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Complexity and 1/f slope jointly 
reflect brain states
Vicente Medel 1,6*, Martín Irani 2,6, Nicolás Crossley 3, Tomás Ossandón 3,4* & 
Gonzalo Boncompte 3,5*

Characterization of brain states is essential for understanding its functioning in the absence of 
external stimuli. Brain states differ on their balance between excitation and inhibition, and on the 
diversity of their activity patterns. These can be respectively indexed by 1/f slope and Lempel–Ziv 
complexity (LZc). However, whether and how these two brain state properties relate remain elusive. 
Here we analyzed the relation between 1/f slope and LZc with two in-silico approaches and in both 
rat EEG and monkey ECoG data. We contrasted resting state with propofol anesthesia, which directly 
modulates the excitation-inhibition balance. We found convergent results among simulated and 
empirical data, showing a strong, inverse and non trivial monotonic relation between 1/f slope and 
complexity, consistent at both ECoG and EEG scales. We hypothesize that differentially entropic 
regimes could underlie the link between the excitation-inhibition balance and the vastness of the 
repertoire of brain systems.

Spontaneously occurring brain activity patterns in the cerebral cortex constitute the so-called brain states1,2. 
These are present without a direct link to external stimuli and constitute the basis of essential cognitive processes 
like attention3–5 and global states of consciousness (GSC), such as sleep, wakefulness and anesthesia6,7. One of 
the most prominent strategies to characterize brain states has been to analyze the spectral properties of their 
associated field potentials like electroencephalogram (EEG) and local field potential (LFP). A broader approach 
includes both oscillatory and background aperiodic activity8,9. From this perspective, our understanding of 
brain states remains limited partly due to the canonical focus on narrow-band oscillations, which marginalizes 
non-linear activity to the status of ’background’ activity or irrelevant ’noise’. However, this background activity 
contains crucial information to bridge the gap between brain states and GSC.

Cortical neurons in awake animals show strong membrane potential fluctuations generating irregular dis-
charges, known as high conductance states10. These states generate the background activity that supports high-
order processes. It has been shown that neurons can achieve irregular firing patterns with balanced excitatory 
and inhibitory synaptic activity11,12. From this perspective, brain states depend on global brain variables, such as 
relative levels of excitation and inhibition13. Moreover, computational characterizations of the balance between 
excitation and inhibition (E/I balance), from local circuit activity to whole-brain modeling, have shown its rel-
evance on modulating information transmission and entropy14–16. On the other hand, perturbations to the E/I 
balance have shown to be related to pathological brain activity17 and neuropsychiatric disorders13,18–20. A pro-
posed way to quantify E/I balance is the slope of the power law decay of spectral power of brain field potentials. 
This parameter, 1/f slope, refers to a widely used way of modelling the relation between power and frequency 
of brain field potential signals according to Eq. (1) (excluding oscillatory activity). Specifically, 1/f slope refers 
to the exponent to which 1/f must be elevated to correctly fit the data. Models have shown that the background 
1/f slope of the power spectral density (PSD) can emerge from the sum of stochastic excitatory and inhibitory 
currents21–23. Moreover, empirical validation of these models has shown that the E/I balance can be inferred from 
background activity by parameterizing the 1/f shape of the PSD23,24.

Interest in the detailed informational structure of brain states has produced a recent surge of information 
theory-based approaches25–28. Data analysis strategies based on Lempel–Ziv complexity (LZc 29;), like the Pertur-
bational Complexity Index 30 have been successful for characterizing subject’s GSC during dreamless sleep and 
during anesthesia-induced unconsciousness, with partial independence of the anesthetic used. It has been shown 
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that LZc normally decreases concomitantly with the loss of phenomenological possibilities31,32, which is consist-
ent with some theoretical views of consciousness33,34. LZc algorithm computes the number of non-redundant 
patterns of a signal29, which in turn, when applied to brain data, is related to the diversity of the repertoire of 
brain activity patterns(35; see ‘Methods’ section). During the transition from wakefulness to sleep or anesthesia, 
the number of possible experiences and cognitive processes that one can have is greatly reduced. Assuming that 
the repertoire of possible experiences is reflected in brain activity signals, LZc measure of brain activity should 
be decreased in sleep and anesthesia as compared to wakefulness. In fact, this reduction of the repertoire of brain 
activity has been seen in rats at the single neuron level using a myriad of convergent measures of cortical diversity, 
including LZc36, suggesting that LZc can be applied as a multiscale proxy of neural repertoire.

Although 1/f slope and LZc reflect different brain state properties and have distant theoretical origins, one 
coming from spectral analysis and the other from Information Theory, both have been separately shown to cor-
relate with GSC27,37. We hypothesize that this could be due to an underlying intrinsic relation between E/I balance 
and the repertoire of activity patterns in brain systems. Here we employed four complementary approaches to 
study the relation between 1/f slope and LZc and thus implicitly between E/I balance and the abundance of non-
redundant repertoire in brain field potentials. We analyzed this relation in: (1) a simple inverse Discrete Fourier 
Transform (iDFT) model, (2) a biophysical model, (3) rat EEG, and (4) monkey ECoG during wakefulness and 
propofol anesthesia. Our results consistently show an inverse and non-trivial relation between 1/f slope and LZc 
in brain field potentials, suggesting that both could be related to the underlying entropic state of cortical systems.

Results
iDFT model show a robust and specific relation between LZc and 1/f slope
In order to analyze the relation between the spectral power-law slope and LZc we began by constructing, from 
the frequency domain, sets of time series with different 1/f spectral power decay slopes (Fig. 1A; see ‘Materials 
and Methods’ section). We simulated 256 time series with slopes ranging from 0 to 2, and calculated LZc for 
each one. Figure 1B illustrates that, for these simple iDFT models, 1/f and LZc follow a strict monotonically 
descending behavior, with lesser complexity values for time series with a steeper slope. This general behavior is 
to be expected: slopes near zero reflect white noise (high LZc), while on the other hand high slopes reflect time 
series with significant power only in low frequencies (periodic signals with low LZc). Interestingly, we found that 
LZc had a one-to-one mapping with 1/f slope. This relation can be robustly adjusted (R2 > 0.99) to an x-inverted 
asymmetrical sigmoid function (see ‘Materials and methods’ section).

Electrophysiological field potential signals (e.g., EEG and ECoG) have been shown to present only partial 
power-law behavior38. In other words, only part of their spectrum follows a clear spectral power-law distribution. 
In an attempt to emulate this, we introduced two types of constraints to the spectral construction of signals: an 
initial (f0 also referred to as “knee”) and a final (ff) 1/f frequency (see ‘Materials and methods’ section). Both con-
straints are illustrated in Fig. 1A, and sample signals with the manipulated parameters can be found in Figure S1. 
We found that the introduction of greater f0 values (Fig. 1C) generated signals with greater complexity across 
all slopes tested. This effect was more prominent for higher slope values than for lower slopes. Interestingly, the 
introduction of f0 higher than 1 Hz reduced the dynamical range of the observed LZc (no longer ranging from 
0 to 1). On the other hand, a final frequency ff (homologous to a low-pass filter), reduced the complexity of the 
resultant time series (Fig. 1D). This effect was more marked in signals with lower slope values. Similarly, to f0, 
we found that ff also reduced the dynamical range of possible complexity values, but in a different way: LZc now 
ranged from zero to a value lower than 1. Regardless of these spectral constraints, we found that the slope vs. 
LZc relationship could be modeled with a simple set of related equations (see ‘Materials and methods’ section, 
Eqs. (3 and 4), with a robust goodness of fit (all R2 > 0.98, see Supplementary Table 1). Additionally, we evaluated 
the nature of this relation when variables were calculated using different window lengths and found that windows 
from 2 to 20 s showcased essentially the same behavior for the LZc versus 1/f relation (Figure S2).We initially 
used a uniform distribution for the initial phase of the iDFT simulation. To control possible non-trivial effects 
of phase assignment, and as it has been previously shown that phase-randomization could serve as a surrogate 
signal for LZc, we used phase samples from von Mises distributions (the normal distribution of circular variables) 
of initial phases to construct signals. By employing different kappa values (von Mises dispersion parameter), 
we found that LZc is mostly unaffected by different values of kappa, nor its relation to 1/f slope (Figure S2A, B). 
However, when extreme values of kappa are used, meaning that all frequency components have almost exactly 
the same initial phase, LZc values start to decay. However, the relation between LZc and 1/f slope is qualitatively 
the same as with the kappa = 0 (uniform random distribution).

Given the robust relation between the general spectral properties of synthetic signals and their LZc, we asked 
whether this relation could also be tracked by another non-linear characteristic of time series, namely their auto-
correlation function (ACF). This was also motivated by evidence suggesting that ACF’s tau (also called timescale) 
can be obtained based on the initial (or knee) frequency of the power-law decay in neural data39. To evaluate 
this, we constructed new sets of iDFT time series and calculated tau for each one of them. As expected, we found 
that increasing slopes generally produced longer timescales. However, this relation was strongly dependent on f0 
(and its inverse; Fig. 1E). We consistently found that the period of the initial frequency ( f −1

0
 ) had a linear rela-

tion with tau, and that the slope of this relation ( f −1

0
 vs. tau) was dependent on the spectral 1/f slope. Thus, the 

relationship between tau and 1/f slope is strongly modulated by the initial frequency (f0) of the corresponding 
spectral power-law behavior. In the same line, we next explored the possible relation between tau and LZc by 
constructing iDFT signals that varied in 1/f slope and f0. As expected, we found that generally tau presented an 
inverse relation with LZc, showing that faster timescales were associated with higher complexity. However, this 
relation was almost completely dominated by f −1

0
 . Figure 1F shows that, while for small f −1

0
 values (e.g., 0.1 Hz) 

tau and LZc are related, this relation is severely distorted and diminished when higher, more physiological values 
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Figure 1.   iDFT model illustrates a strict relation between LZc and 1/f slope. (A) Depiction of the parameters 
employed. Time series were constructed by first defining a power-spectrum structure according to power law 
decays with various slopes, initial frequencies (f0) and final frequencies (ff). Afterwards this was converted to the 
time domain by means of iDFT. (B) Scatterplot showing the relation between LZc and 1/f slope. (C) Scatterplot 
depicting how the relation between LZc and slope changes with different initial frequencies of the power law. 
(D) Same as C but using various final frequencies. Solid lines in B, C and D correspond to best fit of Eq. (3–4) 
(E) Scatterplots depicting the strong and linear relation that exists between timescale (tau) and the period of 
the slower oscillation of the power-law behavior, in other words (the inverse of f0) for different slope values. (F) 
Scatterplot showing the relation that exists between LZc and tau for different values of initial frequency f0.
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of f −1

0
 are employed (e.g., > 2 Hz). This shows that tau, under some circumstances, is robustly related to 1/f slope 

and LZc. However, this relation is dominated by the initial frequency of the spectral power-law decay.

Conductance‑based neural network model and kernel‑based LFP estimation
The spectral 1/f slope has been suggested as a proxy of the background state and the balance between excitation 
and inhibition in cortical circuits9,21,23,24,40. In this line, we hypothesized that E/I balance could also be related to 
the repertoire of brain activity as indexed by LZc. To examine this, and to test whether iDFT model predictions 
are also present in biologically-based model settings, we use a recurrently-connected network of spiking neurons 
with conductance-based synapses. The network is composed of 80% AMPA-like excitatory and 20% GABA-like 
inhibitory neurons. All neurons were modeled as leaky integrate-and-fire (LIF) receiving two types of inputs 
(Fig. 2A): a sensory-driven thalamic input and an intracortical input24,41. From this model, we computed the 
network’s local field potential (LFP, Fig. 2B) by fitting a kernel function defined by the unitary contribution of 
the spiking of neurons to the LFP42. In this simulation, we manipulated E/I ratio by emulating different GABAe-
rgic tones; we introduced a scaling factor that multiplied unitary GABA-like conductance (see ‘Materials and 
methods’ section). This manipulation robustly and systematically modulated the PSD structure (Fig. 2C) and 
the firing rate of both excitatory and inhibitory populations (Fig. 2D).

Consistent with previous reports23,24, we found that PSD displays a modulation of its aperiodic features at the 
approximate frequency range of 30–70 Hz (Fig. 2C). We found that increasing the scaling factor (that is, E/I ratio 
is shifted towards inhibition) was consistently related with both an increase in the 1/f slope (Fig. 2E) and with a 
decrease in LZc (Fig. 2F). (Fig. 2G) summarizes both these effects by showcasing the strong and inverse relation 
that exists between LZc and 1/f slope across E/I balances using this modelling strategy (LZc vs. 1/f slope: Spear-
man rho: 0.96, p < 0.001). These results indicate that, in a biophysically inspired, recurrently-connected neural 
network of excitatory and inhibitory neuronal populations, changes in the synaptic E/I conductance could be 
simultaneously inferred from LFP features such as LZc and 1/f slope.

Rat EEG and monkey ECoG
Next, we asked whether the impact of modifying E/I balance on the relationship between 1/f slope and LZc seen 
in our model could be reproduced in empirical electrophysiological data. We analyzed two open datasets, both 
obtained during resting-state and during increased cortical inhibition by propofol: a macaque monkey ECoG43, 
and an epidural EEG in rats44,45.

Propofol is known to directly enhance GABAergic inhibitory activity, and thus reduce E/I balance46. In 
accordance with our previous results, we observed an increase of the 1/f slope for propofol (conscious state main 
effect’s F(1) = 1034, p < 0.001, η2 = 0.467; simple main effects (awake vs. anesthesia) for all monkeys (p < 0.001)) 
and reduced LZc with respect to wakefulness (conscious state main effect F(1) = 442, p < 0.001, η2 = 0.063; simple 
main effects (awake vs. anesthesia), p < 0.001) and rat EEG (p < 0.0001). This is illustrated in Fig. 3A,B,C,D,E,F,G.

To estimate the spatial correspondence of the effect of propofol, we calculated the difference between states 
of 1/f slope and LZc for each electrode. In a simple linear model, with all animals aggregated and both variables 
centered (delta LZc and delta 1/f slope), these measures showed a strong inverse relation (adjusted r2 = 0.20, 
β =  − 2.96; F(1,286) = 71.04; p < 0.001), illustrating that electrodes that had a greater modulation by propofol in 
1/f slope, also show a greater modulation in their LZc and vice versa. Next, we assessed this effect in one multiple 
regression model that estimated the linear dependence between these measures for each animal. This model 
showed a significant main effect (adjusted r2 = 0.23; F(4,283) = 21.84; p < 0.001), and significant individual effects 
for Monkey 1 (Figure S5; β =  − 3.37; p < 0.001), Monkey 2 (β =  − 2.641; p < 0.001) and Rat 2 (β =  − 6.27, p < 0.001), 
while for Rat 1 the linear dependence did not reach significance (p = 0.36).

Discussion
In this article we studied the relation between two apparently dissimilar features of time series from brain field 
potentials. Our results show a robust and inverse relation between LZc and 1/f slope, constitutive of a one-to-one 
mapping in both synthetic and empirical data. This relation closely followed an x-inverted asymmetric sigmoid 
function in the whole range of both measures in iDFT models. This behavior, although scaled, was present even 
when the spectral power-law behavior only comprised a small portion of all frequencies of the signal (Fig. 1C,D). 
This is of particular importance as real electrophysiological signals do not show a 1/f spectral power decay in 
the whole frequency range39,47. We believe it is noteworthy that such a simple Gaussian stationary process, as 
that produced by the iDFT model, can track this relation48 also seen in more biophysically plausible models. 
In these models we observed a similar inverse relation between LZc and 1/f slope, which adjusted to the same 
mathematical function. We show that this relation follows the balance between excitation and inhibition, with 
greater complexity and flatter 1/f slopes associated with the predominance of excitatory over inhibitory activity. 
We probed the link between E/I balance and these two measures in two animal models by directly contrast-
ing 1/f slope and LZc changes due to a pharmacological intervention. Propofol, a GABA-A agonist, produced 
changes in both measures consistent with what our models predicted: increased inhibition produced reduced 
LZc and increased 1/f slope in both monkeys ECoG and rat EEG data. Interestingly, the spatial change by brain 
state in some electrodes was stronger than others, however, the correspondence of the changes in brain state by 
propofol showed in both datasets that the electrodes that had a greater change by brain state in 1/f slope, also 
show a greater change in their complexity.

Consistent with prior work23,24 we show that changes in E/I balance can be inferred from the 1/f slope of 
the spectrum. Recently, it has been shown that this can be obtained by modeling excitation and inhibition as 
disconnected signals23, as well as in a recurrently connected configuration24. The disconnected model shows that 
disruptions in the E/I balance towards inhibition steepens the 1/f slope by increasing the slower time constant 
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Figure 2.   1/f slope and LZc present an inverse relation across E/I balances in a recurrently connected LIF model. (A) Schematic 
of the model structure. Excitatory (red) and inhibitory (blue) neurons are externally stimulated by thalamic inputs (lightning) 
and by cortico-cortical connections. E/I balance was manipulated by changing both inhibitory-inhibitory and inhibitory-
excitatory conductances. (B) Top) Representative rasterplot depicting spikes across time for excitatory (red) and inhibitory 
(blue) simulated neurons. Bottom) Representative LFP calculated from spiking activity. (C) PSD of simulated signals with 
different scaling factors. Bigger scaling factors imply more inhibitory activity. (D) Average firing rate across scaling factors for 
both inhibitory (blue) and excitatory (red) neurons. (E) 1/f slope as a function of scaling factor. (F) LZc as a function of scaling 
factor. (G) Scatterplot showing the strong and inverse relation between LZc and 1/f slope for different E/I balance (LZc vs. 1/f 
slope: Spearman rho: 0.96, p < 0.001). Error bars x and y-axes from panels D-G correspond to standard deviation.
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associated with inhibitory synaptic currents. The recurrently connected model, however, depends on coupled 
excitatory and inhibitory dynamics with a realistic biophysical basis that, although more complex, show consist-
ent results with the disconnected model. We show that both models have similar behavior, suggesting that the 
relation between 1/f slope and LZc -and their predictive power on E/I balance16- can be tracked with simple and 
complex modelling configurations.

Aperiodic neural activity has been studied in a wide range of scientific studies9 where a divergent set of fre-
quency ranges for the background activity estimates have been used. However, fitting the spectrum across the 
whole frequency ranges reported in the literature would result in an imprecise fitting. This is consistent with 
previous work showing the presence of different 1/f slopes at different frequency ranges24,37,40,47,49,50, where lower 
range fittings have a higher correlation with low frequency oscillations22 and suggest a note of caution when 
interpreting 1/f slope results from different frequency ranges as reflecting the same biological mechanism. We 
have shown, however, that changing the initial and cut-off frequency of the power-law decay does not qualita-
tively affect the relation between 1/f slope and LZc (Fig. 1C, D). Here we analyzed 1/f aperiodic slope as a proxy 
of background activity and E/I balance, which was most representative in the 30–80 Hz range and is consistent 
with previous modeling work23,24.

While the slope of the spectral power law has been linked to E/I balance40, LZc reflects the vastness of the 
repertoire of brain activity patterns36. Although these two measures may seem unrelated at first, we hypothesize 
that both reflect a specific type of entropy of brain systems. The entropy of a system can be characterized by 
the probabilities of each of its possible states (Shannon entropy), but also in terms of the probabilities of the 
transitions between these states in time, namely its entropy rate (or transition entropy). Low values of 1/f slope 
represent a flatter power spectrum, which is characteristic of irregular desynchronized brain states, while steeper 
1/f slopes showcase mainly low frequency periodic behavior51,52. These two extremes can also be characterized 
in terms of their signals’ transition entropy: flat 1/f slopes (similar to white noise) have low memory and thus 
high entropy rates, while in mainly periodic signals, its history strongly constrains future values; thus, they pre-
sent low transition entropies. This is particularly useful as direct estimates of entropy rate require much longer 
data series than LZc53,54. Although there are other alternatives for estimating entropy rate more precisely, such 
as parametric estimators like Hidden Markov Models which have been previously related to LZc55, the latter is 
more suited to a descriptive approach to behaviorally-defined brain states, as compared to the former which 
generally defines brain states based on the temporal structure of brain signals itself. In our implementation of 
LZc, because we binarize each signal based on its median value, the number of points in each state (ones and 
zeros) is equal, which results in a constant Shannon or distribution entropy. In this line, we believe signal’s LZc 

Figure 3.   LZc and 1/f slope jointly reflect cortical states changes between wakefulness and anesthesia in rats 
and monkeys. (A) Power spectral Density with 1/f slope fittings (30–80 Hz range) of representative macaque 
ECoG (Monkey 1) in Awake (blue) and propofol anesthesia (red) brain states. (B) Left, the topography of the 
percentage of change from baseline for Lempel–Ziv complexity. Left, a paired-sample raincloud plot showing 
LZc individual electrode changes across brain states. (C) Left, the topography of the percentage of change from 
baseline for 1/f slope. Right, a paired-sample raincloud plot showing 1/f slope individual electrode modulation 
across brain states. (D, F, G) Same as A, B, C for rat EEG (Rat 1).
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could be reflecting not only the vastness of the repertoire of brain activity, but also specifically the transition 
entropy of the system. Thus, the strong relation we observe between LZc and 1/f slope suggests both measures 
are, at least partially, driven by the transition entropy of the underlying brain system.

Future work should include the role of oscillations and phase, as recent evidence has suggested that low 
frequency 1/f slope is dependent on alpha band activity49. Despite this potential limitation in our simulations, 
previous findings have shown that non-linear features like LZc closely relate to the spectral more than the phase 
component of the signal54. Consistent with this, we observe the same general behavior in the relation between 
1/f and LZc both in EEG and ECoG data, which does present oscillatory activity.

The E/I-balance shapes neurons’ computational properties56, and therefore behavior and cognition3. Altera-
tions of this balance have been related to schizophrenia18, autism19, and epilepsy17, which hints it might also 
play an unexplored role in other neuropsychiatric disorders20. Moreover, E/I balance is not a static property of 
the cortex. It changes depending on the behavioral state57, task demands57,58, performance22 and depending on 
circadian rhythms59, which suggests that this property is under fine dynamic control. Recent work have shown 
brain states and neural complexity can be regulated by ascending arousal activity60,61, external stimulation62 and 
task demand63,64. Future research could address this topic with a multiscale approach to the underlying states 
of neuromodulation-related psychiatric disorders65. From this perspective, the readout of E/I balance through 
brain signal complexity and the power-law of the PSD could be useful for addressing fundamental questions 
about the modulation of the state dependence of brain computations. This offers new methods to understand 
the general mechanisms of brain states functioning, as well as broadening the diagnostic and therapeutic tools 
related to neuropsychiatric disorders.

Materials and methods
Power spectral density and 1/f analyses
We employed the same approach to estimate the power-law slope of simulations and monkey ECoG data. We 
calculated the Power Spectral Density (PSD) by means of Fourier Transforms using Welch’s method as imple-
mented in the MNE toolbox66. Afterwards, the power-law 1/f slope and offset were obtained using the FOOOF 
toolbox8. Aperiodic offset (O) and slope (s) components are obtained by modeling the aperiodic signal according 
to Eq. 1. The FOOOF algorithm decomposes the log power spectra into a summation of narrowband gaussians 
periodic (oscillations) and aperiodic (offset and slope) components within a broad frequency range. The algo-
rithm iteratively estimates periodic and aperiodic components, removes the periodic ones and estimates again 
until only the aperiodic components of the signal remain. This allows for estimation of offset and power-law 
slope with considerable independence from oscillatory behavior, which is particularly important for empirical 
signal analysis8,52. Also, there is evidence revealing spectral “knee39” which suggests that one fitting over the 
whole spectrum will conflate imprecise fitting of the background activity. Previous evidence has shown that an 
increase in the global network’s inhibition is consistently related to a steepening of the 1/f slope in the range 
between 30–80 Hz23,24. Thus, we use a 30–80 Hz frequency range for all the fittings.

LZc algorithm
To compute the complexity of time series (both simulated and empirical), we used the LZc algorithm as intro-
duced by Lempel and Ziv29. This algorithm quantifies the number of distinct and non-redundant patterns of a 
signal and it can serve as a close analogue of the entropy rate of a signal53,54. We implemented the LZc algorithm 
using Python scripts available from previous work31. Briefly, every time series was first binarized, assigning a 
value of 1 for each time point with an amplitude greater than the median of the entire signal (5 s), and zero for 
those below it. Afterwards, the LZc algorithm was applied to the resulting so-called symbolic signal. To quantify 
the number of non-redundant patterns, a sequential evaluation of the signal is performed. At each time point, 
the algorithm analyzes whether the segment including the following point of the signal can be recreated from 
the already analyzed signal, be it because it is already present, or because it can be recreated by a simple copying 
procedure. In this sense, if the following sequence cannot be recreated from the previously analyzed signal, then 
a complexity counter increases. If the next sequence is redundant with respect to the already analyzed signal, the 
algorithm advances to the next time point without increasing the complexity counter. Once the whole signal is 
analyzed, the complexity counter (number of non-redundant patterns) is normalized to produce the LZc value, 
which ranges (asymptotically for long signals) from 0 to 1. A more thorough explanation of the algorithm can 
be found in the original article29 and in31.

iDFT model
To study the general relation between power-law slope and LZc, we first employed a simple modeling strategy that 
we denominate iDFT model. We constructed signals with different 1/f slopes, among other spectral parameters, 
and computed their resulting LZc. Each signal was simulated using 5 s of length with 1000 points per second 
(fs = 1 kHz), which resulted in a Nyquist frequency (Nf) of 500 Hz. Each time series was initially constructed in the 
frequency domain as the product of its power and phase components. The power of each frequency component 
was constructed accordingly to a power-law distribution:

where P(f) represents power as a function of frequency, O is the offset of the curve, the amplitude of the 1 Hz 
component, and s corresponds to the slope of the power-law. Phases were linear in time, starting at an initial 
phase θ0 that was randomly assigned from a uniform distribution (− π to π) or from von Mises distributions 
with varying dispersion (see below). Importantly, this is the main source of random variability in this model. 

(1)P
(

f
)

= O ∗ f −s
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iDFT function, as implemented in Numpy67, was applied to the product of the amplitudes A(f) (square root of 
the power) and phase components to obtain the time series data according to Eq. (2):

where X(t) is the resulting time varying signal, i is the imaginary unit and n is the index of every frequency. Only 
positive frequencies were employed. To better model the spectral properties of physiologically plausible neural 
signals, in addition to constructing signals using the whole range of possible frequencies (0 to Nf) we also applied 
two types of constraints to the power-law distribution: an initial frequency (f0; Fig. 1C) and a final frequency (ff; 
Fig. 1D). Both are illustrated in Fig. 1A. Specifically, f0 corresponds to setting all amplitudes of frequencies lower 
than f0 to the value of f0, thus flattening the curve to the left of f0. On the other hand, applying an ff corresponds to 
setting the amplitude of every frequency higher than ff to zero. To maintain time series stationarity, a requirement 
of the LZc algorithm27,29, all iDFT models were made with a f0 = 1 Hz unless otherwise stated.

The initial phase of each frequency was first obtained from an uniform random distribution (Fig. 1). This was 
the main source of random variability in this model, choosing the simplest distribution possible. However, to 
analyze the importance of the initial phases in the LZc versus 1/f relation we constructed 9 more series of iDFT 
256 signals. For these series we employed the same slope ranges as the ones employed in Fig. 1, but changed 
the distribution of initial frequencies to von Mises distributions. The von Mises distribution, also known as the 
circular normal distribution, is a probability distribution used to model data that is distributed on a circle or 
a unit circle in a two-dimensional plane. It is characterized by its concentration parameter, often denoted as 
"kappa," which measures the spread or concentration of data around the circle. We used varying values of the 
kappa parameter, which is inversely related to the dispersion of the distribution (see Figure S2).

1/f slope versus LZc modeling function
In an attempt to model the observed relation between 1/f slope and LZc, we empirically found that this relation, 
for a pure power-law iDFT model (Fig. 1B), closely followed a particular mathematical behavior:

where s is the slope of the power-law, LZc(s) is the LZc as a function of slope and a1, b and c are free parameters 
such that a1 ranges from 0 to 1 and b and c ∈ R + . The parameters b and c modify the shape of the curve, while a1 
is a scaling factor. Without this scaling factor, the image of LZc(s) ranges from (0 to 1), while if a1 is introduced 
it ranges from (0 to a1) without changing the internal structure of the curve. Equation (3) appropriately adjusted 
pure power-law signals (Fig. 1B) and iDFTdata generated with a non-trivial final frequency (ff < Nq; Fig. 1D). 
Signals with non-trivial f0 (> 1 Hz) did not range from 0 to 1 but from a value greater than 0 to 1 (Fig. 1C). 
Because of this, we designed a similar equation that better reflected the required image of the LZc(s) function 
for non-trivial f0 cases, introducing a second scaling parameter a2:

For every fit we employed Eqs. 3 or 4 using an algorithm that minimized the squares of the differences 
between data and models as implemented in the scipy.optimize.curve_fit function67. Best fit parameters and 
r2 values for goodness of fit for all iDFT simulations can be found in Table S1 (all r2 > 0.98). It is important to 
emphasize that the modeling of the relation between 1/f slope and LZc was conducted by an iterative and empiri-
cal approach. Although it is possible that there exists a strict analytical solution for this relation, this escapes the 
scope of the present article.

Autocorrelation, time‑scale, 1/f and LZc
Given the relation between the general spectral properties of synthetic signals (1/f slope and LZc), we wondered 
whether this relation could also be tracked by another non-linear characteristic of time series, namely their time 
scale (tau). Additionally, there is evidence indicating that tau is related to the initial (or knee) frequency (f0 in 
our nomenclature) of the power-law decay of neural data39. Indeed, a recent work has described an analytically-
derived relation between tau and 1/f slope68. Thus, we calculated the tau of iDFT-generated signals following 
previously used strategies69, which are based on the autocorrelation function (ACF). For each time series we first 
computed its ACF (numpy correlate function), and selected a segment starting at lag = 0 and ending in the first lag 
point that dropped below 80% of the initial autocorrelation. Within this segment of the ACF, we fitted a quadratic 
equation and, based on the parameters of this equation, obtained the time lag (tau) at which the ACF reached 
50% of its initial magnitude (numpy roots function). Each tau estimation was the average of 20 repetitions.

We analyzed the relation between tau, 1/f slope and f0 by constructing iDFT models for six 1/f slopes (rang-
ing from 0.3 to 3), each one with 11 values of f0 (ranging from 1 to 10 Hz). To improve the interpretability of the 
results, we plotted the multiplicative inverse of f0, i.e. the period of the slower frequency that follows a power-law 
behavior as a function of tau (Fig. 1E). To analyze the relation between tau and LZc, and its dependence on f0, 
we constructed 64 series of iDFT models with different 1/f slopes (ranging from 0.2 to 3.2), each one with five 
different values of f0 (0.1, 0.5, 1 and 5 Hz). These results are depicted in Fig. 1F.

(2)X(t) =
1

N

N
∑

n=0

iDFT
(

A
(

fn
))

∗ exp(i ∗ θn)

(3)LZc(s) = a1 ∗ exp
(

−b ∗ ln2
(

sc + 1
))

(4)LZc(s) = a2 + (1− a2) ∗ exp
(

−b ∗ ln2
(

sc + 1
))
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Conductance‑based neural network model and kernel‑based LFP estimation
We modeled a standard cortical circuit using a recurrent network of leaky integrate-and-fire (LIF) excitatory and 
inhibitory neurons with conductance-based synapses. The dynamics of each of the neuron types is described by

where Cm represents the membrane capacitance, vi represents the voltage of neuron i and whenever vi > vth 
at time t, vi goes back to the resting membrane voltage vrest for a refractory period tr. The synaptic current Isyn 
received by each neuron i after the spiking activity of all presynaptic neurons ji described by Eqs. (6) and (7).

Both excitatory and inhibitory neurons received two types of external inputs (ξ) that represent thalamic and 
cortico-cortical background excitatory drives. Thalamic input was modeled as a Ornstein–Uhlenbeck process 
and cortico-cortical input as a poisson process. The network structure and parameters were obtained from previ-
ously validated model41 according to physiological evidence (Table 1). The network consisted of 5000 neurons, of 
which 4000 were excitatory and 1000 inhibitory. Neurons forming AMPA-like excitatory synapses and GABA-like 
inhibitory synapses were randomly connected with a uniform probability of 20%.

To compute LFP signals from the recurrent network of spiking neurons, we used a kernel-based method42. 
We convolved the spikes of the network with unitary LFP kernels. Changes to E/I balances were simulated as 
modifications to GABA-like conductances. We introduced a scaling factor that multiplied inhibitory-inhibitory 
and inhibitory-excitatory unitary conductances. We employed 21 scaling factors ranging from 1/4 to 4. In this 
way, we drove the system both towards more excitatory driven situations (low scaling factor) and more inhibition-
dominated ones (high scaling factors).

Macaque ECoG data
We used an open ECoG database collected from 2 macaque monkeys (Macaca fuscata) during wakefulness, 
propofol anesthesia (5 and 5.2 mg/kg), and recovery43. Propofol induced anesthesia was achieved through intra-
venous propofol injection. Loss of consciousness was defined as the moment when monkeys no longer responded 
to touch stimuli. The ECoG grid consisted of 128 channels using multichannel ECoG electrode arrays (Unique 
Medical, Japan). The array was implanted in the subdural space with an interelectrode distance of 5 mm. Elec-
trodes were implanted in the left hemisphere continuously covering frontal, parietal, temporal and occipital lobes. 
No further preprocessing than the one used by43 was applied to this data. Since we were interested in assessing 
differences between brain states during wakefulness and anesthesia and not in the transitions, we only considered 
periods of closed-eyes wakefulness and anesthesia. We computed LZc and 1/f slope measures of the times series 
as mentioned above for each electrode, epoch and subject and then averaged LZc and 1/f slope across epochs.

Rat EEG data
We used an open EEG database44 collected from two head—and body—restricted rats during wakefulness and 
propofol anesthesia (2 mg/kg/min). The EEG recording represents 3 min of spontaneous brain activity recorded 
with 16 EEG channels. No further preprocessing than the one used in the open dataset44 was applied to this data. 
All coordinates for electrodes implantation are expressed referring to bregma position, x = medial–lateral axis (–, 
left hemisphere; + , right hemisphere), y = rostral-caudal axis (–, caudal to bregma; + , rostral to bregma), z = dor-
sal–ventral axis. Recording electrodes were in contact with the dura and were organized in a grid, symmetric 
along the sagittal suture, and were placed at the following coordinates (in mm): x =  ± 1.5, y =  + 5 (M2); x =  ± 1.5, 

(5)Cm
dvi

dt
= gL(EL − vi)+ Isyn + ξi

(6)Isyn = gE(EE − vi)+ gI (EI − vi)

(7)
dg

dt
=

τd

τr − τd

(

e−t/τr − e−t/τd
)

Table 1.   Recurrent LIF model parameters.

Neuron type Parameter name Value

E & I Resting membrane potential  − 65 mV

E Population size 8000

E Population firing rate 2 Hz * [0.2, 1, 2, 5, 20]

E Reversal potential 0 mV

E Conductance time rise 0.1 ms

E Conductance time decay 2 ms

I Population size 2000

I Population firing rate 5 Hz * [0.5, 2.5, 5, 12.5, 50]

I Reversal potential -80 mV

I Conductance time rise 0.5 ms

I Conductance time decay 10 ms
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y =  + 2 (M2); x =  ± 1.5, y = –1 (primary motor cortex; M1); x =  ± 4.5, y = –1 (primary somatosensory cortex; S1); 
x =  ± 1.5, y = –4 (retrosplenial cortex; RS); x =  ± 4.5, y = –4 (parietal associative cortex; PA); x =  ± 1.5, y = –7 (sec-
ondary visual cortex; V2); x =  ± 4.5, y = –7 (primary visual cortex; V1); x = 0, y = –10 (cerebellum, ground; GND).

Statistical analyses
Experimental data were visualized using raincloud plots70. Statistical significance was assessed with a Type-1 
error threshold of 0.05. All curve fits were carried out using Scipy optimize function. R2 was calculated using 
custom-made scripts. Correlations were assessed by means of Spearman Correlations. The relation between LZc 
and 1/f slope in empirical data was evaluated using mixed effects ANOVA. Spatial correspondence between the 
amount of change in LZc and 1/f slope between resting and propofol anesthesia conditions were assessed by 
multiple linear regressions.

Data availability
The ECoG dataset analyzed in the current study is available in the NeuroTycho repository, http://​neuro​tycho.​
org/​anest​hesia-​task (task ID: 75). The EEG dataset is available in the EBRAINS repository (https://​doi.​org/​10.​
25493/​8CQN-​Y8S).
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