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Markers of inflammation predict 
survival in newly diagnosed 
cirrhosis: a prospective registry 
study
Thit Mynster Kronborg  1,7*, Henry Webel  2,7, Malene Barfod O’Connell  1, 
Karen Vagner Danielsen  1, Lise Hobolth  1, Søren Møller  3,4, Rasmus Tanderup Jensen  5,  
Flemming Bendtsen  1,4, Torben Hansen  5, Simon Rasmussen  2,6, Helene Bæk Juel  5 & 
Nina Kimer  1

The inflammatory activity in cirrhosis is often pronounced and related to episodes of decompensation. 
Systemic markers of inflammation may contain prognostic information, and we investigated 
their possible correlation with admissions and mortality among patients with newly diagnosed 
liver cirrhosis. We collected plasma samples from 149 patients with newly diagnosed (within the 
past 6 months) cirrhosis, and registered deaths and hospital admissions within 180 days. Ninety-
two inflammatory markers were quantified and correlated with clinical variables, mortality, and 
admissions. Prediction models were calculated by logistic regression. We compared the disease 
courses of our cohort with a validation cohort of 86 patients with cirrhosis. Twenty of 92 markers of 
inflammation correlated significantly with mortality within 180 days (q-values of 0.00–0.044), whereas 
we found no significant correlations with liver-related admissions. The logistic regression models 
yielded AUROCs of 0.73 to 0.79 for mortality and 0.61 to 0.73 for liver-related admissions, based 
on a variety of modalities (clinical variables, inflammatory markers, clinical scores, or combinations 
thereof). The models performed moderately well in the validation cohort and were better able to 
predict mortality than liver-related admissions. In conclusion, markers of inflammation can be used 
to predict 180-day mortality in patients with newly diagnosed cirrhosis. Prediction models for newly 
diagnosed cirrhotic patients need further validation before implementation in clinical practice.

Trial registration: NCT04422223 (and NCT03443934 for the validation cohort), and Scientific Ethics 
Committee No.: H-19024348.
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CRP	� C-reactive protein
CX3CL1	� Fractalkine, inflammatory marker
CXCL6	� C-X-C motif chemokine 6
ENRAGE	� Extracellular newly identified receptor for advanced glycation end products-binding protein
FGF19	� Fibroblast growth factor 19
HCC	� Hepatocellular carcinoma
HE	� Hepatic encephalopathy
HGF	� Hepatocyte growth factor
HNA2	� Human non-mercaptalbumin 2
HRS	� Hepatorenal syndrome
IL-6	� Interleukin 6
IL-10RB	� Interleukine 10 receptor subunit β
INR	� International normalised ratio
LIF	� Leukemia inhibitory factor
LoD	� Limit of detection
MCP1	� C–C motif chemokine 2
MCP3	� C–C motif chemokine 3
MELD	� Model for end-stage liver disease
MELD-Na	� Model for end-stage liver disease with sodium
MIP1b	� Macrophage inflammatory protein-1b
NAFLD	� Non-alcoholic fatty liver disease
NASH	� Non-alcoholic steatohepatitis
NPX	� Normalised protein eXpression
pp	� Prothrombin-proconvertin time
ROC	� Receiver operating curve
SBP	� Spontaneous bacterial peritonitis
SCF	� Stem cell factor (a kit ligand)
TGF	� Transforming growth factor
TNFSF14	� Tumour necrosis factor ligand superfamily member 14
TRANCE	� Tumour necrosis factor ligand superfamily member 11
TWEAK	� Tumour necrosis factor ligand superfamily member 12
UMAP	� Uniform manifold approximation and projection
uPA	� Urokinase plasminogen activator

Cirrhosis of the liver is a condition with high mortality, and its incidence and prevalence are increasing 
worldwide1–3. Patients with cirrhosis can develop decompensation and are prone to infections, which causes 
frequent hospitalisations that place a considerable burden on health care systems4. To counter these challenges, 
we need more knowledge of risk profiles for patients at risk of admission and mortality.

The mechanisms driving acute decompensation have attracted increasing interest5–8. Inflammatory activity 
seems to be a major determinant in the mechanisms underlying the progression of cirrhosis, decompensation and 
related complications7,9,10. In alcohol-related liver disease, in particular, inflammation and oxidative stress seem 
to be prerequisites for the fibrogenesis that leads to cirrhosis. When cirrhosis progresses from the compensated 
to the decompensated stages, and to acute-on-chronic-liver failure (ACLF), systemic inflammation and immuno-
deficiency worsen, which is associated with a high risk of short-term mortality11,12. Indeed, it has been suggested 
that several markers of inflammation and cytokines are involved in driving acute decompensation and might 
be used to predict the risk of early death10,13. However, it is unknown whether markers can predict liver-related 
hospitalisations and mortality in patients with cirrhosis. Prospective studies with follow-up investigations of the 
relationship between markers of inflammation and prognoses of newly diagnosed cirrhosis are lacking, and the 
studies that have taken place are often from tertiary referral hospitals and based on selected patient groups14,15.

The aims of the present study were to assess whether systemic levels of inflammatory markers can predict 
liver-related admissions and short-term survival in newly diagnosed cirrhosis. We hypothesised, that markers 
of inflammation might predict survival and liver-related hospital admissions.

Material and methods
Participants
We recruited participants from a prospective disease registry study approved by the Scientific Ethics Committee 
of the Capital Region of Denmark (Reg. No: H-19024348) and registered with Clinicaltrials.gov (NCT04422223). 
Patients were recruited from a single university hospital with a catchment area of approximately 550,000 inhabit-
ants in Copenhagen. All participants gave written informed consent for their participation, including informed 
consent to donate biological material for a research biobank. Thereby, the research was performed in accordance 
with all relevant regulations and in accordance with the Declaration of Helsinki.

Inclusion criteria were being older than 18 years; providing oral and written informed consent; and having a 
diagnosis of cirrhosis within the past 6 months based on unambiguous clinical, biochemical and imaging results, 
liver elastography, or histology verified by liver biopsy.

Exclusion criteria were a questionable diagnosis of liver cirrhosis or a diagnosis that was contradicted by 
histology; irreversible cognitive impairment; withdrawal of informed consent; or patients for whom the inves-
tigative program was delayed or not initiated within 6 months of their diagnosis.
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Data collection
Biochemistry, clinical data, comorbidities, and degree of decompensation at the time of diagnosis were registered 
at baseline. The study adhered to the Danish Data Protection Act (Reg. No: P-2019-545).

Mortality and admissions were registered prospectively using electronic patient records within 180 days of 
blood sampling for the biobank. Mortality and admissions were categorised as from “all causes” or “liver-related,” 
and an “unknown” cause of death indicated a patient had died outside the hospital and were not declared termi-
nally ill beforehand. Liver-related events included liver-related infections (e.g., spontaneous bacterial peritonitis 
(SBP)) and complications, including ascites, hepatorenal syndrome (HRS), hepatic encephalopathy (HE), variceal 
bleeding, electrolyte disturbances and jaundice.

We used data from an earlier prospective study of patients with cirrhosis as a comparative validation cohort. 
Details about the study design and participant population have been published elsewhere16.

Laboratory analyses of inflammation
The Target-96 Inflammation Panel (Olink Proteomics) semi-quantitatively measures 92 inflammatory markers 
(proteins) using proximity extension assay technology, which is based on qPCR extension of oligonucleotides 
attached to antibody pairs specific for the target protein17. Samples were split into two batches, and to minimise 
batch effects samples were randomised within a batch, and 16 bridging samples were included in each batch. 
Batches were bridged using the 16 bridging samples included in each batch. Samples flagged with quality control 
(QC) warnings in the standard Olink QC were reviewed manually before a decision was made on whether to 
retain or exclude them.

EDTA-plasma samples were thawed on ice and 40 μL of each was aliquoted into 96-well plates.
Raw data for normalised protein eXpression (NPX) values were processed in R using the OlinkAnalyze 

package18.

Statistical analyses
We performed statistical analyses by multiple testing with corrected differential analyses. We looked at continu-
ous clinical variables and clinical binary variables (uncontrolled) as well as inflammatory markers using a t-test 
or a binomial test19,20. The inflammatory markers univariate capability to separate death within 180 days was 
illustrated by survival curves, where two groups were separated based on a univariate logistic regression with 
an intercept (Fig. 1). Using the default cut-off for classification of p = 0.05 yields a cut-off corresponding to the 
negative fraction of the intercept and the coefficient of the marker. The log-rank-test was performed between the 
two predicted groups20,21. Further, the inflammatory (protein) markers were also compared using an analysis of 
covariance (ANCOVA) that controlled for covariates using a linear regression setup and the Benjamini–Hochberg 
procedure was used for multiple testing correction20–22. In the study group we controlled for sex, cancer, depres-
sion, psychiatric disorders, diabetes, heart disease, hypertension, and high cholesterol. We could not include 
cancer, depression, nor psychiatric disorders in the ANCOVA for our validation cohort due to an absence of 
information, and the inclusion criteria in the validation cohort excluded patients with any heart disease.

We used logistic regression for selected clinical features and protein markers of interest, with a selection of 
maximum relevance and minimum redundancy using the F-test-based implementation, specifically the F-test 

Figure 1.   Kaplan–Meier curves for the four most significant inflammatory markers correlated with 180-
day mortality. Concentrations of a marker higher than the cut-off are represented as orange curves, lower 
concentrations as blue curves. Pred = 1 indicates death within 180 days. Curves for each marker are compared by 
log rank tests.
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correlation quotient (FCQ), to choose a set of features for the logistic regression21,23–25. Results were calculated for 
the study group ten times using cross-validation, with five stratified splits for the target variable, i.e., 50 train-test 
split combinations. A final model was trained on the entire study group and compared to the validation cohort. 
We considered five feature sets: (1) three clinical scores (model for end-stage liver disease (MELD), MELD-
sodium (MELD-Na) and Child–Pugh), with additional clinical markers (age, haemoglobin (Hgb), leucocytes, 
platelets, bilirubin, albumin, c-reactive protein (CRP), international normalised ratio (INR), alanine transaminase 
(ALT), creatinine, diabetes, arterial hypertension and hypercholesterolaemia), (2) 92 protein (inflammatory) 
markers, (3) inflammatory markers and clinical variables, (4) inflammatory markers and clinical scores and (5) 
the three clinical scores alone.

When suitable, adjusted p-values, so-called q-values were calculated to adjust for multiple testing using the 
Benjamini–Hochberg procedure. The adjustment reduces the number of false positive results.

Uniform manifold approximation and projection (UMAP) visualisation was based on the embeddings trained 
on 149 patients from the study group. The validation cohort were then mapped into the embedding space of the 
study group to highlight the relative locations26. Error analysis was based on the UMAP embedding, the predic-
tion score and the classification error.

Performance was evaluated using several metrics. First, using the area under the receiver operating curves 
(AUROC’s), which shows the true positive rate relative to the false positive rate, which is one minus the true 
negative rate. Due to the imbalance between groups, we also considered the area under the curve of the precision-
recall curve (AUPRC). Recall is also denoted as a true positive rate. A high PRAUC indicated that predictions 
were both precise and correct in most cases.

We are providing two open-source repositories for this study. First, one with higher-level scripts and work-
flows used for the analysis, github.​com/​Rasmu​ssenL​ab/​cirrh​osis_​death. Second, we collected the core functional-
ity for biomarker discovery, referred to as ‘not just another biomarker’ or ‘njab’, at github.​com/​Rasmu​ssenL​ab/​
njab. These results are reproducible and transferable to new datasets.

Results
We recruited 151 patients for the study group at the Gastro Unit, Medical Division, Hvidovre Hospital, between 
24 October 2019 and 31 March 2022. Follow-up ranged from 180 to 1028 days. Due to the length of time, we 
first analysed samples from 122 participants and then analysed samples from the remaining 29 participants. 
Statistics were performed on 149 patients as two were excluded due to metastatic cancer. Ninety-nine patients 
were male, and the median age was 62 years. Most patients had cirrhosis related to excessive alcohol consump-
tion (128 = 85.9%), and the remaining aetiologies were metabolic associated steatohepatitis, viral hepatitis, auto-
immune hepatitis, methotrexate-induced and haemochromatosis. The majority (109 = 73.2%) were diagnosed 
during hospitalisation, 37 (24.8%) of whom were incidentally diagnosed during admission for other diseases. 
Patients’ baseline characteristics are described in Table 1.

Comparative analyses were performed in a cohort of 86 participants with liver cirrhosis undergoing liver vein 
catheterisation. The validation cohort was recruited between April 2017 and 5 May 2021 (see Table 1). Albumin, 
prothrombin-proconvertin time (pp), sodium and potassium were higher in the validation cohort, whereas white 
blood cells, bilirubin, CRP, INR, ALT, MELD, MELD-Na, and Child–Pugh scores were higher in the study group. 
The number of admissions was not significantly different between the groups.

Mortality
Within 180 days of follow-up, 28 (18.8%) participants died, 19 from liver-related causes (67.9%), hereof nine 
with ACLF.

Age was significantly higher in deceased patients within 180 days, as were MELD, MELD-Na, Child–Pugh, 
creatinine, and CRP. Ascites and jaundice correlated with death (see mean (SD) and p-values of the significant 
correlations in Table 2).

Liver‑related admissions in the study group
Seven participants were excluded due to death during their admission at inclusion or when discharged with a 
terminal disease at baseline, leaving 142 participants for analysis.

Within 180 days of follow-up, 63 (44.4%) patients were admitted with a median time to first admission of 
41 days (range [2;165]). Forty-five patients experienced liver-related admissions, with a median time to first 
admission of 40 days (range [2;161]). Infections caused 28 admissions (21.4% of all 180-day admissions), and 
27 were liver-related infections.

Clinical parameters and the risk of liver‑related admissions
Significantly higher Child–Pugh and MELD scores were found in the 45 patients admitted with liver-related 
complications. Patients with subsequent liver-related death, ascites, who were unmarried, or had depression or 
decompensation at diagnosis were more prone to liver-related admission (Supplementary Table 1).

Markers of inflammation analysis
Table 3 lists the inflammatory markers that were significantly correlated with 180-day mortality. In total, 20 
markers differed significantly in patients who survived more than 180 days from those who did not. All but IL-
12B were higher in the deceased. Correlations for all 92 markers are listed in Supplementary Table 2. The top 
four markers most strongly associated with mortality are shown in Fig. 1.

No markers were significantly associated with liver-related admissions. The correlations are listed in Sup-
plementary Table 3.

https://github.com/RasmussenLab/cirrhosis_death
https://github.com/RasmussenLab/njab
https://github.com/RasmussenLab/njab
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Comparison with the validation cirrhosis cohort
In the validation cohort of 86 patients, the median age was 61 [26;75], 59.3% were male and the median MELD 
score was 10.0 [6;39] (see Table 1). Nine died within 180 days, and 32 were admitted a total of 76 times within 
180 days. Twenty-six were admitted a total of 61 times for liver-related complaints. Four patients were excluded 
from the admission analysis due to death or because of missing data. The total number of deaths and admissions 
in both cohorts are listed in Supplementary Table 4a-b.

Two inflammatory markers, IL-15RA and IL-17C, were significantly associated with mortality in the valida-
tion cohort, with q-values of 0.024 and 0.030, respectively, only IL-15RA were also associated with mortality in 
the study group, see Supplementary Table 5.

No markers were significantly associated with admissions, see Supplementary Table 6.

Prediction of mortality and liver‑related admissions within 180 days in the study group
With data on inflammatory markers, clinical variables, standard biochemistry and clinical scores, several predic-
tion models of mortality and admissions could be constructed. By cross-validation, we constructed five feature 
sets of variables to work as prediction models for 180-day mortality and liver-related admissions in the study 
group. The sets were: (1) clinical variables and clinical scores (MELD, MELD-Na and Child–Pugh), (2) inflam-
matory markers alone, (3) inflammatory markers and clinical variables, (4) inflammatory markers and clinical 

Table 1.   Patient characteristics. Groups are compared by a two-sided t-test for continuous variables and a 
binomial test for binary variables, reported in frequency and (percent). Decompensation defined as: ascites, 
bleeding oesophageal varices, hepatorenal syndrome, hepatic encephalopathy or spontaneous bacterial 
peritonitis. INR International normalised ratio, CRP c-reactive protein, MELD model for end-stage liver 
disease, MELD-Na model for end-stage liver disease with sodium.

Study group Validation cohort p-value, comparison of groups

n = 149 (99 male) n = 86 (51 male)

Place of diagnosis

 Outpatient clinic 40 (26.8%) NA –

 Admission at hospital 109 (73.2%) NA –

 Age, years 62 [23;82] 61 [26;75] 0.329

Child–Pugh 0.003

 A 25 (16.8%) 31 (36.0%)

 B 68 (45.6%) 33 (38.4%)

 C 56 (37.6%) 22 (25.6%)

Aetiology

 Alcohol 128 (85.9%) 70 (81.4%) 0.466

 Non-alcohol 21 (14.1%) 16 (18.6%) 0.466

 Decompensation at diagnosis 109 (73.2%) NA(at sample time = 61 (70.9%)) (0.83)

Comorbidities

 Heart disease 27 (18.1%) 6 (7.3%) 0.040

 Hypertension 25 (16.8%) 23 (28.4%) 0.057

 Hypercholesterolaemia 13 (8.7%) 19 (22.6%) 0.006

 Diabetes 27 (18.1%) 17 (20.2%) 0.824

 Cancer 8 (5.4%) NA –

 Psychiatric disease 13 (8.7%) NA –

Medication

 Statins 37 (24.8%) 19 (22.9%) 0.864

 Non-selective beta-blockers 6 (4.0%) 21 (24.4%)  < 0.001

Biochemistry, median [range]

 Haemoglobin, mmol/L 7.1 [4.1;10.4] 7.40 [4.20, 10.30] 0.118

 C-reactive protein, mg/L 14.0 [0.5;200] 5.80 [0.30, 110.00]  < 0.001

 White blood cells, 109/L 7.3 [1.7;71.3] 6.40 [2.20, 19.50] 0.012

 Platelets, 109/L 145 [33;461] 127.50 [29.00, 324.00] 0.102

 Albumin, g/L 24 [10;42] 32.00 [15.00; 44.00]  < 0.001

 Creatinine, µmol/L 64 [27;318] 71.00 [24.00, 358.00] 0.055

 Bilirubin, µmol/L 29 [4;439] 18.00 [4.00, 362.00]  < 0.001

 ALT, U/L 39 [7;648] 32.00 [1.30, 168.00] 0.030

 INR 1.4 [0.9;2.7] 1.30 [0.90, 2.60] 0.002

 MELD 14 [6;34] 10.79 [6.43, 39.00] 0.005

 MELD-Na 17.5 [7.0;36.0] 13.19 [6.43, 40.00]  < 0.001
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scores, and (5) clinical scores alone. The results of the prediction models are presented in Table 4, and correlations 
between included features are presented in Supplementary Fig. 1.

The best models were a prediction model of the five clinical parameters MELD, ascites, creatinine, age and 
CRP (AUROC of 0.79 and 95% CI [0.62;0.97]) and a prediction model of two inflammatory markers and MELD-
Na (AUROC of 0.75 and 95% CI [0.52;0.99]).

Table 2.   Clinical and biochemical parameters significantly associated with 180-day mortality. CRP c-reactive 
protein, MELD model of end-stage liver disease, Na sodium. a) continuous variables, b) binary variables. Based 
on 149 patients’ continuous and binary variables. Two-sided t- and binomial tests.

Variable

Deceased within 180 days 
(n = 28)

Survived within 180 days 
(n = 121) t-test

No. of patients Mean (SD) No. of patients Mean (SD) p-value

a)

MELD-score 28 18.5 (6.1) 120 13.75 (5.56) 0.0006

Child–Pugh 28 9.9 (1.8) 121 8.57 (2.10) 0.0017

MELD-Na 28 21.0 (6.0) 121 17.09 (5.99) 0.003

Age 28 65.4 (9.1 121 60.6 (10.2) 0.018

Creatinine 28 99.4 (67.7) 120 70.93 (35.55) 0.039

CRP 28 39.5 (40.9) 118 22.81 (28.27) 0.048

Variable

Deceased within 180 days Survived within 180 days Binomial test

No. of patients Proportion Proportion p-value

b)

Cancer 4 0.14 0.017 0.0011

Ascites 24 0.86 0.60 0.0036

Jaundice 9 0.32 0.15 0.0278

Table 3.   Differential analysis of inflammatory markers significantly correlated with 180-day mortality. 
ARTN artemin, CASP8 caspase 8, ENRAGE extracellular newly identified receptor for advanced glycation 
end products binding protein, HGF hepatocyte growth factor, IL interleukin, LIF leukaemia inhibitory factor, 
MCP1 C–C motif chemokine 2, uPA urokinase plasminogen activator, MCP3 C–C motif chemokine 7, CCL20 
C–C motif chemokine 20. Means of markers are expressed as NPX. N = 149 patients. Significant markers were 
found adjusting for sex, age, cancer, depression, psychiatric disease, diabetes, heart disease, hypertension and 
hypercholesterolaemia and their Ancova results are given in terms of unadjusted p-values.

Cell marker (NPX)

Deceased within 180 days, (n = 28) Survived past 180 days, (n = 121) Ancova

q-valueMean (SD) Mean (SD) Unadjusted p-value

LIF 1.96 (1.27) 1.25 (0.49) 0 0

uPA 11.55 (0.55) 11.20 (0.52) 0 0.0009

IL-8 9.44 (1.53) 8.52 (1.39) 0.0001 0.0016

ENRAGE 4.46 (1.69) 3.33 (0.89) 0.0001 0.0018

TGFa 4.29 (0.72) 3.87 (0.49) 0.0001 0.0024

IL15-RA 3.01 (0.78) 2.61 (0.42) 0.0003 0.0049

IL12-B 6.29 (1.28) 6.95 (1.06) 0.0008 0.0103

MCP1 12.55 (0.68) 12.18 (0.56) 0.001 0.0114

CXCL6 10.36 (0.95) 9.90 (0.87) 0.0014 0.0136

HGF 11.21 (1.04) 10.72 (0.84) 0.0015 0.0136

CASP8 4.06 (0.47) 3.77 (0.51) 0.0016 0.0137

CX3CL1 6.10 (0.56) 5.76 (0.57) 0.0018 0.0139

IL10-RB 7.29 (0.27) 7.09 (0.31) 0.002 0.0144

CCL23 10.84 (0.66) 10.36 (0.61) 0.0025 0.0166

FGF19 10.20 (1.52) 9.42 (1.33) 0.0037 0.0226

IL-6 5.71 (1.41) 4.91 (1.19) 0.004 0.0232

TNFSF14 5.85 (0.84) 5.46 (0.79) 0.0046 0.024

ARTN 2.48 (0.89) 2.09 (0.59) 0.0047 0.024

MCP3 2.96 (0.90) 2.46 (0.64) 0.0064 0.031

CCL20 11.46 (1.61) 10.85 (1.33) 0.0096 0.044
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Among the clinical scores alone, MELD was the best predictor of mortality, with the AUROC being 0.73 
(95% CI [0.51;0.94]).

Secondly, we investigated predictions of liver-related admissions within 180 days (see Table 4, Supplemen-
tary Fig. 2) using the same cross-validation approach we used for mortality. For the inflammatory markers 
alone, 14 markers were selected (HGF, TRANCE, CCL4, IL-10RA, IL-15RA, SCF, TWEAK, FGF-19, CXCL6, 
IL-33, IL-10RB, IL-12B, CCL28, IL-2), resulting in an AUROC of 0.72 with 95% CI [0.53;0.91]. Among clini-
cal markers alone, two variables were selected (ascites and creatinine), giving an AUROC of 0.64 with 95% CI 
[0.45;0.84]. The combination of inflammatory markers and clinical variables favoured five inflammatory mark-
ers (TWEAK, CCL4, HGF, TRANCE and IL-33) and one clinical variable (ascites) with an AUROC of 0.73 
and 95% CI [0.57;0.88]. Adding clinical scores to inflammatory markers did not change the results from using 
inflammatory markers alone. Predicting liver-related admissions from clinical scores alone was best achieved 
with Child–Pugh score alone, with an AUROC of 0.61 and 95% CI [0.43;0.79]. In general, the models predicting 
mortality were more reliable, with fewer selected features and higher AUROCs than models predicting liver-
related admissions.

Predictions in the validation cohort
In the study group, the clinical variables best able to predict death were MELD, ascites, creatinine, age, and CRP. 
Using the model trained on the study group with a cut-off of 0.5, we correctly predicted eight of nine deaths in 
the validation cohort, and incorrectly predicted that 13 of the 77 survivors would die. Inflammatory markers 
alone predicted six of nine deaths based on seven markers (ENRAGE, CD8A, IL-15RA, FGF19, LIF, ARTN and 
IL-12B), and incorrectly predicted ten survivors would die. The model was slightly improved when combining 
inflammatory markers and clinical variables and combining inflammatory markers with MELD-Na. The clinical 
scores favoured the MELD score alone, predicted eight deaths, and incorrectly predicted 12 patients would die, 
visualised in Supplementary Fig. 3.

Two clinical variables, ascites and creatinine, predicted 22 of 26 liver-related admissions, and incorrectly pre-
dicted that 31 admissions in the validation cohort would occur. Fourteen inflammatory markers (HGF, TRANCE, 
CCL4, IL-10RA, IL-15RA, SCF, TWEAK, FGF-19, CXCL6, IL-33, IL-10RB, IL-12B, CCL28, IL-2) predicted 17 
of 26 liver-related admissions. Adding clinical scores to the inflammatory markers did not change the results. 
When we combined inflammatory markers and clinical variables, the model predicted 18 of 26 admissions. No 
model predicted all liver-related admissions correctly.

The full results of the cross-validation calculations in the study group and the validation cohort are presented 
in Supplementary Results 1a–e for 180-day mortality and Supplementary Results 2a–e for 180-day liver-related 
admissions.

Visualizing predictions of samples
Further exploring the differences between our study group and the validation cohort, we investigated the numbers 
of true and false predictions of 180-day mortality and 180-day liver-related admissions using our final models, 
illustrated in Fig. 2a and b. Validation cohort samples are visualised in the two-dimensional mapping defined 
by the study group. False positive and false negative predictions were found in both the study group and the 
validation cohort, as indicated by closely clustered patients with different outcomes.

Table 4.   Inflammatory and clinical variables as predictors of 180-day mortality and liver-related admissions. 
Markers/variables: picked by models corresponding to the selected feature set. ARTN artemin , CCL-CC 
motif chemokine ligand, CD8A T-cell surface glycoprotein CD8 alpha chain, CRP c-reactive protein, CXCL6 
C-X-C motif chemokine 6, ENRAGE Extracellular newly identified receptor for advanced glycation end 
products binding protein, FGF19 Fibroblast growth factor 19, HGF hepatocyte growth factor, IL Interleukin, 
LIF leukaemia inhibitory factor, MELD Model for end-stage liver disease, MELD-Na Model for end-stage liver 
disease with sodium, SCF stem cell factor (a kit ligand), TRANCE Tumour necrosis factor ligand superfamily 
member 11, TWEAK Tumour necrosis factor ligand superfamily member 12.

Feature set

180-day mortality Liver-related admission, 180 days

Markers/Variables AUROC [CI95%] Markers/Variables AUROC [CI95%]

Inflammatory markers ENRAGE, CD8A, IL-15RA, FGF19, LIF, 
ARTN, IL-12B 0.74 [0.46;1.02]

HGF, TRANCE, CCL4, IL-10RA, IL-15RA, 
SCF, TWEAK, FGF-19, CXCL6, IL-33, IL-
10RB, IL-12B, CCL28, IL-2

0.72 [0.53;0.91]

Clinical variables MELD, ascites, creatinine, age, CRP 0.79 [0.62;0.97] Ascites, creatinine 0.64 [0.45;0.84]

Inflammatory markers + clinical variables 
and scores ENRAGE, CD8A MELD-Na 0.75 [0.52;0.99] TWEAK, CCL4, HGF, TRANCE, IL-33 

Ascites 0.73 [0.57;0.88]

Inflammatory markers + scores ENRAGE, CD8A MELD-Na 0.75 [0.52;0.99]
HGF, TRANCE, CCL4, IL-10RA, IL-15RA, 
SCF, TWEAK, FGF-19, CXCL6, IL-33, IL-
10RB, IL-12B, CCL28, IL-2

0.72 [0.53;0.91]

Scores MELD 0.73 [0.51;0.94] Child–Pugh 0.61 [0.43;0.79]
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Discussion
In this analysis of inflammatory markers in patients with newly diagnosed cirrhosis, we found 20 markers that 
correlated with mortality. The inflammatory markers differed from correlations in a validation cohort, and none 
correlated significantly with liver-related admissions within 180 days. Prediction models did not perform well 
in a comparative validation cohort of patients with cirrhosis.

The analyses provide exploratory insights into 92 different inflammatory markers. We expected markers 
associated with mortality and admissions to overlap due to our assumption of the correlation between increased 
risk of death and admissions in general27. Surprisingly, we did not find any markers of inflammation significantly 
associated with liver-related admissions in the study group, nor in the validation cohort. Furthermore, we found 
no generalisable marker pattern for predicting the endpoints.

Studies of unselected inflammatory markers with an explicit focus on newly diagnosed patients have to our 
knowledge previously not been performed. The focus of other studies has been on various stages of advanced 
liver disease14,28,29. Patients with compensated cirrhosis have an increased baseline inflammatory profile, and 

Figure 2.   UMAP 2D-embedding of inflammatory markers among patients according to (a) 180-day 
mortality and (b) 180-day liver-related admissions, based on selected features for the model using clinical and 
inflammatory markers. Blue and red dots represent patients with no liver-related admissions, green and yellow 
dots represent patients who were admitted for liver-related reasons. FN, False negative; FP, False positive; TN, 
True negative; TP, True positive.
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this increase becomes more pronounced in decompensated stages14,29,30. Among 29 cytokines investigated in the 
Canonic study, 15 cytokines, especially pro- and anti-inflammatory, were elevated in patients with decompensated 
cirrhosis and even higher in patients with ACLF28. Furthermore, different cytokine profiles were associated with 
different precipitating events for ACLF; bacterial infections caused elevated TNF-α, IL-6 and IL-1ra compared 
to alcohol, where IL-8 was especially elevated28.

Most of the markers we identified as related to the risk of 180-day mortality have formerly been associated 
with liver fibrosis and cirrhosis. The receptor of uPA (uPAR) is associated with fibrosis severity in liver diseases 
regardless of aetiology, and serum-uPAR concentrations are elevated in chronic liver diseases, with cirrhosis 
associated with the highest levels31,32. uPAR has also been used to predict mortality and the need for liver 
transplantation32. We have confirmed these findings for the activator, but not the receptor. Specific analyses of 
both receptors and activators are still needed.

LIF, a member of the IL-6 family, has previously been shown to correlate with the severity of liver steatosis33. 
IL-8 is a chemokine produced by a variety of cells, including liver cells. It is important for immune cell chemotaxis 
and can be used to predict mortality in ACLF34, why it might be related to the development of liver fibrosis and 
contribute to hepatic inflammation in chronic liver diseases32,35. Concurring with the earlier evidence, we found 
increased levels of LIF and IL-8 in our deceased participants.

TNF-cytokines, IL-1β, IL-6, IFN-γ, IL-17, MCP1, MIP1b and TNF-soluble receptors have been shown to be 
elevated in compensated and decompensated cirrhosis11. IL-17 was elevated in patients with alcoholic hepatitis, 
enhanced liver injury and inflammation36, which increases the risk of mortality. Trebicka et al. found higher 
levels of IL-6, IL-8, MCP1, IL-17A and IL-10 in patients with ACLF than in patients without ACLF, and an 
associated increased risk of death within 90 days30. Independent risk markers of death were IL-8 and human 
non-mercaptalbumin 2 (HNA2). We found higher levels of TNFSF14, IL-6, MCP1 and MCP3 in participants 
who died than in survivors, which could explain the differences between markers as prognostic indicators. In 
addition, we found elevated IL-17C levels in patients who died within 180 days in the validation cohort. IL-8 
levels were associated with 180-day mortality, but our analysis did not include HNA2; hence, IL-8 and HNA2, 
in combination, should be investigated in future studies.

ENRAGE has been shown to be higher in patients with autoimmune hepatitis (AIH) than in healthy indi-
viduals, with the highest values seen in the presence of cirrhosis37, but it has been little studied in other causes 
of cirrhosis. Among others, IL-15, CX3CL1 and IL-6 were elevated in patients with minimal HE38, a cognitive 
impairment we did not assess, but which is likely present in our groups, and the markers could be correlated 
with both HE and death.

IL-10 is generally considered an anti-inflammatory cytokine13; however, IL-10 was higher in our deceased 
participants than in survivors, which might be evidence of a compensatory up-regulation. Kronsten et al.29 found 
lower levels of IL-10 in blood from patients with cirrhosis compared to healthy individuals; however, IL-10 
increased, along with IL-1β, IL-6, TNF-α, IL-8 and IFNs, when stimulated by heat-killed Escherichia choli and 
lipopolysaccharides, indicating increases of IL-10 when inflammatory activity is high.

IL-6 has been shown to predict the first decompensation episodes and 1-year mortality in decompensated liver 
disease, and is associated with liver fibrogenesis in stable cirrhosis and portal hypertension14,39. Our findings sup-
port IL-6 as a marker of disease severity in cirrhosis, as it was significantly elevated in our deceased participants.

Prediction models achieved AUROCs ranging from 0.73 to 0.79 for mortality and from 0.61 to 0.73 for liver-
related admissions, depending on the feature sets (clinical vs. inflammatory markers, or combinations thereof) 
in a cross-validation procedure on the study group. Hence, our models would score a patient who dies higher 
in at least 73% of the cases than a patient who survives when predicting 180-day mortality. As all the AUROCs 
were within a narrow range, we cannot conclude that one data modality (inflammatory markers or clinical data), 
or one specific combination, is superior for predicting mortality or admissions.

Interestingly, our AUROC’s are similar to the 90-day prediction by MELD in a cohort of unselected patients 
with cirrhosis40. Furthermore, in a large-scale review of predictions of 180-day mortality in cirrhosis by 
Child–Pugh and MELD, AUC-values ranged between 0.63 and 0.91 and 0.73–0.98, respectively41. Future studies 
could help pinpoint clinically useful scores, and these preliminary models might be optimised with differentia-
tion according to disease severity in larger cohorts.

The UMAPs (Fig. 2a and b) show varying degrees of clustering in the predictions for mortality and admissions 
in both the study group and the validation cohort. Although most participants had alcohol as the aetiology of 
their cirrhosis, other causes were also present, which might have contributed to these broad variations in inflam-
mation. In addition, a large proportion had ongoing episodes of decompensation when the blood sample was 
drawn, which could have impacted inflammatory activity. Further studies should look at how the various causes 
and stages of cirrhosis affect the concentration of individual markers of inflammation.

The MELD score performed better in the validation cohort than in the newly diagnosed cirrhosis study group. 
The differences in the groups, time of diagnosis, and the presence of complications and comorbidities, can likely 
help explain this discrepancy.

Finally, the error analysis supports more accurate predictions of death in the validation cohort, see UMAP in 
Fig. 2a. Patients have visually divided more accurately according to the outcome than our primary study group. 
However, the predictions for admissions proved less reliable (Fig. 2b). This is valuable knowledge, as treating 
patients with newly diagnosed versus established cirrhosis are two different disciplines.

Our study has several limitations, as a disease registry study with baseline sampling and no intervention. 
Prospective follow-up was collected from patient journals and intervention effects could not be assessed, such 
as antibiotic treatment of infections, albumin and alcohol abstinence. Ongoing infection at inclusion was not a 
reason for exclusion, which undoubtedly affected the levels of circulating inflammatory markers. Furthermore, 
we do not have follow-up data about the markers. Exclusion criteria for the validation cohort excluded heart- and 
kidney disease as well as clinical signs of cancer. The difference in life expectancy among patients with cirrhosis 
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might have influenced our comparisons, since short-term mortality was higher in the study group. In addition, 
we saw significant differences in Child–Pugh scores and the use of beta-blockers between the groups.

Analyses of inflammatory markers were performed in two batches, so we cannot exclude minor batch effects, 
despite controlling for these using identical bridge samples in both. The number of participants in our study is 
too small to establish prediction models appropriate for clinical application. Nonetheless, all data were collected 
prospectively from a single centre that is representative of Denmark’s newly diagnosed population with cirrhosis, 
reflecting the real-world epidemiology of cirrhosis.

In conclusion, circulating markers of inflammation correlate with 180-day mortality in patients with cirrhosis. 
The performance of models in the validation cohort was moderate, with predictions of mortality superior to 
predictions of hospital admission. However, these models need further validation in larger cohorts before they 
reach clinical application.

Data availability
The complete statistical results are attached as Supplementary Results Files, Supplementary Material and are 
available, along with complete statistical codes, at github.​com/​Rasmu​ssenL​ab/​cirrh​osis_​death and github.​com/​
Rasmu​ssenL​ab/​njab. In addition, the study protocol, standard operating procedures and patient information 
are available upon request to the authors. Any data provided must not be processed for purposes other than 
statistical and scientific studies.
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