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Bayesian AEWMA control chart 
under ranked set sampling 
with application to reliability 
engineering
Imad Khan 1, Muhammad Noor‑ul‑Amin 2, Dost Muhammad Khan 1, Umair Khalil 1, 
Emad A. A. Ismail 3, Uzma Yasmeen 4 & Bakhtiyar Ahmad 5*

The article introduces a novel Bayesian AEWMA Control Chart that integrates different loss functions 
(LFs) like the square error loss function and Linex loss function under an informative prior for posterior 
and posterior predictive distributions, implemented across diverse ranked set sampling (RSS) designs. 
The main objective is to detect small to moderate shifts in the process mean, with the average run 
length and standard deviation of run length serving as performance measures. The study employs 
a hard bake process in semiconductor production to demonstrate the effectiveness of the proposed 
chart, comparing it with existing control charts through Monte Carlo simulations. The results 
underscore the superiority of the proposed approach, particularly under RSS designs compared to 
simple random sampling (SRS), in identifying out-of-control signals. Overall, this study contributes a 
comprehensive method integrating various LFs and RSS schemes, offering a more precise and efficient 
approach for detecting shifts in the process mean. Real-world applications highlight the heightened 
sensitivity of the suggested chart in identifying out-of-control signals compared to existing Bayesian 
charts using SRS.

Variation plays a vital role in the operation of the manufacturing industry and control charts are extremely valu-
able and effective tools in Statistical Process Control (SPC) practice. These charts are widely utilized in different 
service subdivisions to monitor production process. The key aim of applying control charts is to ensure process 
constancy and to identify rare deviations in production so that the control system can implement necessary cor-
rections before non-conforming items are produced. Walter A. Shewhart suggested the concept of memoryless 
charts in the 1920s which, with later modifications, served as the basis for modern Statistical Process Control 
(SPC). Page1 suggested the cumulative sum (CUSUM) chart, whereas the exponentially weighted moving average 
(EWMA) control chart was presented by Roberts2. These CUSUM and EWMA charts are predominantly effective 
at detecting small to medium shifts in the manufacturing process. On the other hand, the Shewhart chart excels 
at being able to identify significant fluctuations in the process parameters. Alduais et al.3 introduces a Rayleigh 
EWMA scheme, enhancing the detection capabilities of the traditional VSQR chart for monitoring process variabil-
ity in Rayleigh distributed processes, evaluated through design limits, parameters, and Monte Carlo simulations. 
To address this issue, Capizzi and Masarotto4 proposes an AEWMA chart to address the limitations of traditional 
EWMA control charts, aiming for improved performance in detecting both small and large shifts in the mean of 
a sequence of independent observations. Comparisons with different control charts demonstrate that AEWMA 
schemes provide more balanced protection against shifts of varying sizes. Other authors, including5–9 have also 
made significant contributions to this research area. Haq et al.10 introduced an AEWMA chart to monitor the 
production process. This control chart utilizes estimated shift size, ARL and SDRL as performance measurement 
tools. Zaman et al.11 introduced an innovative adaptive version of the EWMA chart that incorporates Tukey’s 
bi-square functions. This approach has shown particular effectiveness in detecting shifts during the monitoring 
of the process mean. Atif et al.12 proposed a new configuration for the AEWMA chart intended for process mean 
surveillance. The chart’s effectiveness is evaluated based on the ARL and SDRL metrics. Abbas et al.13 focus on 
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the application of RSS in designing dispersion charts for manufacturing processes, emphasizing their effective-
ness over traditional methods in detecting process variations. The study highlights the improved performance of 
the proposed control chart structures, illustrating their timely identification of special causes in a bottle-filling 
process. Abbas et al.14 introduce a novel scheme for dispersion charts using neoteric RSS, enhancing accuracy 
in quality control and environmental monitoring. The comparison analysis confirms the enhanced effectiveness 
of dispersion charts based on NRSS in the context of a non-isothermal continuous stirred tank chemical reactor 
model. Mohammadkhani et al.15 studied extensively reviewed the application of RSS for control chart design, 
seeking to bridge research gaps and offer suggestions for future research in statistical process monitoring (SPM) 
and control chart design.

The previously mentioned research on statistical quality control charts has mostly concentrated on the tra-
ditional approach, which relies exclusively on available sample data and does not use prior knowledge. Bayesian 
estimation offers an alternative approach to estimate a population parameter, incorporating both sample and 
prior information to revise the posterior (P) distribution for an unknown population parameter. Girshick and 
Rubin16 proposed the notion of a quality control chart within the Bayesian framework. Saghir et al.17 suggested a 
Bayesian chart for the P distribution that takes into account both informative and non-informative priors. They 
also used LFs to track the production process. Bourazasa et al.18 studied a Bayesian method for online monitoring, 
prioritizing outlier detection and leveraging predictive distribution across diverse data sets. Simulation results 
emphasized its advantages over frequentist methods, showcasing robustness to prior sensitivity and model mis-
specification, with practical examples highlighting its suitability for short production runs and online phase I 
monitoring. Asalam and colleagues19 proposed an improved modified EWMA chart using Bayesian analysis. The 
evaluation of the suggested chart considers the ARL and SDRL, demonstrating its superior capability in promptly 
identifying out-of-control signals compared to existing charts. Noor and co-authors20 explored a Bayesian hybrid 
EWMA control chart suitable for P and PP distributions, examining informative and non-informative priors, 
along with various LFs. The evaluation of the chart’s performance was conducted based on the ARL and SDRL. 
Noor et al.21 conducted a study on the AEWMA chart using Bayesian theory for identifying the process mean, 
utilizing various LFs. The assessment of the control chart’s performance commonly entails the examination of the 
run length profiles. Lin et al.22 proposed an EWMA chart using Bayesian methodology for identifying changes 
in the process variance within a distribution-free process. They identified the favorable sampling properties of 
the statistic proposed in their study, designed for monitoring the time-varying process distribution. Moreover, 
they demonstrated the efficacy of the control chart through an extensive simulation study. Hybrid EWMA chart 
utilizing Bayesian concept that employs various RSS designs along with an informative prior for monitoring the 
location parameter was suggested by Khan et al.23. The performance of the recommended chart was appraised 
using run length results, and a comparison was made with hybrid EWMA (HEWMA) and AEWMA charts apply-
ing Bayesian concepts applying SRS. Liu et al.24 presented a Bayesian AEWMA control chart employing diverse 
LFs and PRSS for accurate process mean shift detection, outperforming other control charts, especially under 
PRSS schemes. Its efficacy was verified in semiconductor manufacturing, confirming its dominance in identi-
fying out-of-control signals over existing methods. Wang et al.25 examined the impact of ME on the Bayesian 
EWMA control chart, evaluating various RSS designs and loss functions. By utilizing Monte Carlo simulations 
and actual data, the research illustrates the notable impact of ME on the control chart, particularly endorsing 
the median RSS approach in such scenarios.

Ranked set sampling is a sampling technique that involves ordering the units in a sample according to their 
responses. It has advantages over SRS, such as reducing the sample size and increasing efficiency. By combining 
Bayesian inference with the control chart and RSS strategies, the chart becomes more robust and sensitive to 
changes in the process. This combination allows for better decision-making regarding process control and facili-
tates timely corrective actions. Overall, the role of Bayesian chart using RSS designs is to enhance the accuracy 
and efficiency of process monitoring, improve quality control, and support effective decision-making in statisti-
cal quality management. Hence, the primary objective of our research is to propose an AEWMA control chart 
using a Bayesian methodology that integrates various RSS designs, such as median RSS (MRSS) and extreme RSS 
(ERSS). Furthermore, we integrate informative prior distributions into symmetric and asymmetric LFs, such as 
SELF and LLF, applicable to both the P and PP distributions. To assess the performance of the offered chart. We 
analysis various metrics, such as ARL and SDRL.

The remaining part of the article is structured as follows: The second section introduces the Bayesian method 
and LFs. Section “Ranked set sampling” discusses the various RSS systems. Section “Proposed Bayesian AEWMA 
control chart” presents a Bayesian AEWMA control chart with multiple RSS systems. Section “Simulation study” 
includes a comparison between the suggested and existing charts, and Section “Results discussion and main 
findings” presents the key results. Section “Real data applications” contains the numerical analysis, while Section 
“Conclusion” concludes the article. Section “Limitations of the study” and “Future recommendation” include the 
study limitations and recommendations, respectively.

Bayesian approach
The Bayesian approach is a statistical methodology that utilizes probability theory to update our beliefs about the 
likelihood of a hypothesis when new evidence is provided. It involves starting with a prior probability distribu-
tion that represents our initial beliefs regarding the hypothesis and updating it using Bayes’ theorem to obtain 
a posterior distribution that reflects our revised beliefs. The foundation of the Bayesian approach lies in the 
recognition that probability serves as a powerful tool for capturing and expressing uncertainty. By leveraging 
probability, we can seamlessly integrate prior knowledge and uncertainty into our analytical framework. There 
are two primary categories of prior information: informative prior and non-informative prior. An informative 
prior is a prior distribution of a parameter that includes pertinent and established knowledge regarding an 
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unidentified population parameter. By integrating existing information, the prior distribution is informed and 
influenced accordingly. A conjugate prior arises when the prior distribution and the sampling distribution are 
part of the same family of distributions, enabling simpler analytical calculations and yielding posterior distribu-
tions that are of the same form as the prior. The Bayesian approach finds widespread application in diverse fields 
such as medical research and finance. This approach proves valuable in handling situations characterized by 
incomplete information and uncertainty. This methodology offers valuable tools for handling and incorporating 
uncertainty, making it applicable to a broad range of fields. In present study, the variable under study X is defined 
by its mean θ and variance δ2 with under control process with considering conjugate prior, with parameters θ0 
and δ20 , is defined as follows

When there is no prior information available about the population parameter, Bayesian statisticians often use 
a non-informative prior. A non-informative prior is characterized by a prior distribution that has slight influence 
on the P distribution, aligning with the fundamental principles of the Bayesian approach for integrating preced-
ing information into the analysis. In numerous instances, researchers commonly adopt a non-informative prior 
that aligns with a uniform distribution. This implies allocating equal probability to all plausible parameter values 
within a predefined range. The probability function representing the uniform prior distribution is as follows:

Here c represents the constant of proportionality.
The prior function that is proportional to Fisher information matrix was introduced by Jeffrey26 because the 

uniform prior does not satisfy the invariance criterion. The following is Jeffrey’s recommended prior probability 
function: 

Here I(θ) represents Fisher information matrix.
For a population parameter theta, the P distribution, which combines a sample distribution and a prior 

distribution, is mathematizied as:

For a fresh dataset Y, the PP distribution, based on the P distribution, is mathematically described as

Bayesian inference heavily relies on the utilization of LFs to address potential risks related with the Bayes-
ian estimator. In the present study, we have incorporated two types of LFs: symmetric (SELF) and asymmetric 
(LLF). By employing these LFs, we aim to effectively manage and mitigate uncertainties inherent in the Bayesian 
framework.

Squared error loss function
The SELF, based on Bayesian theory in the context of estimation, is a mathematical measure used to quantify 
the discrepancy between the true parameter value and its estimated value. The calculation entails squaring the 
discrepancy between the estimated parameter value and the actual value. The Bayesian methodology incorporates 
prior information about the parameter by employing the prior distribution. The SELF is then utilized to assess 
the quality of the estimate obtained within this framework. By reducing the expected value of the square error 
loss, Bayesian estimation aims to find the optimal estimate that strikes a balance between the data-driven infor-
mation and prior beliefs. In the current study, we employed the LF suggested by Gauss27. The SELF, which takes 
into account the variable under consideration X and the estimator θ̂ used to calculate the unknown population 
parameter θ , is mathematized as:

and based on SELF the Bayes estimator mathematically described as:

Linex loss function
Varian28 introduced an asymmetric LF called LLF, which is specifically designed to mitigate the risks related with 
the Bayesian estimator. The LLF can be mathematically expressed as follows:
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Utilizing LLF, the Bayesian estimator θ̂ is mathematizied as

Ranked set sampling
McIntyre29 introduced an innovative sampling scheme known as RSS. This sampling method provides a novel 
approach for picking a sample from a given population. The complete procedure for implementing RSS can be 
summarized as follows:

	 i.	 Randomly select m2 independent samples from the target population, and distribute them into m sets 
with an similar size of m elements. The ordering of the m units within each set can be determined by the 
researcher’s personal judgment, auxiliary variables, or any method that does not require direct measure-
ment.

	 ii.	 After arranging all m sets, the selection process begins with picking the initial element from the first 
set, followed by selecting the second element from the second set, and so on. This sequence of actions 
completes a single cycle of RSS. If required, these two steps can be repeated r times to get a sample of size 
n = rm. The RSS procedure can be described as follows: Zi(j),r , i,j = 1,2,3,…,m; r = 1,2,3,…,c, where Zi(j),r 
represents the jth order statistic in the ith sample set with cycle r. The mean and variance of the ranked 
set sample estimator are presented specifically for the case when c = 1.

Using RSS design, the unbiased estimator for the population mean is mathematically defined as

and with variance

Where μ is overall mean.

Median ranked set sampling
The median ranked set sampling (MRSS) technique, a modification of the RSS design, was first described by 
Muttlak30. The MRSS estimator was created primarily to increase the accuracy of population mean estimation. 
The whole process for choosing a sample when utilizing the MRSS design is described below:

	 i.	 In the MRSS design, a sample of n units is chosen from the population of interest applying a method akin 
to RSS. These selected units are subsequently divided into m sets of equal size. Within each set, the units 
are ordered in ascending fashion utilizing specific variable under consideration.

	 ii.	 When the set size is even, the selection process involves picking the smallest units from the two middle 
elements of the 

(
m
/
2
)
th set. Likewise, it requires selecting the largest units from the two middle elements 

of the 
(
m
/
2
)
th set. In the case where m is odd, the selection focuses on the middle elements from the (

(m+ 1)
/
2

)
th order sets. This sequence of steps completes one cycle of the MRSS scheme. Certainly, this 

process allows for the repetition of the steps a total of r times, leading to the accumulation of a sample 
size denoted as n = rm.

The estimate for the population mean of one cycle in MRSS is defined as follows in a situation of an odd 
sample size:

And with variance 

The estimator for the population mean using the MRSS design with a single cycle is defined as follows for a 
sample size that is odd:
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And with variance

Extreme ranked set sampling
Samawi and Muttlak31 introduced the concept of the ERSS design. The ERSS design is particularly beneficial 
in situations where collecting the central unit is more challenging compared to the extreme units. The following 
outlines are the complete methodology for choosing a sample using the ERSS design:

	 i.	 Picked m2 units from the underlying population and distribute them into m sets of equal size. Rank all 
the units within each set based on a variable of interest.

	 ii.	 If the set size is even, select the smallest units from the 
(
m
2

)
th ranked sets and choose the largest elements 

from the remaining 
(
m
2

)
th orderd sets. When m is odd, select the smallest elements from the 

(
m−1
2

)
th 

ranked sets and largest elements from the last 
(
m−1
2

)
th ranked sets. The middle unit is selected from the 

last ranked set.

When the sample size is odd and there is only one cycle, the mean estimator of the ERSS is defined as

and variance

In the situation, when the sample size is odd and single cycle is performed than the mean estimator of ERSS 
is mathematized as

And.

Proposed Bayesian AEWMA control chart
In this section, we focus on the AEWMA chart constructed using Bayesian theory, investigating the application 
of diverse RSS strategies for efficient monitoring of irregular variations in the location parameter of a process 
conforming to a normal distribution. Consider X1, X2,…, Xn as independent and identically normally distrib-
uted random variables with a θ and σ 2 . The mathematical description of the probability function is as follows:

Let the estimated mean shift δ̂∗t  be represented as an AEWMA sequence utilizing {Xt} . The expression for the 
estimated mean shift is as follows:

where δ̂∗0 = 0 and ψ is smoothing constant, for the out-of-control process the estimator δ̂∗t  is biased and for the 
under-control process, the estimator δ̂∗t  is unbiased. Haq et al.10 introduced the concept of an unbiased estima-
tor for δ in both under control and out-of-control process situations. This unbiased estimator is mathematically 
described as follows:
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It is offered to use δ̂t =
∣∣∣δ̂∗∗t

∣∣∣ for obtaining estimate of δ.
The proposed statistic, denoted as Et , is based on the Bayesian theory and incorporates various RSS strategies. 

It utilizes the sequence {Xt} to estimate the process mean.

where i = 1, 2, 3, 
RSS1 = RSS

RSS2 = MRSS

RSS3 = ERSS

 , f
(
δ̂t

)
∈ (0, 1] and E0 = 0 such that

Sarwar and Noor-ul-Amin12 proposed a function, as illustrated in Eq. (24), that adapts the smoothing con-
stant in response to the estimated shift. The recommended values for the constants used in Eq. (24) are a = 7 
and c = 1 when 1 < δ̂t ≤ 2.7 . For δ̂t values less than or equal to 1, it is suggested to use a value of c equal to 2. In 
this scenario, if the plot statistics exceed the designated threshold ℎ, the process is categorized as out of control. 
Conversely, if the plot statistics remain below the specified threshold ℎ, the process is considered to be in the 
state of control.

In instances where both the likelihood function and prior distribution are normally distributed, the resulting 
posterior distribution also follows a normal distribution, characterized by the mean, θ, and the variance, σ2. The 
probability density function (pdf) is given by:

where θn = nxδ20+δ2θ0

δ2+nδ20
 and δ2n = δ2δ20

δ2+nδ20
 respectively.

The θ̂(SELF) for the suggested chart utilizing Bayesian analysis, while accounting for different RSS strategies 
applying symmetric LF, is depicted as:

The properties of the offered Bayes estimator with SELF i.e. θ̂(SELF) is given as E
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applying RSS strategies with the LLF is mathematized as:
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Consider a set of feature observations of size h, indicated as y1, y2,…,yn. In the suggested AEWMA chart 
using Bayesian theory and implementing RSS strategies for the posterior predictive distribution, the probability 
density function of y∣x is presented as:

where y∣x normally distributed with θn and standard deviation δ1 , derived as δ1 =
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 . Using various 

RSS designs, the estimator of θ for PP distribution based on LLF defined as
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where δ̃21 = δ2

k + δ2δ20
δ2+nδ20

 .  The properties of θ̂LLF  is given as E
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Simulation study
The performance assessment of the offered chart is conducted various different RSS strategies through the uti-
lization of Monte-Carlo simulation method. The run length results are computed for various mean shifts. The 
in-control process is specified at 370. By adjusting the smoothing constant sci = 0.10, we analyze the impact of 
the recommended chart with RSS strategies. The following steps outline the simulation process for the proposed 
method.

Step 1: setting in‑control ARL

	 i.	 The prior and sampling distribution are chosen to be the standard normal distribution, and the properties 
are computed for various LFs. i.e., E

(
θ̂(LLF )

)
 and δLLF.

	 ii.	 Begin by specifying the hyperparameters for the Bayesian chart. These hyperparameters are vital for 
defining the prior distribution. For instance, determine the parameters of the prior distribution, which 
is chosen to be the standard normal distribution, and the associated hyperparameters such as the mean 
and variance.

	 iii.	 Use the specific smoothing constant (e.g., sci = 0.10) as a hyperparameter for determining the threshold 
value (h). The choice of this hyperparameter influences the sensitivity of the control chart.

	 iv.	 Random samples of size n are generated from a normal distribution. Ensure that the hyperparameters of 
this normal distribution, such as mean and variance, are well-defined as they significantly affect the data 
generation process.

	 v.	 Utilizing Bayesian theory, calculate the AEWMA statistic Et , and assess the performance of the process 
rendering to the proposed design.

	 vi.	 In the event that the process is confirmed to be in a state of control, it is advisable to repeatedly move 
through steps one to three until the moment the process is recognized as being out of control. It is impor-
tant to document the run-length for the process that remains in control.

Step 2: for out‑of‑control ARL

	 i.	 The random samples are generated from the normal distribution for the shifted process i.e., 
X ∼ N

(
E
(
θ̂

)
+ ∂ δ√

n
, δ
)
 , where ∂ represents the shift in the process mean.

	 ii.	 Calculate the Et and appraise the process according to the suggested strategy.
	 iii.	 If the process is identified as being under control, it is recommended to continue the iterative process of 

the initial two stages until signals of being out of control are observed. It is essential to keep a record of 
the run length during the in-control process.

	 iv.	 Calculate the ARL and SDRL after 100,000 iterations of steps (i—iii).

Results discussion and main findings
The comparison of existing chart utilizing Bayesian analysis based on SRS with the offered AWEMA control 
under different RSS strategies by using two different LFs with the same smoothing constant values shown in 
Tables 1, 2 3, 4, 5 and 6. Tables 1 and 2 indicates the results for suggested CC utilizing RSS designs (RSS, MRSS, 
ERSS) and using informative prior based on SELF, and the existing CC using Bayesian theory with SRS for P and 
PP distribution. The efficiency of the recommended chart is evaluated through ARL1 , the smaller values of ARL1 
indicates the fast detection of the out of control motions. According to findings, the proposed AEWMA control 
chart implemented within RSS strategies exhibits a higher level of sensitivity in identifying out of control signs 
compared with existing Bayesian chart implemented within SRS. For example, the ARL values of EWMA chart 
applying Bayesian concept based on SRS with SELF at ψ = 0.10 and various shifts i.e., σ = 0.0, 0.30, 0.50, 0.80, 
1.50, 4 are 371.16, 66.57, 28.35, 13.41, 5.79 and 2.12 and under the similar condition, ARL values of AEWMA 
chart using Bayesian analysis are 370.16, 43.59, 18.90, 7.90, 2.56 and 1.01. According to the same situation, ARL 
outcomes for the suggested CC using RSS, MRSS, and ERSS are 370.25, 11.56, 7.41, 3.10, 1.28, 1, and the values 
under MRSS are 371.55, 15.58, 5.94, 2.57, 1.16, 1 and 370.13, 21.96, 8.30, 3.47, 1.37 and 1are ARL results using 
ERSS. The results show that the proposed CC, when utilized with RSS designs, exhibits better performance 
compared with both existing Bayesian EWMA and AEWMA charts implemented with SRS. In a similar vein, 
when employing the LLF, Table 6 presents a comprehensive comparison among the existing EWMA chart and 
AEWMA chart implemented with SRS utilizing Bayesian concept, and the proposed chart implemented using 
RSS strategies with an informative prior. The table provides a detailed analysis of their respective performances 
and highlights any notable differences or advantages among them. Under SRS, ARL values for EWMA CC at 
ψ = 0.25 and different shifts σ = 0.0, 0.30, 0.50, 0.80, 1.50, 4 are 370.23, 103.68, 41.26, 15.79, 5.18 and 1.66. Fur-
ther, 369.25, 55.67, 27.50, 12.91, 4.08, and 1.08 are the ARL values of AEMWA CC applying SRS. ARL values of 
suggested CC applying RSS are 371.18, 29.24, 12.42, 5.13, 1.71, 1, under MRSS ARL results are 370.56, 23.96, 9.87, 
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3.99, 1.43, 1 and ARL results of ERSS are 369.23, 31.48, 13.82, 5.80, 1.88, and 1. The ARL results of the recom-
mended chart, implemented using RSS strategies, demonstrate a significant decrease when larger shifts occur. 
This suggests that the offered chart is more subtle and effective in identifying out-of-control signs compared to 
both the existing Bayesian control charts implemented with SRS. The detailed findings of the proposed chart, 
utilizing RSS strategies, are presented below:

•	 Based on the observations provided in Tables 1 and 2, it is evident that the run length outcomes for the pro-
posed Bayesian chart, incorporating SELF via RSS stratigies, display a sharp decrease with increasing mean 
shift. This trend indicates the unbiased nature of the suggested chart. For instance, referring to Table 1 with 
an ARL of 370 and ψ = 0.10, the ARL results at various shifts such as δ = 0.20 and 0.70 are as follows: 38.40 
and 3.93 for RSS, 32.19 and 3.14 for MRSS, and 41.80 and 4.43 for ERSS.

Table 1.   Run length results for the suggested chart applying SELF, for ψ = 0.10, n = 5.

Shift

Bye-SRS
EWMA

Bye-SRS
AEWMA

Bye-RSS
AEWMA

Bye-MRSS
AEWMA

Bye-ERSS
AEWMA

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

L = 2.7042 h = 0.0856 h = 0.00761 h = 0.00541 h = 0.00910

0.00 371.82 367.80 372.86 537.77 370.25 423.48 371.55 424.82 370.13 457.80

0.20 125.58 114.98 70.61 91.12 38.40 35.95 32.19 29.64 41.80 39.45

0.30 66.576 57.92 35.40 44.53 11.56 10.83 15.58 14.94 21.96 21.07

0.40 41.68 32.78 21.15 26.36 19.19 18.46 9.13 8.81 12.87 12.40

0.50 28.35 20.12 13.55 16.69 7.41 6.90 5.94 5.47 8.30 7.93

0.60 20.98 13.49 9.46 11.23 5.26 4.83 4.20 3.60 5.94 5.52

0.70 16.26 9.59 7.08 7.70 3.93 3.43 3.14 2.58 4.43 3.92

0.75 14.72 8.30 6.15 6.43 3.51 2.93 2.87 2.29 3.89 3.36

0.80 13.41 7.14 5.62 5.82 3.10 2.54 2.57 1.99 3.47 2.93

0.90 11.42 5.69 4.51 4.18 2.55 1.92 2.08 1.47 2.86 2.27

1.00 9.78 4.50 3.85 3.20 2.19 1.56 1.80 1.16 2.39 1.80

1.50 5.79 2.03 2.25 1.29 1.28 0.58 1.16 0.42 1.37 0.67

2.00 4.16 1.20 1.66 0.78 1.06 0.25 1.02 0.15 1.09 0.30

2.50 3.31 0.84 1.36 0.56 1.00 0.08 1 0 1.01 0.12

3.00 2.76 0.66 1.17 0.39 1 0 1 0 1 0

4.00 2.12 0.38 1.02 0.14 1 0 1 0 1 0

Table 2.   ARL outcomes for the offered chart using Bayesian approach given SELF, for ψ = 0.10, n = 5.

Shift

Bye-SRS
EWMA

Bye-SRS
AEWMA

Bye-RSS
AEWMA

Bye-MRSS
AEWMA

Bye-ERSS
AEWMA

ARL SDRL ARL SDRL ARL ARL SDRL ARL SDRL ARL

L = 2.8987 h = h = 0.242 h = 0.0184 h = 0.0128 h = 0.0158

0.00 369.49 364.82 369.00 367.39 369.23 360.00 370.03 364.48 370.32 317.65

0.20 178.20 175.14 97.04 80.91 49.08 32.79 44.00 28.28 54.21 35.50

0.30 104.70 100.95 55.71 42.80 27.63 18.49 15.65 11.14 31.22 20.64

0.40 63.11 58.20 36.15 25.09 17.42 11.91 14.99 10.30 20.09 13.68

0.50 41.21 36.61 25.95 17.04 11.95 8.36 9.77 6.89 13.73 9.66

0.60 28.45 24.57 19.80 12.20 8.51 6.03 7.01 4.93 9.78 6.83

0.70 20.61 16.37 15.41 9.09 6.26 4.45 5.21 3.68 7.41 5.28

0.75 17.97 13.87 14.11 8.17 5.50 3.92 4.54 3.15 6.51 4.58

0.80 15.71 11.75 12.87 7.26 4.88 3.41 4.05 2.80 5.72 4.03

0.90 12.51 8.86 10.76 5.97 3.92 2.71 3.22 2.15 4.61 3.15

1.00 10.22 6.77 9.17 4.96 3.22 2.17 2.66 1.72 3.73 2.47

1.50 5.15 2.51 4.90 2.77 1.66 0.89 1.43 0.69 1.85 1.04

2.00 3.46 1.33 2.98 1.83 1.18 0.42 1.08 0.28 1.28 0.54

2.50 2.66 0.86 1.98 1.15 1.03 0.19 1 0 1.07 0.27

3.00 2.19 0.61 1.48 0.72 1 0 1 0 1 0

4.00 1.66 0.50 1 0 1 0 1 0 1 0



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20020  | https://doi.org/10.1038/s41598-023-47324-0

www.nature.com/scientificreports/

•	 Similarly, the effectiveness of suggested chart, implemented applying RSS strategies, is appraised applying 
LLF by altering the values of ψ = 0.10 and 0.25. Tables 3 and 4 display the ARL outcomes of the chart with 
LLF. The results indicate that with an increase in the value of the weighting constant, the efficiency of the 
suggested chart diminishes. For example, at ARL0 = 370 , ψ = 0.10 and shift δ = 0.20, The corresponding 
ARL outcomes of the offered chart using RSS, MRSS, and ERSS are 36.50, 31.73, and 41.91. For the same 
shift δ = 0.20 and ψ = 0.25 , ARL value for RSS is 50.89, under MRSS is 43.63, and under ERSS is 52.45.

•	 The findings suggest that with an increase in the value of the weighting constant, the efficiency of the proposed 
chart diminishes. For instance, with a certain value of the weighting constant, α, and a shift value of δ = 0.20, 
the corresponding ARL results for the offered chart employing RSS, MRSS, and ERSS are 36.50, 31.73, and 
41.91. Similarly, for the same shift δ = 0.20 and a different value of α, the ARL values are 50.89 for RSS, 43.63 
for MRSS, and 52.45 for ERSS.

Table 3.   ARL and SDRL values of the chart utilizing LLF, for ψ = 0.10, n = 5.

Shift

Bye-SRS
EWMA

Bye-SRS
AEWMA

Bye-RSS
AEWMA

Bye-MRSS
AEWMA

Bye-ERSS
AEWMA

ARL SDRL ARL SDRL ARL ARL SDRL ARL SDRL ARL

L = 2.7047 h = 0.086 h = 0.00772 h = 0.00539 h = 0.00924

0.00 370.63 368.13 370.98 539.06 369.29 391.15 369.68 381.47 370.05 422.60

0.20 123.94 115.00 71.98 92.48 36.50 35.37 31.73 30.32 41.91 40.02

0.30 115.00 57.42 36.26 45.49 19.78 19.18 15.88 15.28 21.95 21.25

0.40 41.33 32.49 21.09 26.30 11.44 10.96 9.20 8.74 12.96 12.52

0.50 28.51 20.18 13.71 16.73 7.39 6.93 5.87 5.46 8.61 8.33

0.60 20.95 13.50 9.53 11.25 5.31 4.77 4.20 3.75 5.93 5.48

0.70 16.46 9.64 7.09 7.86 4.00 3.41 3.18 2.66 4.48 3.97

0.75 14.79 8.35 6.20 6.50 3.50 2.99 2.83 2.24 3.96 3.41

0.80 13.38 7.17 5.54 5.54 3.14 2.56 2.53 1.95 3.50 2.99

0.90 11.29 5.57 4.52 4.17 2.59 2.01 2.10 1.48 2.83 2.24

1.00 9.79 4.49 3.83 3.20 2.14 1.55 1.78 1.14 2.44 1.85

1.50 5.82 2.03 2.26 1.27 1.29 0.58 1.16 0.43 1.38 0.70

2.00 4.18 1.20 1.66 0.78 1.06 0.26 1.02 0.15 1.09 0.31

2.50 3.31 0.84 1.34 0.55 1.01 0.10 1 0 1.01 0.12

3.00 2.75 0.66 1.16 0.39 1 0 1 0 1 0

4.00 2.13 0.383 1.02 0.15 1 0 1 0 1 0

Table 4.   Run length results using LLF for the proposed control chart with ψ = 0.10, n = 5.

Shift

Bye-SRS
EWMA

Bye-SRS
AEWMA

Bye-RSS
AEWMA

Bye-MRSS
AEWMA

Bye-ERSS
AEWMA

ARL SDRL ARL SDRL ARL ARL SDRL ARL SDRL ARL

L = 2.9050 h = 0.241 h = 0.0177 h = 0.0125 h = 0.0215

0.00 371.05 368.88 370.14 434.88 370.92 332.68 369.44 344.38 371.12 316.71

0.20 179.81 175.30 86.77 83.25 50.89 32.73 43.63 28.65 52.45 35.89

0.30 105.54 101.21 55.44 42.26 29.15 19.09 23.39 15.70 31.99 20.90

0.40 64.00 59.50 36.76 25.98 18.11 12.29 14.72 10.26 20.49 13.77

0.50 41.56 37.30 25.86 16.88 12.37 8.59 9.81 6.98 13.79 9.59

0.60 28.54 24.33 19.65 12.16 8.64 6.10 6.91 4.87 10.00 6.95

0.70 20.96 16.82 15.62 9.17 6.56 4.59 5.13 3.66 7.52 5.28

0.75 18.11 14.02 14.23 8.29 5.71 4.02 4.52 3.16 6.60 4.57

0.80 15.89 11.94 12.83 7.30 5.10 3.58 4.03 2.77 5.74 4.04

0.90 12.61 8.89 10.79 5.90 4.01 2.72 3.23 2.17 4.62 3.19

1.00 10.27 6.77 9.25 5.00 3.36 2.20 2.65 1.74 3.81 2.56

1.50 5.18 2.50 4.95 2.80 1.69 0.91 1.42 0.67 1.88 1.06

2.00 3.46 1.33 2.97 1.81 1.19 0.43 1.09 0.30 1.28 0.53

2.50 2.64 0.85 1.97 1.13 1.04 0.20 1 0 1.07 0.27

3.00 2.19 0.62 1.48 0.73 1 0 1 0 1 0

4.00 1.66 0.50 1.09 0.30 1 0 1 0 1 0
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•	 Moreover, the ARL values utilizing LLF for suggested Bayesian chart under RSS designs are presented in 
Tables 5 and 6, the results designate that the ARL values for recommended Bayesian AEWMA under RSS at 
ARL0 = 370 , δ = 0.20 and smoothing constant ψ = 0.10 is 7.42 and the ARL results at ψ = 0.25 is 12.42, in 
the same situation the ARL values under MRSS are 5.92 and 9.87. The ARL values using ERSS are 8.46 and 
13.82. The results presented in Tables 3, 4, 5, and 6 demonstrate consistent efficiency for P and PP distribu-
tions under LLF.

The suggested chart with Bayesian analysis under RSS designs for P and PP distributions, applying an informa-
tive prior and taking into account both LFs, namely SELF and LLF, are presented in Tables 1, 2, 3, 4, 5, and 6. 

Table 5.   Using LLF, ARL and SRDL results of the Bayesian EWMA and AEWMA charts for PP distribution, 
for ψ = 0.10, n = 5.

Shift

Bye-SRS
EWMA

Bye-SRS
AEWMA

Bye-RSS
AEWMA

Bye-MRSS
AEWMA

Bye-ERSS
AEWMA

ARL SDRL ARL SDRL ARL ARL SDRL ARL SDRL ARL

L = 2.7018 h = 0.0856 h = 0.00763 h = 0.00533 h = 0.00919

0.00 371.50 368.69 369.58 524.70 364.44 436.62 370.06 423.01 371.16 418.52

0.20 122.45 113.13 70.53 91.22 39.15 36.45 30.55 29.62 38.96 38.20

0.30 67.08 57.94 35.71 45.25 19.59 18.83 15.35 14.82 22.14 21.33

0.40 41.41 32.72 21.24 26.29 11.46 10.99 9.01 8.67 12.93 12.40

0.50 28.05 19.84 13.66 16.90 7.42 6.99 5.92 5.52 8.46 7.97

0.60 21.08 13.64 9.46 11.08 5.31 4.85 4.20 3.72 5.97 5.48

0.70 16.27 9.54 6.94 7.70 3.95 3.42 3.16 2.64 4.49 4.00

0.75 14.73 8.23 6.22 6.53 3.53 3.06 2.81 2.25 3.95 3.37

0.80 13.33 7.17 5.50 5.58 3.09 2.54 2.52 1.92 3.54 2.98

0.90 11.22 5.60 4.52 4.15 2.51 1.95 2.11 1.51 2.87 2.30

1.00 9.65 4.44 3.77 3.17 2.16 1.57 1.80 1.17 2.42 1.82

1.50 5.82 2.02 2.26 1.29 1.28 0.58 1.16 0.41 1.39 0.72

2.00 4.18 1.20 1.66 0.78 1.06 0.25 1.02 0.15 1.09 0.31

2.50 3.30 0.84 1.35 0.55 1 0.07 1 0 1.01 0.13

3.00 2.76 0.65 1.16 0.39 1 0 1 0 1 0

4.00 2.13 0.38 1.02 0.15 1 0 1 0 1 0

Table 6.   Run length outcomes for the recommended chart with ψ = 0.10, n = 5.

Shift

Bye-SRS
EWMA

Bye-SRS
AEWMA

Bye-RSS
AEWMA

Bye-MRSS
AEWMA

Bye-ERSS
AEWMA

ARL SDRL ARL SDRL ARL ARL SDRL ARL SDRL ARL

L = 2.8986 h = 0.2414 h = 0.0179 h = 0.0127 h = 0.0212

0.00 370.23 368.87 368.67 359.45 371.18 351.20 370.56 348.97 369.23 351.25

0.20 177.79 174.80 98.16 83.24 51.42 33.50 36.48 26.34 54.59 35.50

0.30 103.68 99.36 54.92 41.45 29.24 19.01 23.96 16.06 31.48 20.70

0.40 63.21 58.43 36.19 25.48 18.34 12.30 14.77 10.17 20.16 13.69

0.50 41.26 37.00 25.97 17.13 12.42 8.66 9.87 7.01 13.82 9.46

0.60 28.35 24.16 19.68 12.21 8.87 6.27 7.00 4.93 9.83 6.88

0.70 20.68 16.45 15.56 9.19 6.56 4.63 5.20 3.64 7.40 5.21

0.75 18.04 14.01 14.18 8.26 5.65 3.98 4.55 3.18 6.49 4.60

0.80 15.79 11.87 12.79 7.24 5.13 3.55 3.99 2.74 5.80 4.08

0.90 12.52 8.81 10.74 5.93 4.10 2.82 3.22 2.16 4.65 3.22

1.00 10.23 6.71 9.20 4.98 3.34 2.24 2.69 1.73 3.77 2.54

1.50 5.18 2.51 4.94 2.79 1.71 0.91 1.43 0.69 1.88 1.05

2.00 3.46 1.33 2.95 1.81 1.20 0.44 1.09 0.29 1.29 0.54

2.50 2.65 0.86 1.98 1.14 1.04 0.20 1 0 1.07 0.27

3.00 2.19 0.62 1.48 0.72 1 0 1 0 1 0

4.00 1.66 0.50 1.09 0.30 1 0 1 0 1 0
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The results show that, in comparison to existing RSS designs, the suggested chart applying MRSS has effective 
out-of-control signal identification.

Real data applications

The practical demonstration of the suggested Bayesian method utilizing RSS designs utilizing various LFs under 
an informative prior is exemplified through an analysis of data from Montgomery32, focusing on the hard-bake 
process in semiconductor manufacturing. This particular process involves the application of heat to the pho-
toresist material during the photolithography procedure to remove any residual solvents and ensure a uniform 
and stable surface for light exposure. Data was gathered from a semiconductor production facility, consisting 
of critical dimension measurements for wafers that underwent diverse hard-bake processes. Each set of data, 
totaling 45 samples, included measurements in microns at one-hour intervals for 5 wafers. Notably, the initial 
30 samples were deemed to be under control, while the subsequent 15 samples were identified as out-of-control. 
We present a comprehensive description of the procedure for implementing the recommended AEWMA CC 
under RSS designs in the following steps.

	 i.	 First, classify your data into in-control and out-of-control observations. In your dataset, you have a total 
of 150 in-control observations and 75 out-of-control observations.

	 ii.	 For the in-control phase-I dataset (30 samples), perform RSS as follows:

a.	 From the in-control observations (150 in total), randomly select 25 observations. Divide the randomly 
selected 25 observations into 5 sets of 5 samples each, chosen randomly.

b.	 Within each set, arrange the 5 samples in ascending order, i.e., from the smallest to the largest
c.	 This step entails the selection of the initial value from the first set, the subsequent value from the second 

set, and so forth in a sequential manner.
d.	 This forms a ranked set sample of 5 values. d. Repeat steps (a-c) 30 times to create 30 in-control ranked 

set samples.

	 iii.	 Similar procedure is carried out for the out-of-control observations (75 in total) to choose the last 15 
samples.

	 iv.	 Specify the informative prior for the Bayesian AEWMA control chart. In this example, the prior is taken 
as the standard normal distribution. Ensure that the properties of this prior distribution, such as mean 
and variance, are clearly defined.

	 v.	 Define the sampling distribution for the data. In our case, consider a normal distribution with specific 
parameters (mean and standard deviation). For instance, mean = 1.5043 and standard deviation = 0. 
04,733,885. Compute the Bayes estimator θ̂(LF)RSSi.The Bayes estimator is standardized utilizing various 

LFs y(LF) =
(
θ̂(LF)RSSi−mean

((
θ̂(LF)RSSi

)))

sd
((

θ̂(LF)RSSi

))  , and computes the value of h for fix ARL0 = 370.

	 vi.	 The subsequent 15 samples are designated as representing an out-of-control process, with the additional 
increment of 0.007 applied to each observation. These particular samples are then acknowledged as con-
stituting a separate phase-II data set.

	 vii.	 Following both the methods and plot existing CC utilizing SRS and proposed CC.

Figure 1.   Applying SLEF, ARL plots of the suggested chart for P and PP distribution using various RSS 
strategies.
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Figure 2.   Based on LLF, ARL plots of the proposed chart for P distribution under different RSS designs.

Figure 3.   Using LLF, ARL plots of the proposed chart for PP distribution utilizing distinct RSS schemes.

Figure 4.   Applying SELF, Bayesian EWMA chart with SRS.
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Figure 5.   Based on SRS, plot for AEMWE chart utilizing SELF.

Figure 6.   Applying RSS, plot of the suggested chart using P and PP distribution for SELF.

Figure 7.   Based on MRSS, plot of proposed chart using for SELF.
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In Figs. 4 and 5, the existing Bayesian chart applying SRS under SELF are illustrated for P and PP distribu-
tions. The results show that all the points are in control for the EWMA chart, whereas for the AEWMA chart, 
out-of-control signals are detected starting from the 37th sample. Figures 6, 7, and 8 indicate the results of 
offered chart under SELF using RSS designs for P and PP distributions. The analysis of the figures indicates the 
detection of out of control signs on the 34th, 33nd, and 35th samples utilizing RSS, MRSS, and ERSS, respec-
tively. Comparing Figs. 1, 2, 3, 4, 5, 6, 7, and 8, it becomes apparent that the suggested chart, implemented with 
RSS strategies, exhibits greater sensitivity in identifying out-of-control signs compared to the existing Bayesian 
charts implemented with SRS.

Conclusion
This study presents a new Bayesian chart that utilizes various ranked set sampling strategies along with an 
informative prior. It incorporates two distinct LFs based on P and PP distributions for efficiently monitoring 
the process. The effectiveness of the suggested chart, implemented with RSS designs, is compared to an existing 
chart under Bayesian theory that uses SRS, as demonstrated in Tables 1, 2, 3, 4, 5, and 6. The ARL plots shown in 
Figs. 1, 2, and 3 further highlight the superior performance of the suggested chart. For evaluating its effective-
ness across diverse RSS strategies, a numerical demonstration was conducted, employing data from the hard 
bake process in semiconductor production. The results indicated that the proposed chart exhibited improved 
efficiency in detecting out-of-control signals when compared to the EWMA and AEWMA charts implemented 
through the Bayesian theory with SRS.

Limitations of the study
When dealing with large sample sizes, constructing the Bayesian AEWMA chart applying RSS designs can pose 
challenges. The process of Bayesian updating requires calculating the posterior distribution for both the process 
mean and variance at each sampled point, leading to significant time consumption and resource utilization. 
Moreover, establishing prior distributions for the process mean and variance within the Bayesian framework is a 
challenging task. Inaccurate or improperly chosen priors can substantially affect the control chart’s performance. 
Furthermore, selecting suitable prior distributions often involves subjectivity, relying on expert knowledge, which 
could introduce bias into the analysis, further complicating the decision-making process.

Future recommendation
The application of the recommended chart using RSS designs can be expanded to other charts that incorporate 
memory. Moreover, the suggested approach exhibits potential for accommodating distributions beyond the 
normal distribution. Certainly, the concept can be customized for various distributions like Binomial or Poisson 
distributions, requiring adjustments to the likelihood function for accurate estimations. Expanding the approach 
to cover diverse control charts and non-normal distributions can enhance quality control processes, benefiting 
sectors such as finance, healthcare, and production.

Data availability
This statement implies that the datasets utilized or examined during the ongoing research are accessible from 
the corresponding author upon a reasonable request. It underscores the author’s willingness to provide access 
to the data for further examination or replication of the study’s findings.
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