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Pulse‑controlled qubit 
in semiconductor double quantum 
dots
Aleksander Lasek 1,2,3*, Hugo V. Lepage 1,3, Kexin Zhang 1, Thierry Ferrus 2 & 
Crispin H. W. Barnes 1

We present a numerically‑optimized multipulse framework for the quantum control of a single‑
electron double quantum dot qubit. Our framework defines a set of pulse sequences, necessary for 
the manipulation of the ideal qubit basis, that avoids errors associated with excitations outside the 
computational subspace. A novel control scheme manipulates the qubit adiabatically, while also 
retaining high speed and ability to perform a general single‑qubit rotation. This basis generates 
spatially localized logical qubit states, making readout straightforward. We consider experimentally 
realistic semiconductor qubits with finite pulse rise and fall times and determine the fastest pulse 
sequence yielding the highest fidelity. We show that our protocol leads to improved control of a qubit. 
We present simulations of a double quantum dot in a semiconductor device to visualize and verify our 
protocol. These results can be generalized to other physical systems since they depend only on pulse 
rise and fall times and the energy gap between the two lowest eigenstates.

Accurate qubit control must maximize the probability that a qubit will remain in its computational basis. In 
this work, we develop a numerically-optimized method for general control of a single qubit, accounting for 
finite control pulse rise time and potential imperfections. We demonstrate that in a double quantum dot (DQD) 
structure with two gates, where the pulses and the DQD potential are imperfect, a reliable qubit can still be 
defined and operated with high fidelity, using experimentally realistic parameters. We achieve fast operations 
that are independent of the initial state, and do not induce excitations beyond the computational basis. While 
our framework is generic, we demonstrate its usefulness on semiconductor DQD qubits, owing to their use-
fulness and ubiquity. Semiconductor devices are attractive candidates for qubit hardware owing to their high 
compatibility with current industrial standards. They also benefit from decades in advances in processing and 
device integration that render processing costs  low1. Progress in fabrication and measurement techniques have 
led to extended coherence times and more precise and faster electronics, both for qubit control and readout, 
paving the way to  scalability2–6. Within previous suggested architectures, DQDs offer a straightforward way of 
producing both charge and spin  qubits7,8. The qubit state can be read out by detecting the electron’s location on 
the left or right side of the DQD. This can be done with a charge  detector9 or even dispersive  readout10–13. These 
detection methods are both achievable experimentally with great accuracy and speed owing to the improvement 
of charge detection  sensitivity14.

We thus use experimentally realistic parameters based on a semiconductor architecture. However, the results 
can be easily generalized to any qubit with a similar Hamiltonian form—one that has a term proportional to σz , 
and a dynamically controllable term proportional to either σx or σy.

In this paper, we first model a effective potential for a generic DQD system to define the qubit basis states as 
bonding and anti-bonding states, in “Single-electron DQD qubit definition”. In “Single qubit control”, we show 
how to initialize a single electron into one of the logical qubit basis states and how to perform a set of mutually 
orthogonal rotations on the Bloch sphere, thus an arbitrary rotation, using shaped pulses that correct for pulse 
rise time. We develop a pulsing scheme that is capable of generating time-optimized general unitary rotations 
despite imperfections, using only the voltage across the gate. We discuss rise time (“Correcting for rise time”) 
and fidelity (“Fidelity as a function of initial state”). We finally consider noise (“Noise”), and discuss our results 
(“Discussion”).
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Results
Single‑electron DQD qubit definition
It is generally assumed either for simplicity or ease of experimental manipulations that the logic basis-state wave 
functions of a DQD, |0� and |1� , are fully localised in the left or right side of the  DQD2,15,16. This assumption is 
convenient for “brute force” initialisation via applying a high bias voltage. The readout is also simple, realised 
by measuring the probability of the electron being in the left or right dot. However, in this case, quantum states 
necessarily contain contributions from higher energy eigenstates which give rise to additional composite oscil-
lations, typically on timescales faster than the qubit oscillation  itself17. They ultimately induce a loss of fidelity 
in gate operations. This issue is critical for practical implementations of quantum computation and schemes 
like bang-bang pulse sequences have been proposed in order to mitigate this  effect18. Such sequences involve 
additional gate operations that could be detrimental to the overall operation time. Consequently, optimizing 
the qubit basis states is a necessary preliminary requirement before any other attempts at extending coherence 
or improving the gate fidelity.

If a linear combination of the two lowest eigenstates of the DQD system is used instead of assuming a fully 
localized state, a true two-level system is formed. A qubit control framework that doesn’t involve energy states 
outside of the computational space would greatly improve the fidelity compared to the method above.

It is optimal to define the qubit states as equal combinations of the ground and first excited states at zero bias, 
because it produces well-localized qubits that can be measured while also preserving symmetry between the two 
logical states. This is demonstrated within the two-site localised state  model19 (see Supplementary Information 
S1). A zero-bias potential also makes the qubit first-order insensitive to electrical noise, improving  fidelity20. 
Moreover, as described in “Single qubit control”, having zero detuning as a default achieves a high fidelity R�x 
rotation without any pulsing. The coefficients of the energy eigenstates must be equal in order to have symmetry 
between the qubit states. Therefore, for a given DQD potential VDQD(x) , we define the logical states as:

where ψ(A)B(x) is the (anti)bonding state wave function.
While these states are not completely localized on a single dot, as their probability density is tailing to the 

other side of the dot (Fig. 1), they do maximize the average probability of successful  readout19. Further locali-
zation of the states would introduce higher-energy states that would consequently not obey the ideal two-site 
Hamiltonian we aim to model (Eq. 3). Since there is no reference to the underlying effective potential of the 
DQD in our definition, this qubit is well defined for potentials that are not symmetric and more generally, for 
any dot shape. Furthermore, we have previously shown that the second dimension would not affect the dynamics 
of such an  operation21. Even in a non-adiabatic collision, the significantly more confined transverse dimension 
makes the energy levels so different that no excitations are expected when only the first two energy levels in the 
lateral dimension are coupled by the electric field.

Single qubit control
In the energy eigenbasis, the Hamiltonian of the qubit system reads:

Here EB and EAB are the energies of the bonding and antibonding states, i.e. the two lowest energy states, at a 
linear detuning ǫ = 0 , � is the “hybridisation energy” between the two localised states, and σx/z are the Pauli 
x/z matrices.

(1)
|0� = ψB(x)+ ψAB(x)√

2
,

|1� = ψB(x)− ψAB(x)√
2

,

(2)Ĥ(t) = −1

2
ǫ(t) σx +

1

2
�σz +

1

2
(EB + EAB).

Figure 1.  Wave function of the two first excited states. The logical |0� and |1� qubits are formed using Eq. (1). 
The values of the DQD spacing and the electrostatic potential amplitude were chosen for illustrative purposes 
and the scheme presented here works for a wide range of configurations.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21369  | https://doi.org/10.1038/s41598-023-47405-0

www.nature.com/scientificreports/

Using the basis defined in Eq. (1), where |0� and |1� are on the poles of a Bloch sphere, the Hamiltonian in 
Eq. (2) is written as:

We have neglected the constant factor here. The time-dependent wave function can then be written in terms of 
the standard θ and φ , polar and azimuthal angles respectively, on the Bloch sphere:

With no bias voltage, ǫ = 0 , the wave function will undergo a constant rotation around the z-axis on the Bloch 
sphere. When applying a non-zero bias, the axis of rotation is shifted.

For the Hamiltonian in Eq. (3), a general rotation on the Bloch sphere by an angle α around a direction �n is 
given by the solution to the time-dependent Schrödinger equation (TDSE):

where T is the time-ordering operator.
Rotations are performed by sending a bias voltage pulse of amplitude Vbias = ǫ

e� and duration tp to the dou-
ble dot where ǫ and � are respectively the detuning and voltage amplitude proportionality constant for a given 
potential. An instantaneous switch between the Vbias = 0 and Vbias = ǫ

e� bias states is generally preferred as this 
simplifies the dynamics and avoids spurious qubit  rotations22. In this case, the detuning ǫ(t) is described as a set 
of step-functions and R�n(α) is expressed analytically as a rotation of the qubit state around the axis on the Bloch 
sphere which passes through the eigenstates of H(t ′) at a rate proportional to the difference in energy of these 
two eigenstates. Such a pulse requires a linear potential along the axis of the double dot, as in Eq. (2), which is 
achieved by applying voltages to a set of metallic surface gates. During a square-wave pulse of detuning ǫ , the 
system will evolve according to the Hamiltonian in Eq. (3), that will be constant during the on-time of the pulse, 
giving an unitary time evolution (rotation):

where �n = (�, 0, ǫ) is the axis of rotation, with rotation frequency given by its magnitude.
Implementing such a square pulse isn’t technically possible owing to practical limitations. Current and most 

commonly used pulse pattern generators have a built-in rise time τ of about 40ps to 500ps depending on the 
brand and characteristics. The Keysight 81134A Pulse Pattern Generator has a τ =60ps between 20% and 80% of 
target amplitude. The Agilent 81130A and the Anritsu MP1763C have τ = 500ps and ∼ 40ps respectively, both 
between 10% and 90% of target amplitude (Fig. 2a).

In this case, the step-function decomposition is not possible and, in general, Eq. (5) must be solved numeri-
cally. If the detuning can be described in terms of linear ramp functions, then Eq. (5) can be written analytically 
as a Landau-Zener-Stuckelberg  transition23–25 but the resulting expression becomes a function of parabolic 
cylinder functions which makes understanding the rotation R�n(α) more  complex26,27.

In order to investigate the consequences that follow from this technical limitation, we have solved Eq. (5) 
numerically for a pulse with finite τ using a GPU-accelerated version of the staggered-leapfrog  method21,28–31.

For such a pulse, the path of an individual qubit state on the Bloch sphere during the time evolution in Eq. (5) 
differs from the one induced by a square  pulse32 (Fig. 3). In order to implement a high-fidelity rotation on the 
Bloch sphere, an effective R�n(α) is found by accounting for the aforementioned equipment limitations, such that 
the path traced on the Bloch sphere is different, but the resulting rotation remains the same as one induced by a 
perfect square pulse. We find that this can always be done by tuning the pulse duration and amplitude, depending 
on τ and desired angle of rotation. The details of this correction are outlined in 2.3. One can question whether 
such an adjusted operation including transient rotations is a proper rotation, i.e. independent of the initial state. 
The answer is yes, because while the precise path on the Bloch sphere may be difficult to describe analytically, 
the instantaneous Hamiltonian is still always expressed in terms of σx and σz matrices, therefore the effective 
operation is composed of rotations and is itself an actual rotation. We show that our pulses have the desired 
effect on any input state (“Fidelity as a function of initial state”). Additionally, it is worth noting that having a 
finite τ can have a desirable effect on the qubit, as it make the pulsing operation more adiabatic compared to 
using square pulses.

General rotation scheme
To perform an arbitrary qubit rotation, we propose a scheme of concatenating square pulses of alternating 
amplitudes. We set the bias voltage to produce a detuning ǫ = ±� , which gives the axes of rotation during 
pulsing to be in directions ( 1√

2
, 0,± 1√

2
) on the Bloch sphere. We will call these axes �z′ ( 1√

2
, 0, 1√

2
) and �x′ 

( 1√
2
, 0,− 1√

2
) respectively, as they are both rotated by π4  around �y w.r.t. the usual �z, �x axis of the Bloch sphere. An 

arbitrary rotation can be performed by combining up to five rotations around any two perpendicular axes, simply 
by aligning �x′ with the desired axis of rotation �n , performing the rotation, and then reversing the first step. An 
arbitrary rotation by angle α can thus be performed around axis �n in the following way:

(3)Ĥeff(t) = −1

2
ǫ(t) σz +

1

2
�σx .

(4)ψ(x, t) = cos

(

θ(t)

2

)
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(
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)
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(7)
R�n(α) = R�x′

(π

2
− φ

)

R�z′(θ)R�x′(α)

· R�z′(−θ)R�x′
[

−
(π

2
− φ

)]

,

Figure 2.  (a) Amplitude profile of the ideal square pulse (solid blue line) to apply the linear bias given by Eq. 
(6). The pulse amplitude and duration are adjusted when the rise time τ is finite. Values of time (pulse duration, 
rise time) and voltage (pulse amplitude) are given for illustration purposes only. (b) Multiplicative amplitude 
adjustment factor ξ given a target rotation angle θ . Each coloured line corresponds to a different τ (see legend). 
(c) Additive pulse duration adjustment �T with respect to the original square pulse time (see panel (a)). The 
rise times are not included in the additional pulse duration. Each coloured line corresponds to a different τ (see 
legend of b).

Figure 3.  Example pulse sequences and associated qubit rotations. Top: rotation path on the Bloch sphere. 
Bottom: Optimized pulse sequence where Tx = 2π�

�
 . To remain general, values of time and voltage are quoted 

as fractions of Tx and �
e�

 respectively. Exact experimental values will vary from one setup to the other. See the 
discussion for more details. All pulse sequences lead to a final state with a fidelity of >99.99%. Furthermore, the 
same pulse sequence can be used for any initial state on the Bloch sphere (see “Fidelity as a function of initial 
state”) without significant loss in fidelity.
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where θ ,φ are the angles of R�y( π4 )�n on the Bloch sphere. The argument angles of the composite rotations cor-
respond to durations of the composite pulses, with 2π corresponding to Trot = 2π�√

�2+ǫ2
 , the period of a full 

rotation around �x′ or �z′ while bias voltage is on. Since the rotation around �x′ or �z′ is always in the positive direc-
tion, any negative angles have to be replaced by a positive complement of 2π.

Equation (7) is simple to implement, but not optimal in operation time—it is  known33 that three rotations 
are sufficient, which should result is a faster operation:

Here, �1 , �2 and �3 each depend on the angle and axis of the rotation.

State preparation
Before any quantum computation is performed, each qubit has to be initialized to a fiducial state, usually |0� or 
|1� . For a generic operation, we would expect the initial state of the electron to be the ground state of the DQD 
(see Fig. 1). Such a state is not part of the qubit’s logical basis and an initial rotation is needed. In order to rotate 
the wave function from the ground energy eigenstate to the qubit |0� state, we can take advantage of knowing the 
initial state to simplify the operation. A R�z′(π) rotation will initialise to the |0� state, while a R�x′(π) will do so to 
the |1� state. Both are achieved with a single pulse, thus simplifying the initial state preparation.

Single axis rotations
Any single-qubit operation can be expressed in terms of rotations around two perpendicular axes. Here we 
provide the control sequence for rotations around the usual �x, �y, �z Bloch sphere axes from an arbitrary point on 
the Bloch sphere.

The R�y rotation consists of only 3 pulses owing to angle cancellation in Eq. (7) (as φ = π
2):

To rotate in the opposite direction, one simply has to invert this pulse (swap �x′ and �z′ ) to get:

Rz and Rx rotations would require five pulses if done as per Eq. (7). Instead, we solve Eq. (8) for the angles to also 
perform them with just three pulses. Owing to symmetry, the first rotation is the same as the third one. Detailed 
derivation is presented in Sec. III of the Supplementary Information S1.

where

and

for R�x , and

for R�z . Additionally, we note that −R�z(α) = R�z(−α) , which allows us to shorten operation time for rotations 
with α ≥ π

2  by inverting the pulse profile to perform the complementary rotation instead.
We note that one of the effects of defining the qubit as in Eq. (1) is that R�x rotation will occur automatically 

due to the Hamiltonian, with the rotation period Tx = 2π�
�

 . In the many qubit case, all the qubits rotate at their 
respective frequencies, and one would usually work in the rotating basis, therefore an R�x rotation still needs to 
be performed as per Eq. (11).

Instead of using the usual �x, �y, �z basis, we can instead use the �x′, �y, �z′ basis which is more natural for the 
detuned system, and can be used to define logic gates with fewer pulses. A single R�y( π4 ) rotation is required to 
move into this basis. R�x′ ,R�z′ are then achieved with a single pulse, while R�y requires three, as in Eq. (9). This way, 
any computation can be performed in the rotated basis, where operations are quicker. At the end, one would 
need to rotate back to �x, �y, �z using a R�y(−π

4 ) rotation, for optimal readout of localised states.
Some logic gate examples are:

(8)R�n(α) = eiβR�x′(�1)R�z′(�2)R�x′(�3).

(9)R�y(α) = R�z′
(π

2

)

R�x′(α)R�z′
(

3π

2

)

.

(10)R�y(−α) = R�x′
(π

2

)

R�z′(α)R�x′
(

3π

2

)

.

(11)R�x/�z(α) = R�x′(�1)R�z′(�2)R�x′(�1),

(12)�1 = arccos





√
2 cos α

2
�

cos ( α2 )
2 + 1



,

(13)�2 = 2 arctan (sin�1)

(14)�2 = 2(π − arctan (sin�1))

(15)X = R�z′(π),

(16)Y = R�y(π),
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Correcting for rise time
To account for the actual experimentally realisable pulses not being square due to rise time and limited band-
width, the bias voltage and pulse duration have to be adjusted. This adjustment depends on the target rotation 
angle and τ , but not on the input state. Therefore, it is sufficient to optimize a single pulse for the instrument 
rise time and range of desired rotations—these single pulses can then be concatenated into three-pulse trains to 
achieve arbitrary qubit rotations of high fidelity. Here we numerically find the correct adjustments. This allows 
experimentalists to apply the ideal control sequence by simply changing the amplitude and duration of each 
square pulse in the train, avoiding complicated pulse shapes while retaining high fidelity.

We present the numerical results for required amplitude ξ and pulse duration �T adjustments, depending 
on τ and angle of rotation α , all expressed in terms of the physical system parameters. Here, ξ is a multiplicative 
factor adjusting the amplitude with respect to the square pulse amplitude ( ξ = 1 ), and �T is the additive time 
adjustment with respect to the square pulse duration as well, as per Fig. 2a—it is always greater than zero. We use 
generalised rise times expressed in terms of a fraction of generalised time Tx (period of a full rotation without 
any pulsing), as seen in the legend of Fig. 2. We have chosen these values to correspond to minimum possible 
rotation angles of π8 ,

π
6 ,

π
4 ,

π
3 ,

π
2  , from shortest to longest. These are the minimum possible rotations, because 

they are given by a pulse that consists only of rising/falling time, with no flat top, and is therefore the shortest 
pulse of desired amplitude that is possible. Of course, it is still be possible to rotate by an arbitrarily small angle 
indirectly by adding a 2π rotation. As can be seen in Fig. 2b,c the required time adjustment rises exponentially 
with desired rotation angle. Therefore, it is optimal to compose any pulse of the smallest possible rotations, as 
this will result in shorter overall rotation time. If the target rotation angle does not subdivide into an integer 
number of shortest possible rotations, one needs to use somewhat longer sub-pulses appropriately. Assuming 
a sine-shaped rise ramp, this short pulse is a sine wave, which is straightforward to generate experimentally. 
Single qubit control can be achieved by sending sine waves, with frequency as high as experimentally possible, 
and amplitude given by ξ in Fig. 2b. Note that the only system-specific quantity is the energy gap �—the signal 
frequency is independent of the qubit system and not resonant with the two-level system, and instead purely 
defined by experimental limitations of the equipment ( τ > 0 ). We present examples of rotations performed with 
this scheme in Fig. 3, which summarises our main results.

As the resulting fidelity varies significantly with even small deviations from the parameters found here, we 
find that trying to fit analytical expressions to the data is not very useful if high fidelity is required. While �T 
as a function of rotation angle θ seems to be an exponential, while ξ is a rotated S-curve, attempts to fit it results 
with unacceptably low fidelity for a large θ range. Therefore, we suggest the gradient ascent search procedure 
described here be performed for the system of interest, taking into account the specificity of the experimental 
setup. This could be done using numerical simulations like in this work, or directly by taking actual measure-
ments in an experiment. However, the latter might not be practical, as we find that thousands of fidelity evalua-
tions are necessary to find good enough adjustment parameter values. If significant measurement error is present, 
the required number of experimental runs necessary might not be possible to realise, further highlighting the 
need for numerical simulations. Pseudo-code of the gradient ascent procedure is provided in the Supplementary 
Information S1—it should enable anyone to find the optimal parameters in a general case, for rise time and 
angles that are required.

Fidelity as a function of initial state
The error in fidelity is found by computing the absolute value squared of the overlap between the target state and 
the iterated state. Although some variation in fidelity is dependent on the initial state of the electron, any errors 
are below 10−4 , and as low as 10−8 for some initial positions. This error could be reduced further if necessary 
by fine-tuning the adjustment parameters ξ ,�T . Figures 4, 5, and 6 show a fidelity map for the Rx , Ry and Rz 
rotations respectively, as a function of Bloch sphere angles θ ,φ . A rotation angle of π was chosen in each case, 
but the results are similar for all angles. Each plot corresponds to 500 simulations of the rotation starting from 
different initial states equally distributed over the Bloch sphere.

The use of full numerical simulations allows us to calculate the probability of a qubit leaving the computational 
subspace of the first two energy levels during the operation—termed ‘leakage’. We find that our scheme causes 
very low leakage. This is owing to two factors. Firstly, the proposed pulses do not have high frequency compo-
nents or sudden jumps in amplitude. Secondly, the pulse amplitude is on the order of energy level difference, 
which is intrinsic to the pulse scheme. Because this amplitude is too low to induce energy level transitions, it is 
not a concern with this method. More quantitatively, the proposed pulse scheme results in leakage on order of 
10−5 , defined as probability of finding the state outside the first two energy levels. We estimate that using strong 
square pulses that simply push the wave function to one side of the DQD would result in leakage of > 2% , while 
square pulses of similar amplitude to ours can result in leakage of up to 10−4.

(17)Z = R�x′(π),

(18)H = R�y(
π

2
)R �x′(π),

(19)Rφ = R�x′(φ).
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Noise
Noise is an important source of loss of fidelity in any qubit platform. If unaccounted for, the randomness of noise 
will lead to gradual loss of quantum information during a computation. While noise mitigation is not the goal 
of this work, we nonetheless investigate its impact here for completeness. In a quantum-dot-based qubit we base 
our simulations on, charge noise can be one of the main noise sources. It arises from fluctuations of charge states 
that lead to fluctuations of electric field a qubit  experiences34.

We examine the robustness of our control protocol using charge-like noise as an example. We use a simple 
model where the charge noise is low-frequency and can be assumed to be constant during a single quantum 

Figure 4.  Error in fidelity for an Rx(π) rotation as a projection (left) and on the surface of the Bloch Sphere 
(right).

Figure 5.  Error in fidelity for an Ry(π) rotation as a projection (left) and on the surface of the Bloch Sphere 
(right).

Figure 6.  Error in fidelity for an Rz(π) rotation as a projection (left) and on the surface of the Bloch Sphere 
(right).
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 operation35. In practice, this could result from some charge trapped temporarily on one side of the DQD, impart-
ing an electric field gradient, effectively adding an unwanted random bias voltage. Therefore, to calculate the 
resulting fidelity loss, we average the resulting fidelity from many simulations, each with a random amplitude. 
The effective Hamiltonian has an additional noise term:

where δnoise is the noise amplitude randomly drawn from a normal distribution with mean µ = 0 and standard 
deviation σnoise , which quantifies noise strength.

A large number (order of 100) of simulations are run with this randomised noise for some example opera-
tions, and the effects of this noise are compared between a square wave, and adjusted pulses accounting for rise 
time that are the result of this work. The random number generator seed is the same for both cases, so that they 
experience exactly the same noise and thus can be compared fairly. We find that the effects of noise on R�y and 
R�z rotations are not affected by our pulsing method. This is to be expected, as the pulse was not designed with 
noise in mind. At the very least, we confirm that our proposed pulse is not any worse than an idealised square 
wave, and further error mitigation techniques can be applied to it, as they would be to a square pulse, without it 
causing any loss of fidelity, while the problems associated with rise time are solved.

However, we find that there is a subset of cases where our pulse sequence does produce a reduction in 
noise-related errors. When performing an R�x rotation, it is possible to sub-divide the pulse into further smaller 
sub-pulses that add up to the total angle of rotation θ . This is only possible when the rise time constraint allows 
for such a division, as there will exist a minimum angle that you cannot subdivide further. For the R�z rotation 
however, this method doesn’t work well, as the angle �2 is always relatively large, even for small total rotation 
angle α . Therefore, attempting to subdivide a larger rotation would result in a very long total operation time, as 
the total angle that needs to be rotated is no longer (approximately) proportional to α . The case for R�y suffers 
from similar issues as R�z , therefore one cannot use this optimisation by subdivision to improve resilience against 
noise. The dependence of total rotated angle (which approximately corresponds to total operation time) on the 
required rotation angle α is different for R�y and R�z rotations, compared to R�x , therefore noise reduction occurs 
only in the latter.

An example of noise reduction owing to subdivision into smaller pulses for an R�x rotation is presented in 
Fig. 7.

This beneficial effect of subdividing the pulse can be understood by investigating the pulse sequence that 
achieves the rotation. As seen in Fig. 8, which shows a pulse shape of a noise-reducing sequence, the oscillating 
nature of the pulse takes it from being negative to positive frequently. This will average out the influence of noise 
to a significant degree, while keeping the total operation time close to the one for an ideal square wave.

Overall, we conclude that the control techniques presented here are at least as good in resisting noise as using 
a square wave, and can improve upon it under certain conditions. The optimised R�x rotation is able to mitigate 
charge noise up to almost threefold in the fidelity error (this gain increases with noise strength), given that rise 
time τ enables one to perform multiple smaller rotations that add up to a required total angle. Therefore, our 
waveforms are suitable to replace the square wave, and to have further noise-reducing methods applied upon 
them, while they offset any errors due to rise time. However, specific noise mitigation beyond what is achieved 
by our pulse is outside the scope of this work.

(20)Ĥnoise(t) = −1

2
[ǫ(t)+ δnoise] σx +

1

2
�σz ,
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Figure 7.  Up to 250% gain in fidelity is observed when performing an Rx rotation by θ = 3

2
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Discussion
When experimentally optimising qubit rotations, voltage pulses are usually considered as square while rise and 
fall times from instrument limitations and other filtering effects due to the finite bandwidth of coaxial cables are 
neglected. While the voltage is gradually rising to some intended amplitude, the qubit will undergo transient rota-
tions, and will not reach the expected position on the Bloch sphere. These errors accumulate over long operations, 
leading to poor fidelity. Moreover, applying very sharp pulses of high amplitude, with the intent of performing 
an Rz rotation, can lead to unwanted energy excitations due to non-adiabacity, causing further fidelity  loss23–25. 
The control scheme presented here overcomes both problems by explicitly adjusting the pulses for rise time, and 
by using relatively low pulse amplitudes, making the operations adiabatic. By using a specific amplitude giving 
us two perpendicular rotation axes, we achieve single-qubit control without the need for strong non-adiabatic 
pulses, or the requirement for perfectly square ones. The disadvantage of this scheme is operation time. As the 
pulse amplitude is tied to the energy gap between the first two eigenstates of the DQD, there is little control of 
the rotation speed, at least in the case of a semiconductor DQD system. However, careful engineering of the 
DQD allows for the operation time to be tailored or  optimized21. As long as the system energies can be tuned so 
that the operation time is much less than qubit coherence time, the benefits of increased operation fidelity will 
outweigh the cost of increased duration.

In this work, we simulate a semiconductor GaAs-based DQD using finite difference methods (Details in 
Supplementary Information S1). The parameters for our simulations were chosen to be experimentally realistic 
in terms of energy, time scales and pulse generation. We kept these values general since specific rise/fall times 
and inter-dot energies will depend on each experimental implementation. Most modern pulsed pattern genera-
tors have a τ in the range of a few tens or a few hundreds of ps. For example, the Keysight 81134A Pulse Pattern 
 Generator36 has a rise time of 60 ps between 20 and 80% of the target amplitude while the Anritsu  MP1900A37, 
which is the most modern version, has τ between 8.5 and 12 ps, depending on the options. Therefore, the τ val-
ues used in this work are easily reachable by off-the-shelf instruments, and can even be exceeded. Experimental 
work by Fujisawa et al.2,38 contain gate pulses with τ ∼ 100 ps, with total pulse time of 600 ps and Vbias = 40 µ

eV. More recent work achieves at least 40 ps pulse resolution with advanced  techniques39. Our work is relevant 
to materials where the spin-orbit interaction is sufficiently weak that on the decoherence time of the qubit, it 
is irrelevant. For example, in GaAs or Si quantum dots, the charge lifetime is orders of magnitude shorter than 
the spin  lifetime4,40–42.

The groups cited above as well as other semiconductor-based quantum dot research could practically eliminate 
errors due to rise time and pulse-induced excitations outside of the computational space by using our proposed 
pulse sequences.

While the semiconductor charge qubit system was used in simulations in this work, our results are easily 
generalizable to other types of qubits, as long as the Hamiltonian is of a similar form to Eq. (2). For example, the 
same scheme can be used to control a spin qubit by varying the magnetic field B instead of a voltage bias. In this 
particular case, it is easier to adjust the energy splitting � = 1

2γB by applying a strong reference magnetic field. 
Increasing � will result in faster operation. However, in the charge qubit case, it is achieved by lowering the DQD 
barrier. This will increase the overlap between eigenstates, decreasing localization and thus readout fidelity. No 
such issue arises for the spin qubit, overcoming the slower operation time of our framework. Our results can then 
be directly translated to the spin qubit case, by applying a magnetic field B′ in some perpendicular direction to B.

We have described quantum control of the optimal charge qubits for a double-quantum dot system. We 
presented pulse sequences for state preparation and arbitrary qubit rotations, and show how to account for the 
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experimental control suffering from finite rise/fall times. Owing to hybridization of the eigenstates in a double-
dot system, the spatial wave function of the two lowest energy eigenstates cannot be confined exclusively to the 
left and the right dot. The optimal qubit was found to be defined in terms of the two lowest energy eigenstates 
of a zero-bias system. This allowed us to reduce our model to a two-state system.

We show that it is possible to prepare the qubit in such a state when it is initially in the ground state of a 
DQD. Combining theory and numerical techniques yields an optimal pulse sequence that accomplishes arbitrary 
single-qubit rotation even with non-zero rise time τ . We demonstrate how our framework results in high fidelity 
despite τ > 0 , while avoiding unwanted excitation to higher energy states. Indeed, we show that square pulses 
are not only unnecessary, but also undesirable, as the sharp rise can induce unwanted oscillations, while being 
simple to account for. Since our proposed pulse sequence reduces to sine waves to minimize total pulse dura-
tion, it is straightforward to implement experimentally. As our numerical fitting parameters depend only on the 
energy splitting � , the results are easily scalable to any particular system. Our scheme is easily generalizable to 
other qubit systems with similar Hamiltonians, such as spin qubits.

Additionally, we study a model of charge noise, and find that our pulse scheme is at least as good as using 
square waves, and it some cases it even significantly reduces errors due to noise. This further justifies using our 
method as a direct replacement for square waves, as other noise mitigation and error correction techniques can 
be used on top of it.

Overall, applying our results will lead to increased operation fidelity in many systems, making them viable 
for practical quantum computing applications.

Our method of accounting for rise/fall times bears resemblance to the GRAPE (Gradient Ascent Pulse Engi-
neering)  algorithm43, however there are important differences. Our method specifically works to cancel the rise/
fall times of assumed profile (sinusoidal in this work, but the method can be used for any shape), resulting in a 
simple lookup of two parameters ξ and �T depending on required angle of rotation and τ itself. GRAPE instead 
is a more general “black box” technique that tries to optimise a pulse sequence by constructing it from slices of 
piecewise constant amplitudes, by tuning these amplitudes via gradient ascent methods. This research can also 
be used to optimize current geometric approaches to pulse  shaping44 by taking rise times into account explicitly. 
We find that the method used here is simpler to implement for experimentalists, outputs a waveform composed 
of sinusoids, which can be described analytically, and is, by design, not limited by the device rise/fall time.

Data availability
The data that support the findings of this study are available from the corresponding authors on reasonable 
request.
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