and maximum dosage limits are denoted as umin and umax , respectively. The initial condition is X0 . 
Weights Q ∈ R

4×4 and R ∈ R determine the penalties for state deviation and control effort. Q and R are positive 
semidefinite ( Q,R � 0 ). Hp is the prediction horizon and Hu is the control horizon. The l2 norm ( � · � ) measures 
state deviation and control effort. The diagonal weight matrix P ∈ R

4×4 represents the terminal cost weighting 
and is positive semidefinite ( P � 0 ). P is obtained from a discrete-time algebraic Riccati equation 
P = AT

c PA− (AT
c PBc)(B

T
c PBc + R)−1(BTc PAc)+ Q  .  L e t  X(k) = [x(k + 1), x(k + 2), . . . , x(k +Hp)]

T  , 

U(k) = [u(k), u(k + 1), . . . , u(k +Hu − 1), 0, . . . , 0]T , and W = [Ac ,A
2
c , . . . ,A

k+Hp
c ]T . The state x(k + i) can 

be expressed as x(k + i) = Ai
cx(k)+ GiU(k) , where i denotes the time index, and Gi represents the i-th row of 

G =









Bc 0 . . . 0
AcBc Bc . . . 0
. . . . . . . . . . . .

A
Hp−1
c Bc A

Hp−2
c Bc . . . Bc









.

Due to the impulsive inputs, only the first element in the control sequence U(k) is nonzero, resulting in all 
zero values from the second column onwards in G. Consequently, the cost function can be represented as:

where H = GTQG + R , F = GTQW , and V = WTQW + Q . The optimal input sequence U(k)∗ is obtained by 
solving the optimization problem in (9) as follows

(7)

min
u(k)

Hp−1
∑

i=0

� X(k + i)−Xr(k + i) �2Q +

Hu−1
∑

j=0

� u(k + j) �2R + � X(k +Hp) �
2
P

s.t.Zlift(k + 1) = AcZlift(k)+ Bcu(k)

X(k + i) = CcZlift(k + i)

umin ≤ u(k) ≤ umax

X(k) = X0

X(kt) = Xkt

i = 0, . . . ,Hp − 1

j = 0, . . . ,Hu − 1

(8)J(k) = U(k)THU(k)+ 2x(k)TFTU(k)+ x(k)TVxk

Figure 3.   The design of optimal drug dosing scheme using Koopman MPC. (a) Koopman linearization process. 
The Koopman operator utilizes spectral methods to transform the nonlinear model into a linear one. This 
process involves using time series data generated from the nonlinear model. (b) Linear MPC algorithm based 
on the linearized model. Constrained optimization is performed to obtain the optimal control sequence, which 
corresponds to the dosing scheme. This optimized sequence will then be implemented on the original nonlinear 
system. Figure adapted from our previous study45.
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where bcs = [Xmax ,−Xmin]
T , Bcs = [−Ai ,Ai]T , and Acs = [Gi ,−Gi]

T . The inequalities in (9) represent the con-
straints and are handled using the active set method and Karush-Kuhn-Tucker conditions. The diagram of 
applying linear MPC is shown in Fig. 3(b).

Uncertainty analysis and sensitivity analysis
We employ uncertainty analysis and sensitivity analysis to elucidate the varying patient responses to therapy, 
shedding light on how parameter perturbations can reveal the impact of inherent variability in individuals 
undergoing cancer treatments.

Uncertainty analysis of the model is conducted to assess the robustness when faced with parameter uncer-
tainty arising from limited data and patient variability. For model parameter uncertainty analysis, the model 
can be denoted as Y = fu(P1, P2, . . . ,Pn) , relates the model output (Y) to a set of model parameters ( Pi ), where 
n represents the number of parameters, and fu represents the function relating input parameters to the output. 
It is assumed that the model parameters follow normal distributions, expressed as Pi ∼ N (µi , σ

2
i ) , where µi 

signifies the nominal value of Pi , and a standard deviation of σi = 0.1µi is employed. For analysis of uncertain 
initial conditions, the potential inaccuracies in the initial values of the four states are caused by noisy meas-
urements in imaging methods. For instance, immunohistochemistry has been reported to achieve up to 90% 
accuracy49. Thus, we assume a uniform distribution for the measured noisy initial conditions to address this. 
Specifically, if the measured initial state is denoted as X(0), the true initial conditions are assumed to follow a 
uniform distribution U[X(0)1.1 , X(0)0.9 ].

Variance-based sensitivity analysis is performed to assess parameter influence on the settling time of the con-
trolled system using Sobol indices50. A model Ys = fs(P, x0) has n changing parameters P = {par1, par2, . . . , parn} . 
The model output is decomposed into fsi (pari) , fsij (pari , parj) , and so on, with corresponding variances Vi , Vij , 
and higher-order terms. First-order indices Si and total-order indices STi are calculated to evaluate parameter 
contributions, using Python package SAlib51,52.

Results
RMC and Koopman MPC were used to design the optimal dosing schemes for BCG treatment. The initial state 
[0.1, 0.1, 0, 0.8] was used for testing for both designs, indicating an early-stage bladder cancer with few effector 
T cells (i.e., E(0) = 0.1× 106 ) and no infected tumor cells to begin with. The weights w1 = 200 , � = 1 , wN = 104 
and wt = 105 were used in the cost function in Eq. (3). Also, the values of B(0), E(0), and Ti(0) were relatively 
low compared to Tu(0) to emphasize the decrease in Tu . Once determined, the drug doses and the gap between 
treatments remained unchanged during the simulation. The three optimizers started with the same initial condi-
tion [d0, g0,N0] = [2.2, 10, 3] , i.e., the lowest dose, the largest gap, and the least number of treatments, indicating 
the dosing scheme was initiated at the least amount of doses that might not be sufficient to eliminate cancerous 
cells. In PSO, we used w = c1 = c2 = 0.5 and the swarm size of 100 particles and obtained the best solution 
[d, g ,N] = [5.46, 5, 10] with a cost of 87.9 in one iteration. In Simulated Annealing, we set Cr = 0.95 and initial 
temperature 1, and the best solution obtained was [d, g ,N] = [6.4, 5, 10] with a cost of 91.2, as shown in Fig. 4(a). 
In ACO, we used heuristics G, 1/D, and 1/N for priori information. An optimal solution [d, g ,N] = [6.4, 5, 10] 
with cost 91.2 was obtained, as shown in Fig. 4(b). Notably, this solution aligns with the best outcome obtained 
through simulated annealing. The results from three optimization algorithms showed that PSO quickly converged 
to an optimal solution in a single iteration, while ACO and Simulated Annealing required more iterations. 

(9)
U(k)∗ = argmin

U(k)

U(k)THU(k)+ 2X(k)TFTU(k)

s.t. AcsU(k) ≤ bcs + BcsX(k)

Figure 4.   The best solutions and the minimal cost obtained by using (a) the Simulated Annealing method and 
(b) the Ant Colony Optimization. They obtain the same optimal solution [d, g ,N] = [6.4, 5, 10] with the lowest 
cost of 91.2. Both of the optimization techniques tend to obtain solutions with lower doses and more treatments 
for the settings used in this study.
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PSO outperformed the others with the lowest-cost solution. Note that tuning parameters in the algorithms can 
potentially improve performance further and reduce costs.

Additionally, the optimal combination of g and N touched the boundaries of the constraints. This validates 
our design, as d and N tended to increase and g tended to decrease to obtain a more aggressive control action 
to eliminate cancerous cells. To verify if the solution is a global optimum or a local optimum, we expanded the 
variable boundaries for d ([2.2, 6.4] to [0, 50]), g ([5, 10] to [1, 20]), and N ([3, 10] to [1, 20]), which improved 
the solution to [3.22, 1, 20] with a lower cost of 82.2 after 1 iteration (by using same setting in PSO), in contrast 
to the original boundaries ( [d, g ,N] = [5.46, 5, 10] with a cost of 87.9). This suggests that the initial solution was a 
local minimum. However, certain constraints remain crucial for clinical feasibility and FDA guideline adherence, 
especially regarding safety with BCG doses.

The analysis of uncertain model parameters entails 200 Monte Carlo runs using a 95% confidence level. The 
results for the uncertain model parameters and uncertain initial conditions using the dosing scheme by RMC 
are visually depicted in the shaded regions within Fig. 5(a) and (b), respectively. We used the time that Tu was 
brought to be below 1% of its initial value as a reference to assess the performance. For models with uncertain 
parameters, we observed an average time of 20.48 days with a standard deviation of 2.94 days. For models with 
uncertain initial conditions, the average time was 20.42 days with a standard deviation of 0.03 days. Figure 5(c) 
and d show the results of uncertain model parameters and uncertain initial conditions for KMPC, which has 
an average time of 18.15 days with a standard deviation of 3.94 days, and an average time of 17.70 days with a 
standard deviation of 1.79 days, respectively.

In sensitivity analysis, we considered parameters in Table 1, assuming uniform distributions spanning 0.8 to 
1.2 times their nominal values. The initial state x0 was treated as a unified entity and only different scales of the 
same x0 were considered, simplifying the analysis while examining its influence. The output Yu represents settling 
time. Figure 6 shows first-order and total-order Sobol indices from 1000 iterations. The parameter p4 has total 
and first-order Sobol indices of 0.0064 and 0.0046, in contrast to more impactful parameters like p2, with total 
and first-order Sobol indices of 0.65 and 0.45. This shows the output settling time is not sensitive to the selection 
of numerical values of p4, as claimed earlier in the model section.

For Koopman MPC, the linear Koopman operator was approximated using the spectral method with 100 
trajectories of time series data (generated from the nominal model with random initial conditions and inputs). 
Ten RBFs were tested with good performance and their centers were obtained by the K-means algorithm. The 

Figure 5.   Uncertainty analysis with (a,b) RMC-derived inputs and (c,d) KMPC-derived inputs. The time that 
Tu is brought to be below 1% of its initial value is used as the measurement. (a) Parameter uncertainty analysis 
shows an average time of 20.48 days with a standard deviation of 2.94 days. (b) Initial condition uncertainty 
analysis shows an average time of 20.42 days with a standard deviation of 0.03 days. (c) With inputs from 
KMPC, parameter uncertainty analysis shows an average time of 18.15 days with a standard deviation of 3.94 
days. (d) With inputs from KMPC, initial condition uncertainty analysis shows an average time of 17.70 days 
with a standard deviation of 1.79 days. The shadow area represents the 95% confidence interval. The bar plots 
show the statistics of the time t for Tu(t) < 0.01Tu(0).
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sampling time of 0.01 days was used, and the simulation length was 100 days. The delay of 1 was used for one-
step time delay embedding. The control interval was set to 5 days, which is the same as the treatment interval 
in RMC for comparison. The accuracy of linearization was evaluated by comparing the model output (i.e., Tu ) 
as shown in Fig. 7(a). The output of the Koopman-based linear model (in red) is closer to the model dynamic 
behavior (in yellow) for most of the time during the simulation, compared to local linearization using the trun-
cated Taylor expansion, even though it had more deviation from the true dynamic behaviors at the beginning, 
indicating its good approximation performance over time. Linear MPC was applied to the Koopman-linearized 
model to optimize BCG dosing. The simulation involved the administration of BCG vaccines every 5 days, and 
a prediction horizon of 5 days was used to balance control performance and computational complexity. The 
control horizon was set to one sampling time. Weighting matrices Q = diag(0, 0, 0, 1000) and R = 0.1 were used 
to focus more on state errors.

Both dosing schemes effectively eliminated the uninfected tumor cells but differed in their treatment plans. 
Figure 7(b) compares the dosing schemes designed by RMC and Koopman MPC. For patients with identical 
initial conditions, RMC’s dosing scheme administered smaller doses during the initial phase of treatment, 
followed by larger doses in the later phase, in contrast to Koopman MPC’s approach. The aggressive control 
action in KMPC led to rapid elimination of cancerous cells, resulting in treatment completion in approximately 
30 days. However, this approach may simultaneously induce more severe side effects, making it more suitable for 
patients who exhibit resistance or tolerance to high drug doses. On the other hand, the more gentle treatment 
plan illustrated in RMC resulted in a gradual reduction of tumor cells and a longer treatment duration.

Conclusion and discussion
In this study, we introduced RMC as a novel control strategy for designing optimal drug dosing schemes in the 
context of a BCG treatment model for bladder cancer, and compared its performance to the existing Koopman 
MPC approach. Both strategies effectively eliminated uninfected tumor cells but differed in their underlying 
principles. RMC optimized the impulsive BCG dosing scheme by balancing cumulative doses and cancerous 
cell populations. Using PSO, we found the optimal solution for the variables that defined the dosing scheme. We 
compare the modeling results of using RMC with data from clinical trials on the BCG efficacy in53 and the side 

Figure 6.   Sobol sensitivity analysis on model parameters. The first-order and the total-order Sobol indices are 
visualized, and the higher-order indices are ignored. The output settling time is sensitive to the changes in the 
parameters p2 and µ1.

Figure 7.   (a) The Koopman operator demonstrates effective linearization performance. Compared to the linear 
approximation (in yellow curve), Koopman linearization (in red curve) closely aligns the dynamics of the model 
observable with the output from the nonlinear model (in blue curve). (b) The comparison of the dosing schemes 
by RMC and Koopman MPC. RMC employs a gentle dosing scheme, resulting in a longer treatment duration. 
In contrast, Koopman MPC implements an aggressive control action with high doses administered for over half 
of the treatment period, leading to faster elimination of tumor cells.
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effects in54 from 1316 patients. These studies primarily employed the OncoTICE strain, characterized by contain-
ing 5 ×108 colony-forming units (c.f.u) per standard dose. Given that approximately 99% of the BCG departs from 
the bladder within 2 hours post-instillation28, a dose of 5.6 ×106 c.f.u of BCG, intended to be sustained within 
the bladder. The best dosing scheme in our study is [D,G,N] = [5.46, 5, 10] . Then the dose from our solution is 
roughly equivalent to 0.975 standard doses, and the 5-day gap in our proposed dosing scheme signifies a more 
intensive instillation schedule compared to the typical weekly BCG instillations. In total 10 treatments result in 
a cumulative treatment duration of 50 days, which is close to the standard course consisting of 6 weekly treat-
ments. Note that the maintenance treatments are not considered here. Both studies concluded that low-dose 
treatment (i.e., 1/3 of the standard dose) was associated with a higher recurrence rate compared to the standard 
dose. Nevertheless, no significant differences in observed toxicity were reported across the varying dosage levels. 
Given that our dosing scheme approximates the standard doses, it can be inferred that the recurrence rate is 
likely to remain low. It’s worth noting that even a slightly shorter gap between instillations (from 7 to 5 days) 
could potentially yield different side effects. Consequently, evaluating potential side effects necessitates more 
extensive clinical trials for conclusive insights. Additionally, constraint relaxation is used to transform the hard 
constraints into soft constraints in the cost function. Exploring solutions that adhere to the hard constraints can 
also be achieved through mixed-integer optimization. For example, we can examine optimal solutions for d and 
g while setting N to values such as N = {5, 6, 7, 8, 9, 10} to satisfy N ∈ Z

+.
Koopman MPC leveraged the linearized model based on the Koopman operator, which closely resembles the 

original nonlinear dynamics of the uninfected tumor cell population. This was in contrast to the Taylor approxi-
mation, which required operating points and might not always be available. The control performance exhibited 
a desired decrease in the uninfected tumor cell population with the impulsive drug dosing regimen employed 
by both controllers. The optimality of these strategies effectively balanced the therapeutic performance of the 
treatment with the physical constraints of the patients. Considering that most disease and treatment models in 
the real world are nonlinear and many drugs are administered impulsively, the Koopman-based impulsive MPC 
framework holds promise for application in various disease treatments due to its linearity and impulsivity. The 
Koopman linearized model offers improved accuracy compared to the linear approximation, as it does not rely 
on specific operating points for its formulation.

The two dosing schemes have relatively gentle and aggressive doses, as shown in the above. The main reason 
for RMC to provide gentle control inputs is that we kept the dose d constant throughout the entire time horizon. 
Conversely, KMPC exhibited more aggressive dosing due to the absence of a penalty on the �u = u(t + 1)− u(t) 
term, which restricts input increments in the cost function. To encourage a gentler dosing strategy akin to RMC, 
we can introduce the term ||�u||22 weighted by wu , where || · ||2 denotes the L2 norm. Besides, one notable advan-
tage of RMC over Koopman MPC is its ability to handle nonlinear models without the need for linearization 
techniques directly. This feature facilitates the generalization of RMC to other treatment models with impulsive 
drug doses and constraints. For practical consideration, RMC is cost-effective for healthcare settings with limited 
patient data, as it operates in an open-loop manner without requiring extensive patient measurements. In con-
trast, KMPC, which relies on patient feedback and measurement updates to maintain model accuracy, is more 
expensive but excels in adapting to significant changes in a patient’s condition. Note that KMPC is adapted to 
large changes in patient condition, as the uncertainty analysis already showed its robustness to small changes 
in model parameters. The choice between RMC and KMPC depends on the specific resource and adaptability 
requirements of the healthcare context. Additionally, in this study, the magnitude and gap of doses remained 
unchanged throughout the entire treatment. However, there is potential for further improvement by allowing 
these values to vary, potentially leading to lower values of the objective function. This flexibility would enable 
customization of the dosing scheme for each treatment, considering the specific needs of patients.

The integration of abundant molecular data from cancer patients offers great promise for advancing preci-
sion medicine. One potential approach involves identifying parameters influenced by gene expression variations 
related to cancer and treatment, then quantifying these relationships. For instance, genes like BCL2 and BAX, 
known apoptosis regulators55, may impact the cancer cell growth rate r. Similarly, the gene CD4 could contribute 
to the activation rate of the immune response p4 due to BCG treatment-induced effects on effector T cells CD4+
56. Recent research analyzing genomic profiles in bladder cancer patients receiving BCG treatment has identified 
differentially expressed genes and signaling pathways57, potentially establishing quantitative links between gene 
expressions and model parameters. These connections could be clarified by linking parameter functions with 
relevant signaling pathways.

Overall, the reparameterization of the control process effectively addresses the nonlinearity of the model and 
enables the inclusion of multiple control objectives, including constrained optimization. The proposed control 
scheme has the potential for generalization to similar control problems with minimal modifications, streamlining 
the control design process and enhancing scalability.

Data availability
The code and data that support the findings of this study are available from the corresponding author, Yue, R, 
upon reasonable request.
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