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Bioinformatics analysis of immune 
cell infiltration patterns 
and potential diagnostic markers 
in atherosclerosis
Haigang Ji 1,4, Ling Yuan 1,4, Wenbo Jiang 2, Yinke Jiang 1, Mengke Jiang 1, Xuemei Sun 1 & 
Jing Chen 3*

This study aimed to investigate efficient diagnostic markers and molecular mechanisms of 
atherosclerosis and to analyze the role of immune infiltration through bioinformatics analysis. 
Expression profile datasets (GSE28829 and GSE43292) of patients with atherosclerosis and healthy 
controls were downloaded from the GEO database. Glutamine (GLN) metabolism-associated genes 
were obtained from the Molecular Signatures Database (MSigDB). The limma package in R was used 
to identify differentially expressed genes (DEGs). Significant modules were filtered using Weighted 
Gene Co-expression Network Analysis (WGCNA). MSigDB sets were subjected to Gene Set Enrichment 
Analysis and Gene Set Variation Analysis. The biological functions of DEGs were examined using 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analyses. STRING and Cytoscape software were used to identify hub genes and functional modules 
through protein–protein interaction (PPI) network analysis. The xCell software was adopted to assess 
the composition patterns of immune and stromal cells. Correlation analyses were performed for key 
genes and immune cell subtypes. We identified 308 DEGs and GLN-associated genes. Functional 
enrichment analysis showed that these genes were strongly enriched in muscle contract, muscle tissue 
development, cutile fiber, mycobacterial, and actin binding. Enriched KEGG pathways comprised 
dilated cardiomyopathy, hypertrophic cardiomyopathy, and the cAMP signaling pathway. In the 
PPI network analysis, 27 genes were identified as hub genes. The area under the curve (AUC) values 
of 27 biomarkers were relatively high, indicating high diagnostic values. The atherosclerosis group 
exhibited a markedly higher degree of infiltration than the control group. This study identified 27 
GLN-associated genes as potential biomarkers for the diagnosis of atherosclerosis. It provides a 
new perspective on immune responses that facilitates exploration of the molecular mechanisms of 
atherosclerosis.
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GO	� Gene ontology
GSEA	� Gene set enrichment analysis
GSVA	� Gene set variation analysis
HCM	� Hypertrophic cardiomyopathy
ICI	� Immune cell infiltration
KEGG	� Kyoto encyclopedia of genes and genomes
ME	� Module eigengene
MF	� Molecular function
MSigDB	� Molecular signatures database
NES	� Normalized enrichment score
NK	� Natural killer
PCA	� Principal component analysis
PPI	� Protein–protein interaction
ROC	� Receiver operating characteristic
ssGSEA	� Single-sample GSEA
STRING	� Search tool for the retrieval of interacting genes
TCA​	� Tricarboxylic acid cycle
TOM	� Topology overlay matrix
VSM	� Vascular smooth muscle
WGCNA	� Weighted gene co-expression network analysis

Atherosclerosis is a chronic inflammatory disease that affects the intima of the artery wall; it is a life-threat-
ening manifestation of cardiovascular disease and presents as atherosclerotic rupture, chronic lumen stenosis, 
and thrombosis1. Cardiovascular diseases are the main cause of death globally and are primarily caused by 
atherosclerosis2. In general, treatment of atherosclerosis, initiated after the onset of symptoms of cardiovascular 
and cerebrovascular disease, aims to eliminate clinical symptoms. Therefore, early treatment of arteriosclerosis 
is an effective means of preventing cardiovascular and cerebrovascular diseases3. Hence, screening for marker 
genes is of critical importance for early diagnosis of atherosclerosis, for identifying new therapeutic targets, and 
for improving clinical therapeutic effects.

Glutaminolysis (GLN) suppresses oxidative stress and maintains the integrity of the mitochondrial membrane, 
facilitating cell survival4. GLN is a crucial energy source for immune and tumor cells. Nevertheless, inflamma-
tory anti-tumor immune cells seem to exhibit no dependence on or even reject GLN metabolism, as evidenced 
particularly in macrophages5. M2 macrophages are more dependent on GLN than naïve macrophages, while M1 
macrophages are characterized by inhibition of GLN metabolism. Hence, targeting GLN metabolism may serve 
as an essential strategy to shift tumor-associated macrophages from M2 to M1 phenotypes, thus augmenting anti-
tumor immune responses6. Moreover, GLN metabolism is critically important in effector T cell activation and 
Th1 cell differentiation. Previous results indicate that targeting GLN metabolism has the potential to reshape the 
tumor microenvironment and enhance immunotherapy efficacy7. Indeed, extensive blocking of GLN metabolism 
greatly enhances the anti-tumor effects of anti-PD-1, while effector T cell cytotoxic function is also enhanced 
because of metabolic reprogramming8. Hence, it is crucial to target suitable metabolic pathways to block tumor 
metabolism and activate inflammatory immunity, thus improving immunization therapy. Targeting GLN metabo-
lism represents a promising and potent option. GLN reduces the levels of atherosclerosis-related biomarkers and 
increases serum adiponectin levels, which may play an important role in reducing the occurrence and progression 
of atherosclerosis9. Therefore, GLN metabolism is an important component in disease occurrence.

Recently, bioinformatics methods have been broadly employed in high-throughput and microarray data 
assessments to identify differentially expressed genes (DEGs) and conduct a variety of research projects. Bioin-
formatics analysis has been recognized as a prominent method for identifying the underlying mechanisms of 
various human diseases. Based on an integrated genomic analysis of two public datasets, this study was conducted 
to explore the potentially important genes, key modules, infiltrating immune cells, and pathways involved in the 
pathogenesis of atherosclerosis.

Results
A database in the Gene Set Enrichment Analysis (GSEA; http://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​index.​jsp) 
platform10,11 was used to identify 134 GLN metabolism-associated genes.

Weighted gene co‑expression network analysis (WGCNA) and module screening
GLN-associated gene sets were investigated using WGCNA. The results demonstrated that when the weighted 
value was 24 (Fig. 1A), scale independence was greater than 0.85 and mean connectivity was approximately 0. 
Three co-expressed modules were screened and the unrelated genes were distributed to a gray module, which was 
excluded from subsequent analyses (Fig. 1B). The module eigengenes (MEs) were correlated, thus allowing study-
ing the associations among modules. A dendrogram and heatmap were adopted to depict the eigengene network 
(Fig. 1C). To understand the physiological significance of these modules, three MEs were associated with GLN, 
and the most significant associations were searched based on the heatmap of module-trait correlations (Fig. 1D).

DEG identification
A total of 1039 statistically significant DEGs were identified between healthy controls and atherosclerosis samples 
(p-adjusted < 0.05, |log2 fold change [FC]|> 0.5). Atherosclerosis samples included 619 genes with upregulated 
and 420 with downregulated expression. A volcano plot was generated for DEG visualization (Fig. 2A). The top 5 
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upregulated (WDFY4, TPP1, DAB2, CYTH4, and ADAP2) and downregulated DEGs (ATP1A2, CAB39L, BAG2, 
C14orf132, and PXYLP1) are shown using a heatmap (Fig. 2B). Based on the results of the Wilcoxon tests, these 
10 genes showed marked differences in expression levels between atherosclerosis and control samples (p < 0.05, 
Fig. 2C).

We obtained 308 GLN-associated DEGs from the intersection between GLN-associated module genes and 
DEGs.

GSEA
To explore potential mechanisms underlying DEG function, GSEA was performed. A Molecular Signatures 
Database (MSigDB) collection was used to select the signaling pathways with the most significant enrich-
ment according to the normalized enrichment score (NES). GSEA revealed that LYSOSOME (NES = 2.45, 
P-adjusted = 0.012, FDR = 0.008), HEMATOPOIETIC CELL LINEAGE (NES = 2.41, P-adjusted = 0.012, 
FDR = 0.008), CYTOKINE–CYTOKINE RECEPTOR INTERACTION (NES = 2.351, P-adjusted = 0.012, 
FDR = 0.008), PROPANOATE METABOLISM (NES =  − 1.795, P-adjusted = 0.023, FDR = 0.014), DILATED 

Figure 1.   Establishment of Weighted Gene Co-expression Network Analysis (WGCNA). (A) Weight parameter 
β = 24 (soft threshold) and scale-free topology fitting index (R2). Various modules of co-expression data in 
atherosclerosis were identified using WGCNA. (B) Associations of modules. Top: Hierarchical clustering of 
module eigengenes (MEs) summarizing modules detected using clustering analysis. Branches of dendrogram 
groups (meta-modules) exhibited positive correlation with eigengenes. Bottom: Heatmap of adjacency 
relationships in the eigengene network. In the heatmap, there is correspondence between each row and column 
and one ME (colored), with red and blue indicating high and low adjacencies, respectively. Meta-modules refer 
to red squares along the diagonal. (C) Associations of consensus MEs with glutamine (GLN). In the table, there 
is correspondence between each row and consensus module, as well as between each column and a sample or 
trait. In the table, the numbers indicate the correlation coefficients for the corresponding ME and trait, and 
the corresponding P-values are printed in parentheses. The color legend indicates correlation coefficients. (D) 
Heatmap of overlapping gene network topologies. There is correspondence between each row and column and 
the gene in the heatmap, with light color and progressively darker red indicating low and higher overlapping 
topologies, respectively. Correspondence between modules and darker squares is observed along the diagonal. 
Dendrograms of genes and assignments of modules are exhibited on the left and top. (F) Correlation of gene 
significance (GS) with module membership (MM) for all GLN-associated genes in the blue module. ‘Cor’ refers 
to the absolute correlation coefficient of MM with GS.
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CARDIOMYOPATHY (NES =  − 1.796, P-adjusted = 0.015, FDR = 0.009), and TYROSINE METABOLISM 
(NES =  − 1.798, P-adjusted = 0.014, FDR = 0.009) (Fig. 3A–F) were significantly enriched in atherosclerosis.

Gene set variation analysis (GSVA)
To further explore functional annotation, differences in the relative expression of pathways were evaluated 
between disease and control groups using GSVA. Numerous differentially expressed pathways were enriched and 
a heatmap was used for visualization. The disease group exhibited markedly lower expression of KEGG_LYSO-
SOME- and KEGG_HEMATOPOIETIC_CELL_LINEAGE-associated pathways, and markedly higher expres-
sion of KEGG_LIMONENE_AND_PINENE_DEGRADATION- and KEGG_BUTANOATE_METABOLISM-
associated pathways than the control group (Fig. 3G).

Enrichment analyses (Gene Ontology [GO]/Kyoto Encyclopedia of Genes and Genomes 
[KEGG])
To investigate the biological functions of the most significant module genes associated with WGCNA and glu-
tamine metabolism compared with differential genes in atherosclerosis and normal controls, functional enrich-
ment analysis was performed. GO results show, The most significant WGCNA and glutamine metabolism related 
module gene muscle contraction, muscle system process, regulation of actin filament—based process (BP), 
contractile fiber, myofibril, sarcomere(CC), actin binding, actin filament binding, integrin binding(MF) enrich-
ment (Fig. 4A); The enriched KEGG pathways included Focal adhesion, Vascular smooth muscle contraction, 
Regulation of actin cytoskeleton, etc. (Fig. 4B). The GO results of differential genes in atherosclerosis and normal 
control showed that the genes were leukocyte cell–cell adhesion, T cell activation, leukocyte migration(BP), 

Figure 2.   Identification of differentially expressed genes (DEGs). (A) Volcano plot of the distribution of 
DEGs in controls and atherosclerosis samples. Red dots: upregulated expression; purple dots: downregulated 
expression; gray dots: not significant expression. (B) Heatmap of the top 5 downregulated and upregulated 
DEGs. (C) The variations in the expression levels of 10 genes in both groups were revealed using Wilcoxon tests. 
Asterisks represent p values (*, **, ***, and **** represent p < 0.05, < 0.01, < 0.001, and < 0.0001, respectively).
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tertiary granule, secretory granule membrane, specific granule(CC), actin binding, immune receptor activity, 
integrin binding(MF) enrichment (Fig. 4C); Enriched KEGG pathways include Rheumatoid arthritis, Chemokine 
signaling pathway, Cell adhesion molecules and so on (Fig. 4D).

To investigate the biological functions of GLN-associated DEGs, GO term along with KEGG pathway enrich-
ment analyses were performed. According to results of the GO term analysis, the genes exhibited strong enrich-
ment in muscle contraction, muscle system process, and muscle tissue development (biological process [BP]); 
contractile fiber, myofibril, and sarcomere (cellular component [CC]); and actin binding, structural constituent 
of muscle, and transmembrane transporter binding (molecular function [MF]) (Fig. 5A–D).

Figure 3.   Gene Set Enrichment Analysis (GSEA) of significantly enriched pathways. (A) Lysosome, (B) 
hematopoietic cell lineage, (C) cytokine–cytokine receptor interaction, (D) propanoate metabolism, (E) dilated 
cardiomyopathy, and (F) tyrosine metabolism. (G) Heatmap illustrating the result of the GSVA analysis. FDR 
false discovery rate, NES normalized enrichment score.
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The enriched KEGG pathways included dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy 
(HCM), and cAMP signaling pathway (Fig. 5E).

Protein–protein interaction (PPI) network analysis and hub gene screening
To comprehend the interactions among the GLN-associated DEGs, a PPI network was built. Twelve approaches 
were adopted to elucidate highly correlated genes in the PPI network. Based on the intersections of the top 
100 genes, obtained using all 12 methods, we identified 27 hub genes: ACTN2, TPM2, FLNC, MYH11, ITGA7, 
DMD, PAK3, LMOD1, GNAI1, MYLK, PLN, CTPS1, CNN1, MYH10, NLGN1, ADAMTSL3, MYOCD, MICU3, 
PPP1R14A, MAP2, OGN, PDE8B, RGS5, MAP1B, ITGA9, AKAP6, and SMTN (Fig. 6).

Hub gene validation
To further verify the diagnostic value of hub gene, ROC curve was used to verify hub gene, and FLNC 
(AUC = 0.8287), AKAP6  (AUC = 0.8139), LMOD1 (AUC = 0.8236), DMD (AUC = 0.8394) were found. 
ACTN2 (AUC = 0.8588), GNAI1 (AUC = 0.8222), CTPS1 (AUC = 0.8368), MAP1B (AUC = 0.8241), ITGA7 
(AUC = 0.7965), ITGA7 (AUC = 0.7965), the area under ROC curve (AUC) values of ADAMTSL3 (AUC = 0.8218) 
and ITGA9 (AUC = 0.8014) were both greater than 0.6 (Fig. 7A). We used tenfold cross-examination to verify 
the diagnostic efficacy of the AUC model, and found that the AUC value was 0.957 (Fig. 7B), indicating that the 

Figure 4.   Enrichment analysis of the most significant module genes related to WGCNA and glutamine 
metabolism and the differential genes between atherosclerosis and normal controls. (A) The GO item 
enrichment analysis results of the most significant module genes related to WGCNA and glutamine metabolism 
are presented. (B) The KEGG enrichment analysis results of the most significant module genes related to 
WGCNA and glutamine metabolism are presented. (C) The enrichment analysis results of GO entries of 
differential genes between atherosclerosis and normal controls are displayed. (D) The KEGG enrichment 
analysis results of differential genes between atherosclerosis and normal controls were displayed.
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AUC model has good diagnostic efficacy, which indicates that the hub gene has the differential ability as a poten-
tial biomarker of atherosclerosis. Among them, CNN1 (AUC = 0.874 (0.801, 0.947)) has good diagnostic value. 
Next, we used delong test to detect whether there were statistical differences in ROC curves between CNN1 and 
other hub genes, and the results showed that most hub genes were significantly different from CNN1(p < 0.05), 
suggesting that CNN1 might be a biomarkers of atherosclerosis (Fig. 7C,D, Supplementary Fig. S1A–M).

Figure 5.   Functional enrichment analysis of GLN-associated DEGs. (A) Gene Ontology (GO) analysis marked 
terms. (B) Bubble chart of biological processes (BP). (C) Chord plot of cellular components (CC). (D) Bar plot 
of molecular functions (MF). (E) Circle plot showing pathway enrichment using Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis of CC and pathway descriptions. FC fold change.
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Immune cell infiltration (ICI)
Considering that ICI may play a crucial role in the pathogenesis of atherosclerosis, we examined the correlations 
between atherosclerosis/control samples and infiltrated immune cells. The atherosclerosis samples exhibited a 
markedly higher degree of infiltration than healthy controls, for most immune cells (Fig. 7A). A positive correla-
tion was observed between the majority of immune cells (Fig. 8B). In addition, each hub gene showed a marked 
correlation with the corresponding immune cells (Fig. 8C–E). Notably, significant correlations were observed 
between MYLK and CD56bright natural killer (NK) cells (R = 0.881, p < 0.001), SMTN and CD56bright NK cells 
(R =  − 0.889, p < 0.001), and MYLK and Th1 (R =  − 0.898, p < 0.001) (Fig. 8C–E).

Signaling pathways participated in signature genes
We used GSVA to examine the differences in 50 HALLMARK signaling pathways in atherosclerosis and control 
samples.

In the atherosclerosis samples, the expression of 31 HALLMARK signaling pathways was markedly 
upregulated: HALLMARK_ADIPOGENESIS, HALLMARK_ALLOGRAFT_REJECTION, HALLMARK_
ANGIOGENESIS, HALLMARK_APICAL_SURFACE, HALLMARK_APOPTOSIS, HALLMARK_COAGU-
LATION, HALLMARK_COMPLEMENT, HALLMARK_DNA_REPAIR, HALLMARK_E2F_TARGETS, 
HALLMARK_ESTROGEN_RESPONSE_LATE, HALLMARK_G2M_CHECKPOINT, HALLMARK_GLYC-
OLYSIS, HALLMARK_HEME_METABOLISM, HALLMARK_HYPOXIA, HALLMARK_IL2_STAT5_SIGN-
ALING, HALLMARK_IL6_JAK_STAT3_SIGNALING, HALLMARK_INFLAMMATORY_RESPONSE, 
HALLMARK_INTERFERON_ALPHA_RESPONSE, HALLMARK_INTERFERON_GAMMA_RESPONSE, 
HALLMARK_KRAS_SIGNALING_UP, HALLMARK_MTORC1_SIGNALING, HALLMARK_MYC_TAR-
GETS_V2, HALLMARK_NOTCH_SIGNALING, HALLMARK_P53_PATHWAY, HALLMARK_PEROXISOME, 
HALLMARK_PI3K_AKT_MTOR_SIGNALING, HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY, 
HALLMARK_TNFA_SIGNALING_VIA_NFKB, HALLMARK_UNFOLDED_PROTEIN_RESPONSE, HALL-
MARK_UV_RESPONSE_UP, HALLMARK_XENOBIOTIC_METABOLISM. Conversely, the expression of the 
HALLMARK_MYOGENESIS pathway was markedly downregulated in the atherosclerosis samples (Fig. 9A).

We also analyzed the correlations between the top 5 most-significant differentially expressed hub genes and 
50 HALLMARK signaling pathways. ACTN2 was associated with multiple pathways, including HALLMARK_
UV_RESPONSE_UP and HALLMARK_UV_RESPONSE_UP (Fig. 9B).

Interaction analysis on hub genes
We created a PPI network for the signature genes using the GeneMANIA database and identified 27 genes 
(Fig. 10A). To further investigate the function of signature genes, GO and KEGG analyses were performed on 47 
genes comprising 27 hub and 20 associated genes. According to the GO results, the genes were strongly enriched 
in regulation of axonogenesis, regulation of cell shape, and regulation of vascular smooth muscle (VSM) cell 
migration (BP); cell division site, cortical actin cytoskeleton, and caveola (CC); and cyclic-nucleotide phospho-
diesterase activity, transcription coactivator activity, and transmembrane transporter binding (MF) (Fig. 10B). 
KEGG analysis revealed that DCM, VSM contraction, HCM, focal adhesion, regulation of actin cytoskeleton, 
arrhythmogenic right ventricular cardiomyopathy, adrenergic signaling in cardiomyocytes, cGMP-PKG signaling 
pathway, and oxytocin signaling pathway were the main enriched pathways (Fig. 10C).

Validation of the gene set
The expression levels of the key genes validated enrichment for gene set muscle tissue development, muscle 
system process, and muscle contraction. The atherosclerosis samples displayed low expression levels for most 
of the key genes (Fig. 11).

Figure 6.   Hub genes of the protein–protein interaction (PPI) network. (A) Hub genes were screened based on 
gene intersections using 12 approaches.
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Discussion
As a chronic disease, atherosclerosis leads to ischemic symptoms in different sites12. Due to the absence of early 
diagnostic indicators, patients with atherosclerosis tend to miss optimal treatment opportunities, leading to 
adverse outcomes. Additionally, ICI has been reported to play a vital part in the development of atherosclerosis. 
Hence, it is crucial to identify specific diagnostic markers and analyze ICI patterns to improve the prognosis of 
patients with atherosclerosis. Using bioinformatics analysis, we identified diagnostic markers for atherosclerosis 
and investigated the role of ICI in this disease.

Among the 27 hub genes (ACTN2, TPM2, FLNC, MYH11, ITGA7, DMD, PAK3, LMOD1, GNAI1, MYLK, 
PLN, CTPS1, CNN1, MYH10, NLGN1, ADAMTSL3, MYOCD, MICU3, PPP1R14A, MAP2, OGN, PDE8B, RGS5, 
MAP1B, ITGA9, AKAP6, and SMTN) identified in this study, ACTN2, as pointed out earlier13, is a hub gene 
related to heart failure. TPM2 has been identified as a potential diagnostic biomarker for atherosclerosis14. FLNC 

Figure 7.   ROC curve analysis and testing of Hub gene. (A) ROC curve analysis of Hub gene. (B) 10 times cross 
validation ROC curve of AUC model. (C) ROC curves and delong test p-values of TGA7 and CNN1. (D) ROC 
curves and delong test p-values of MYH10 and CNN1.
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expression levels affect the TEAD-YAP/TAZ signaling pathway15. ITGA7 serves as a tumor suppressor gene in 
breast cancer (BC) and modulates BC invasion and migration16. Moreover, the expression level of ITGA7 in BC 
stem cells can be used as a predictor of chemotherapeutic efficacy in treating BC17. PAK3 is a vital marker gene 
for the proneural subtype of glioma, affecting proliferation, differentiation, and growth18. As an oncogene related 
to Lauren classification, LMOD1 modulates gastric cancer cell metastasis via the FAK-AKT/mTOR pathway19. 
These genes may serve as diagnostic or therapeutic targets for atherosclerosis, and their role should be confirmed 
through additional experiments.

ROC curve analysis revealed that the AUCs of several genes, including FLNC (AUC = 0.8287), AKAP6 
(AUC = 0.8139), LMOD1 (AUC = 0.8236), DMD (AUC = 0.8394), ACTN2 (AUC = 0.8588), GNAI1 (AUC = 0.8222), 
CTPS1 (AUC = 0.8368), MAP1B (AUC = 0.8241), ITGA7 (AUC = 0.7965), ITGA7 (AUC = 0.7965), ADAMTSL3 

Figure 8.   Immune cell infiltration (ICI) between atherosclerosis and control samples. (A) Heatmap of ICI 
changes in both groups. (B) Association among immune cells. Dot plots of the correlation between immune 
cells and genes MYLK (C), SMTN (D), and MYLK (E). *, **, ***, and **** represent p < 0.05, < 0.01, < 0.001, 
and < 0.0001, respectively.
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(AUC = 0.8218), and ITGA9 (AUC = 0.8014) were all high, indicating the outstanding diagnostic values of these 
genes. This implies that hub genes have a strong ability to distinguish between samples from patients with ath-
erosclerosis and healthy controls. Further evaluation of these diagnostic genes based on an expanded sample 
size is required.

GO and KEGG annotation results demonstrated enrichment in pathways that regulate cell shape, axonogen-
esis, cell division site, caveola, transcription coactivator activity, and transmembrane transporter binding. VSM 
contractions and the cGMP-PKG signaling pathway are involved in the pathological mechanisms and potential 
treatments of heart failure20. STAT5 inhibitor can inhibit inflammation and alleviate atherosclerosis21. This was 
consistent with our GSVA results showing that atherosclerosis is closely related to IL2-STAT5-signaling. Then, 
Hsp27 might play an anti-atherosclerosis role by regulating apoptosis, which might provide a basis for the treat-
ment of atherosclerosis22. Our GSVA results suggest that atherosclerosis is closely related to apoptosis, which is 
consistent with our results.

GSEA provides important information on large-scale genes with relatively small FC. By performing GSEA on 
the dataset gene profiles, we acquired multiple highly enriched gene sets in the atherosclerosis samples. Briefly, 
‘LYSOSOME’ stands for genes modulated by lysosome-based signaling in response to acid phosphatase-type 5 
(ACP5). The gene set comprised 33 genes, including Acp5 and cathepsin S (CTSS). Lysosomes participate in many 
biological processes, such as plasma membrane repair, immunity, cell adhesion and migration, gene regulation, 
and metabolic signal transduction23. Lysosome function and sphingolipid metabolism play important roles in the 
occurrence, development, and regulation of vascular disease and glomerular injuries24,25. Lysosome autophagy 
helps melanoma cells escape aging and promotes survival by recovering damaged organelles and proteins26. 

Figure 9.   Associations of hub genes with 50 HALLMARK signaling pathways. (A) Fifty HALLMARK signaling 
pathways were compared in atherosclerosis and control samples. (B) Associations between 50 HALLMARK 
signaling pathways and target genes. *, **, ***, and **** indicate p < 0.05, < 0.01, < 0.001, and < 0.0001, 
respectively.
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Lysosomes play important roles in many mechanisms related to atherosclerosis progression, including inflam-
mation, exocytosis, autophagy, mTOR signal transduction, and iron metabolism27. Therefore, further studies on 
the roles of lysosome in the progression of atherosclerosis are required.

Genetic inactivation of PD-1–PD-L1 increases the burden of atherosclerosis and promotes the infiltration of 
macrophages and CD8 + T cells into atherosclerotic plaques28. To explore the function of ICI in atherosclerosis, 
an integrated assessment of immune infiltration was performed via single-sample GSEA (ssGSEA). The incidence 
of atherosclerotic cardiovascular events within 2 years after ICI treatment is 3 times higher29. Elevated infiltrated 

Figure 10.   Interaction analyses of hub genes. (A) Co-expression network of signature genes. (B) GO and (C) 
KEGG analyses of co-expressed genes.
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levels of activated B and CD4 T cells were observed. Correlation analysis with immune cells revealed that MYLK 
and SMTN were negatively correlated with CD56 + NK cells. NK cells play important roles in promoting tumor 
progression through immunosuppression30,31. Therefore, we speculate that MYLK and SMTN reduce CD56 + NK 
cell involvement in the occurrence and progression of atherosclerosis. This hypothesis requires further verifica-
tion to elucidate the complex interactions of genes with immune cells.

Conclusions
GLN is an important amino acid that provides carbon and nitrogen for biosynthesis. GLN is transported into cells 
through plasma membrane GLN transporters, such as SLC1A5, SLC38A1, and SLC38A217, and is then used in 
the cytoplasm for the biosynthesis of hexosamine, nucleotides, and asparagine32. GLN is also an essential nutrient 
for white blood cells (lymphocytes and macrophages), and GLN metabolic inhibitors are potential antiviral drug 
candidates33. Targeted GLN metabolism therapy can improve radiosensitization in prostate cancer34. Therefore, 
GLN metabolism plays a unique and important role in various diseases.

Briefly, DEGs, WGCNA and PPI modules, enriched pathways, hub genes, and infiltrated immune cells were 
examined, which may be particularly relevant to the pathogenesis of atherosclerosis. The results provide a novel 
perspective for understanding the pathogenesis of atherosclerosis and can drive progress in the development 
of therapeutics.

Methods
Data sources
The Gene Expression Omnibus (GEO; https://​www.​ncbi.​nlm.​nih.​gov/​geo/) database, which is freely accessible 
to the public, was used to derive all data used in our study. The atherosclerosis whole genome-wide expression 
profile was retrospectively derived from the GEO database using the R package ‘GEOquery’. GSE28829 comprises 
16 samples from patients with atherosclerosis and 13 normal control samples. GSE43292 comprises 32 athero-
sclerosis samples and 32 control samples. The R package “sva” in ComBat method was applied to correct batch 
effects of non-biotechnical bias35. The degree of correction was examined using principal component analysis 
(PCA). The present study honored the data access policies of each database.

DEGs associated with atherosclerosis
The “limma (version 3.50.0)”36 package in R was adopted to screen DEGs in atherosclerosis (n = 48) and normal 
(n = 45) samples, with thresholds of p-adjusted < 0.05 and |log2FC|> 0.5 for inclusion in subsequent evaluations. 
Next, the R package “pheatmap” was used to generate heatmaps by means of Complete Linkage Clustering and 
Euclidean Distance.

WGCNA and significant module recognition
The WGCNA algorithm implemented in the WGCNA_1.70-3 package was adopted to build the co-expression 
networks37. Gene expression profile similarity was assessed using Pearson’s correlation coefficient. A scale-free 
network was obtained by weighing the correlation coefficients between genes via a power function. Using the 
R package ‘PickSoftThreshold,’ the similarity of co-expression was increased to power β = 24, thus building 
a weighted adjacency matrix. A gene module refers to a set of genes that are tightly interconnected in a co-
expression network. In WGCNA, gene modules were identified using hierarchical clustering, and the modules 
are indicated in color. The different modules were screened using dynamic tree cut. During the module selec-
tion process, the adjacency matrix (a measure of topological similarity) was shifted to a topology overlay matrix 

Figure 11.   Heatmaps of key genes. Gene sets of muscle tissue development (A), muscle system process (B), and 
muscle contraction (C) in atherosclerosis and control samples.

https://www.ncbi.nlm.nih.gov/geo/
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(TOM), and cluster analysis was performed to detect modules. We implemented Pearson’s correlation analysis to 
calculate the correlation between ME (referring to the entire level of gene expression in each module) and GLN. 
Modules that were markedly related to GLN were acquired. Heatmap plots of topological overlap in the gene 
network were used to visualize the structure of the co-expression module. Hierarchical clustering dendrograms 
of MEs and heatmap plots of corresponding eigengene networks summarized the associations among modules. 
The GLN-associated DEGs were obtained from the intersections of DEGs and GLN-associated module genes.

GSEA
As a computing approach, GSEA11 is used to examine if two biological states exhibit statistically significant and 
consistent differences in the a priori-defined set of genes. Using the R package “clusterProfiler (version 4.2.2),” 
GSEA was implemented on an ordered list of entire genes based on their log2FC values. Each analysis was 
conducted for 1,000 times of gene set permutations. We used c2.cp.kegg.v7.5.1.symbols as the reference gene 
collection from MSigDB10,38. Gene sets with P-adjusted < 0.05 were deemed as significantly enriched.

GSVA
GSVA refers to an unsupervised and non-parametric approach that allows the utilization of gene expression pro-
files to evaluate connections between biological pathways and gene characteristics. To investigate the differences 
in biological function between normal and disease groups, GSVA was performed on “c2.cp.kegg.v7.5.1.symbols” 
using the R package “GSVA (version 1.42.0).” For result visualization, the R package “pheatmap (version 1.0.12)” 
was used. MSigDB (http://​softw​are.​broad​insti​tute.​org/​gsea/​msigdb) was employed to download 50 hallmark 
gene sets as reference. GSVA scores for the gene sets in various samples were computed using the ssGSEA func-
tion in the GSVA package. Both groups were compared in terms of GSVA score differences in various gene sets 
using the Limma package.

GO/KEGG pathway enrichment analyses
GO39 divides gene functions into three parts: CC, BP, and MF. KEGG40–42 refers to an integrated bioinformat-
ics platform for the systematic analysis of markedly altered metabolic pathways enriched in gene lists. The R 
package “clusterProfiler (version 4.2.2)”43 was employed for GO/KEGG enrichment analyses (p < 0.05) on the 
GLN-associated DEGs.

PPI network establishment
We used the online database Search Tool for the Retrieval of Interacting Genes (STRING)44 to build PPI net-
works, setting 0.7 as the cut-off value of the interaction score. PPI network visualization was implemented using 
the Cytoscape45 software. In the PPI network, hub genes were detected via the Cytoscape plugin cytoHubba46. 
CytoHubba ranking methods were employed to screen the top 100 genes; hub genes were identified based on 
intersections from 12 approaches (Betweenness, BottleNeck, ClusteringCoefficient, density of maximum neigh-
borhood component, edge percolated component, Eccentricity, maximum neighborhood component, maximal 
clique centrality, node connect closeness, node connect degree, Radiality, and Stress). The 12 methods in the 
CytoHubba plugin were used sequentially.

GeneMANIA
The GeneMANIA website (http://​genem​ania.​org)47 was used to establish the PPI networks of hub genes. The 
website allows predictions of associations of functionally similar genes with hub genes, comprising protein–pro-
tein and protein–DNA interactions, pathways, biochemical reactions, and co-localization and co-expression 
networks. Based on the R package “clusterProfiler,” we obtained gene functional annotations of GO terms and 
KEGG pathway analyses.

ROC curve
The ROC curve assesses diagnostic test performance. The curve is plotted with sensitivity as the ordinate and 
1 − specificity (false positive rate) as the abscissa. AUC is a metric frequently acquired from the ROC plot of 
sensitivity against 1 − specificity. After using the R package “pROC” [PMID: 21414208] to plot ROC curves and 
determine AUC, the signature genes were screened and diagnostic values were assessed. AUC values ranged 
between 0.5 (completely random classifier) and 1 (perfect classifier). Generally, an AUC value of 0.5 refers to 
no predictive value, 0.6–0.8 to acceptable accuracy, 0.8–0.9 to excellent accuracy, and a value over 0.9 denotes 
outstanding accuracy.

Immune infiltration analysis
SsGSEA48 refers to a GSEA extension. It computes the enrichment score for each sample paired with a gene set. 
The score indicates the absolute gene set enrichment within a specified dataset. SsGSEA differs from group-based 
(e.g., disease vs. normal) GSEA. Instead, each sample can be scored for the corresponding set of genes in ssGSEA.

We adopted the Tumor and Immune System Interactions Database (http://​cis.​hku.​hk/​TISIDB/​index.​php)49 to 
derive 28 immune cells: central memory CD4 and CD8 T cells, effector memory CD4 and CD8 T cells, activated 
CD4 and CD8 T cells, T follicular helper cells, gamma delta T cells, T helper cells (Th1, Th2, and Th17), regula-
tory T cells, activated B cells, immature B cells, memory B cells, NK cells, CD56bright and CD56dim NK cells, 
myeloid derived suppressor cells, NK T cells, activated dendritic cells, plasmacytoid dendritic cells, eosinophils, 
immature dendritic cells, mast cells, macrophages, monocytes, and neutrophils. The relative enrichment score of 
each immunocyte was quantitatively determined from the gene expression profile of each sample. Variations in 

http://software.broadinstitute.org/gsea/msigdb
http://genemania.org
http://cis.hku.hk/TISIDB/index.php
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the ICI levels among samples in atherosclerosis and control groups were illustrated using the R package ggplot2 
(version 3.3.6)50.

Statistical methods
The R software v4.1.2 was used to carry out the statistical analyses. The correlation between two parameters 
was inferred using Spearman’s correlation analysis. Inter-group differences were compared using Wilcoxon 
tests. Multi-group (three or more groups) differences were compared using the Kruskal–Wallis test. Statistical 
significance was set at two-sided p < 0.05.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.

Received: 11 September 2023; Accepted: 10 November 2023

References
	 1.	 Kaw, K. et al. Smooth muscle α-actin missense variant promotes atherosclerosis through modulation of intracellular cholesterol 

in smooth muscle cells. Eur. Heart J. 1, 1 (2023).
	 2.	 Libby, P. The changing landscape of atherosclerosis. Nature. 592(7855), 524–533 (2021).
	 3.	 Riccardi, G., Giosuè, A., Calabrese, I. & Vaccaro, O. Dietary recommendations for prevention of atherosclerosis. Cardiovasc. Res. 

118(5), 1188–1204 (2022).
	 4.	 Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature. 551(7678), 115–118 (2017).
	 5.	 Oh, M. H. et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. 

Clin. Invest. 130(7), 3865–3884 (2020).
	 6.	 Liu, P. S. et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 

18(9), 985–994 (2017).
	 7.	 Yu, Q. et al. Targeting glutamine metabolism ameliorates autoimmune hepatitis via inhibiting T cell activation and differentiation. 

Front. Immunol. 13, 880262 (2022).
	 8.	 Huang, D. et al. Cancer-cell-derived GABA promotes β-catenin-mediated tumour growth and immunosuppression. Nat. Cell Biol. 

24(2), 230–241 (2022).
	 9.	 Alipanah-Moghadam, R. et al. Glutamine supplementation can reduce some atherosclerosis markers after exhaustive exercise in 

young healthy males. Nutrition. 94, 111506 (2022).
	10.	 Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 27(12), 1739–1740 (2011).
	11.	 Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression 

profiles. Proc. Natl. Acad Sci. U S A. 102(43), 15545–15550 (2005).
	12.	 Shah, M. S. & Brownlee, M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ. Res. 118(11), 

1808–1829 (2016).
	13.	 Arvanitis, M. et al. Genome-wide association and multi-omic analyses reveal ACTN2 as a gene linked to heart failure. Nat. Com-

mun. 11(1), 1122 (2020).
	14.	 Meng, L. B. et al. TPM2 as a potential predictive biomarker for atherosclerosis. Aging (Albany NY). 11(17), 6960–6982 (2019).
	15.	 Knyazeva, A. et al. FLNC expression level influences the activity of TEAD-YAP/TAZ signaling. Genes 11(11), 1 (2020).
	16.	 Bhandari, A. et al. ITGA7 functions as a tumor suppressor and regulates migration and invasion in breast cancer. Cancer Manag. 

Res. 10, 969–976 (2018).
	17.	 Gwili, N. et al. Transcriptome profiles of stem-like cells from primary breast cancers allow identification of ITGA7 as a predictive 

marker of chemotherapy response. Br. J. Cancer. 125(7), 983–993 (2021).
	18.	 Magne, N. et al. PAK3 is a key signature gene of the glioma proneural subtype and affects its proliferation, differentiation and 

growth. Cell Oncol. (Dordr). 44(6), 1257–1271 (2021).
	19.	 Tan, Y. et al. LMOD1, an oncogene associated with Lauren classification, regulates the metastasis of gastric cancer cells through 

the FAK-AKT/mTOR pathway. BMC Cancer. 22(1), 474 (2022).
	20.	 Cai, Z. et al. The NO-cGMP-PKG Axis in HFpEF: From pathological mechanisms to potential therapies. Aging Dis. 14(1), 46–62 

(2023).
	21.	 Wang, X. et al. STAT5 inhibitor attenuates atherosclerosis via inhibition of inflammation: The role of STAT5 in atherosclerosis. 

Am. J. Transl. Res. 13(3), 1422–1431 (2021).
	22.	 Shan, R., Liu, N., Yan, Y. & Liu, B. Apoptosis, autophagy and atherosclerosis: Relationships and the role of Hsp27. Pharmacol. Res. 

166, 105169 (2021).
	23.	 Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21(2), 

101–118 (2020).
	24.	 Bhat, O. M. & Li, P. L. Lysosome function in cardiovascular diseases. Cell Physiol. Biochem. 55(3), 277–300 (2021).
	25.	 Meyer-Schwesinger, C. Lysosome function in glomerular health and disease. Cell Tissue Res. 385(2), 371–392 (2021).
	26.	 Xie, X., Koh, J. Y., Price, S., White, E. & Mehnert, J. M. Atg7 overcomes senescence and promotes growth of BrafV600E-driven 

melanoma. Cancer Discov. 5(4), 410–423 (2015).
	27.	 Marques, A. R. A., Ramos, C., Machado-Oliveira, G. & Vieira, O. V. Lysosome (Dys)function in atherosclerosis-A Big weight on 

the shoulders of a small organelle. Front. Cell Dev. Biol. 9, 658995 (2021).
	28.	 Grabie, N. et al. Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T-cell mediated injury in the heart. Circula-

tion. 116(18), 2062–2071 (2007).
	29.	 Drobni, Z. D. et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. 

Circulation. 142(24), 2299–2311 (2020).
	30.	 Crosby, C. M. & Kronenberg, M. Tissue-specific functions of invariant natural killer T cells. Nat. Rev. Immunol. 18(9), 559–574 

(2018).
	31.	 Witalisz-Siepracka, A. et al. NK cell-specific CDK8 deletion enhances antitumor responses. Cancer Immunol. Res. 6(4), 458–466 

(2018).
	32.	 Yoo, H. C. et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell 

Metab. 31(2), 267–83.e12 (2020).
	33.	 Hirabara, S. M. et al. Host cell glutamine metabolism as a potential antiviral target. Clin. Sci. (Lond). 135(2), 305–325 (2021).
	34.	 Mukha, A., Kahya, U. & Dubrovska, A. Targeting glutamine metabolism and autophagy: The combination for prostate cancer 

radiosensitization. Autophagy. 17(11), 3879–3881 (2021).



16

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19821  | https://doi.org/10.1038/s41598-023-47257-8

www.nature.com/scientificreports/

	35.	 Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted 
variation in high-throughput experiments. Bioinformatics. 28(6), 882–883 (2012).

	36.	 Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 
43(7), e47 (2015).

	37.	 Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 9, 559 (2008).
	38.	 Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1(6), 417–425 (2015).
	39.	 Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43(Database issue), D1049–D1056.
	40.	 Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000).
	41.	 Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28(11), 1947–1951 (2019).
	42.	 Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways 

and genomes. Nucleic Acids Res. 51(D1), D587–D592 (2023).
	43.	 Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics. 

16(5), 284–287 (2012).
	44.	 Szklarczyk, D. et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of 

user-uploaded gene/measurement sets. Nucleic Acids Res. 49(D1), D605–D612 (2021).
	45.	 Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 

13(11), 2498–2504 (2003).
	46.	 Chin, C. H. et al. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8(Suppl 4), 

S11 (2014).
	47.	 Warde-Farley, D. et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting 

gene function. Nucleic Acids Res. 38(1), W214–W220 (2010).
	48.	 Wu, S. et al. Integrated machine learning and single-sample gene set enrichment analysis identifies a TGF-beta signaling pathway 

derived score in headneck squamous cell carcinoma. J Oncol. 2022, 3140263 (2022).
	49.	 Ru, B. et al. TISIDB: An integrated repository portal for tumor-immune system interactions. Bioinformatics. 35(20), 4200–4202 

(2019).
	50.	 Ito, K. & Murphy, D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometr. Syst. Pharmacol. 2(10), e79 (2013).

Acknowledgements
We thank Dr. Xiaojing Yan (Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine), and all 
the members of his team, for generously sharing their experience in study design and article writing.

Author contributions
J.C., H.J. and L.Y. contributed to the overall bioinformatics analysis and writing of manuscript. W.J., Y.J. and M.J. 
X.S. contributed to the writing of the manuscript. All authors reviewed the manuscript. H.J. and L.Y. contributed 
equally to this work.

Funding
This study was supported by Traditional Chinese Medicine Science and Technology Project of Jiangsu Province 
of china (No. ZD201709) and National famous traditional chinese medicine experts inheritance studio construc-
tion project of china (No. 202275).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​47257-8.

Correspondence and requests for materials should be addressed to J.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-47257-8
https://doi.org/10.1038/s41598-023-47257-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Bioinformatics analysis of immune cell infiltration patterns and potential diagnostic markers in atherosclerosis
	Results
	Weighted gene co-expression network analysis (WGCNA) and module screening
	DEG identification
	GSEA
	Gene set variation analysis (GSVA)
	Enrichment analyses (Gene Ontology [GO]Kyoto Encyclopedia of Genes and Genomes [KEGG])
	Protein–protein interaction (PPI) network analysis and hub gene screening
	Hub gene validation
	Immune cell infiltration (ICI)
	Signaling pathways participated in signature genes
	Interaction analysis on hub genes
	Validation of the gene set

	Discussion
	Conclusions
	Methods
	Data sources
	DEGs associated with atherosclerosis
	WGCNA and significant module recognition
	GSEA
	GSVA
	GOKEGG pathway enrichment analyses
	PPI network establishment
	GeneMANIA
	ROC curve
	Immune infiltration analysis
	Statistical methods

	References
	Acknowledgements


